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1. Introduction

In this paper, we survey and improve some Liouville-type theorems for a class of hypoel-
liptic second-order operators, appeared in the series of papers [1–4].

The operators considered in these papers can be written as follows:

� :=
N∑

i, j=1

∂xi
(
ai j(x)∂xj

)
+

N∑

i=1

bi(x)∂xi − ∂t, (1.1)

where the coefficients ai j , bi are t-independent and smooth in RN . The matrix A =
(ai j)i, j=1,...,N is supposed to be symmetric and nonnegative definite at any point of RN .

We will denote by z = (x, t), x ∈ RN , t ∈ R, the point of RN+1, by Y the first-order
differential operator

Y :=
N∑

i=1

bi(x)∂xi − ∂t, (1.2)
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and by �0 the stationary counterpart of �, that is,

�0 :=
N∑

i, j=1

∂xi
(
ai j(x)∂xj

)
+

N∑

i=1

bi(x)∂xi . (1.3)

We always assume the operator Y to be divergence free, that is,
∑N

i=1 ∂xibi(x)= 0 at any
point x ∈RN . Moreover, as in [2], we assume the following hypotheses.

(H1) � is homogeneous of degree two with respect to the group of dilations (dλ)λ>0

given by

dλ(x, t)= (Dλ(x),λ2t
)
,

Dλ(x)=Dλ
(
x1, . . . ,xN

)= (λσ1x1, . . . ,λσN xN
)
,

(1.4)

where σ = (σ1, . . . ,σN ) is an N-tuple of natural numbers satisfying 1= σ1 ≤ σ2 ≤
··· ≤ σN . When we say that � is dλ-homogeneous of degree two, we mean that

�
(
u
(
dλ(x, t)

)= λ2(�u)
(
dλ(x, t)

) ∀u∈ C∞
(
RN+1). (1.5)

(H2) For every (x, t),(y,τ)∈RN+1, t > τ, there exists an �-admissible path η : [0,T]→
RN+1 such that η(0)= (x, t), η(T)= (y,τ).

An �-admissible path is any continuous path η which is the sum of a finite number of
diffusion and drift trajectories.

A diffusion trajectory is a curve η satisfying, at any points of its domain, the inequality

(〈
η′(s),ξ

〉)2 ≤ 〈Â(η(s)
)
ξ,ξ
〉 ∀ξ ∈RN . (1.6)

Here 〈·,·〉 denotes the inner product in RN+1 and Â(z) = Â(x, t) = Â(x) stands for the
(N + 1)× (N + 1) matrix

Â=
(
A 0
0 0

)
. (1.7)

A drift trajectory is a positively oriented integral curve of Y .
Throughout the paper, we will denote by Q the homogeneous dimension ofRN+1 with

respect to the dilations (1.4), that is,

Q = σ1 + ···+ σN + 2 (1.8)

and assume

Q ≥ 5. (1.9)

Then, the Dλ-homogeneous dimension of RN is Q− 2≥ 3.
We explicitly remark that the smoothness of the coefficients of � and the homo-

geneity assumption in (H1) imply that the ai j ’s and the bi’s are polynomial functions
(see [5, Lemma 2]). Moreover, the “oriented” connectivity condition in (H1) implies the
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hypoellipticity of � and of �0 (see [1, Proposition 10.1]). For any z = (x, t) ∈ RN+1, we
define the dλ-homogeneous norm |z| by

|z| = ∣∣(x, t)
∣∣ := (|x|4 + t2)1/4

, (1.10)

where

|x| = ∣∣(x1, . . . ,xN
)∣∣=

( N∑

j=1

(
x2
j

)σ/σj
)1/2σ

, σ =
N∏

j=1

σj . (1.11)

Hypotheses (H1) and (H2) imply the existence of a fundamental solution Γ(z,ζ) of �
with the following properties (see [2, page 308]):

(i) Γ is smooth in {(z,ζ)∈RN+1×RN+1 | z �= ζ},
(ii) Γ(·,ζ)∈ L1

loc(RN+1) and �Γ(·,ζ)=−δζ for every ζ ∈RN+1,
(iii) Γ(z,·)∈ L1

loc(RN+1) and �∗Γ(z,·)=−δz for every z ∈RN+1,
(iv) limsupζ→z Γ(z,ζ)=∞ for every z ∈RN+1,
(v) Γ(0,ζ)→ 0 as ζ →∞, Γ(0,dλ(ζ))= λ−Q+2Γ(0,ζ),

(vi) Γ((x, t),(ξ,τ))≥ 0, > 0 if and only if t > τ,
(vii) Γ((x, t),(ξ,τ))= Γ((x,0),(ξ,τ − t)).

In (iii) �∗ denotes the formal adjoint of �.
These properties of Γ allow to obtain a mean value formula at z = 0 for the entire

solutions to �u = 0. We then use this formula to prove a scaling invariant Harnack in-
equality for the nonnegative solutions �u= f in RN+1. Our first Liouville-type theorems
will follow from this Harnack inequality. All these results will be showed in Section 2.

In Section 3, we show some asymptotic Liouville theorem for nonnegative solution to
�u= 0 in the halfspace RN×]−∞,0[ assuming that �, together with (H1) and (H2), is
left invariant with respect to some Lie groups in RN+1.

Finally, in Section 4 some examples of operators to which our results apply are showed.

2. Polynomial Liouville theorems

Throughout this section, we will assume that � in (1.1) satisfies hypotheses (H1) and
(H2). Let Γ be the fundamental solution of � with pole at the origin. With a standard
procedure based on the Green identity for � and by using the properties of Γ recalled in
the introduction, one obtains a mean value formula at z = 0 for the solution to �u= 0.
Precisely, for every point (0,T)∈RN+1 and r > 0, define the �-ball centered at (0,T) and
with radius r, as follows:

Ωr(0,T) :=
{
ζ ∈RN+1 : Γ

(
(0,T),ζ

)
>
(

1
r

)Q−2}
. (2.1)

Then, if �u= 0 in RN+1, one has

u(0,T)=
(

1
r

)Q−2∫

Ωr (0,T)
K(T ,ζ)u(ζ)dζ , (2.2)
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where

K(T ,ζ)=
〈
A(ξ)∇ξΓ,∇ξΓ

〉

Γ2
, ζ = (ξ,τ), (2.3)

and Γ stands for Γ((0,T),(ξ,τ)). Moreover, 〈·,·〉 denotes the inner product inRN and∇ξ

is the gradient operator (∂ξ1 , . . . ,∂ξN ).
Formula (2.2) is just one of the numerous extensions of the classical Gauss mean value

theorem for harmonic functions. For a proof of it, we directly refer to [6, Theorem 1.5].
We would like to stress that in this proof one uses our assumption divY = 0.

The kernel K(T ,·) is strictly positive in a dense open subset of Ωr(0,T) for every T ,r >
0 (see [2, Lemma 2.3]). This property of K(T ,·), together with the dλ-homogeneity of �,
leads to the following Harnack-type inequality for entire solutions to �u= 0.

Theorem 2.1. Let u :RN+1 →R be a nonnegative solution to �u= 0 in RN+1. Then, there
exist two positive constants C = C(�) and θ = θ(�) such that

sup
Cθr

u≤ Cu(0,r2) ∀r > 0, (2.4)

where, for ρ > 0, Cρ denotes the dλ-symmetric ball

Cρ := {z ∈RN+1 | |z| < ρ
}
. (2.5)

The proof of this theorem is contained in [2, page 310].
By using inequality (2.4) together with some basic properties of the fundamental solu-

tion Γ, one easily gets the following a priori estimates for the positive solution to �u= f
in RN+1.

Corollary 2.2. Let f be a smooth function in RN+1 and let u be a nonnegative solution to

�u= f in RN+1. (2.6)

Then there exists a positive constant C independent of u and f such that

u(z)≤ Cu

(
0,
( |z|

θ

)2
)

+ |z|2 sup
|ζ|≤|z|/θ2

∣∣ f (ζ)
∣∣, (2.7)

where θ is the constant in Theorem 2.1.

This result allows to use the Liouville-type theorem of Luo [5] to obtain our main
result in this section.

Theorem 2.3. Let u :RN+1 →R be a smooth function such that

�u= p in RN+1,

u≥ q in RN+1,
(2.8)
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where p and q are polynomial function. Assume

u(0, t)=O
(
tm
)

as t −→∞. (2.9)

Then, u is a polynomial function.

Proof. We split the proof into two steps.
Step 1. There exists n > 0 such that

u(z)=O
(|z|n) as z −→∞. (2.10)

Indeed, letting v := u− q, we have

�v = p−�q in RN+1,

v ≥ 0 in RN+1,
(2.11)

and v(0, t) = u(0, t)− q(0, t) = O(tn1 ) as t →∞, for a suitable n1 > 0. Moreover, since p
and �q are polynomial functions, (p−�q)(z)=O(|z|m1 ) as z→∞ for a suitable m1 > 0.
Then, by the previous corollary, there exists m2 > 0 such that

v(z)=O
(|z|m2

)
as z −→∞. (2.12)

From this estimate, since v = u+ q, and q is a polynomial function, the assertion (2.10)
follows.
Step 2. Since p is a polynomial function and � is dλ-homogeneous, there exists m ∈N
such that

�(m)p ≡ 0, (2.13)

where �(m) =� ◦ ··· ◦� is the mth iterated of �. It follows that

�(m+1)u= 0 in RN+1. (2.14)

Moreover, since � is dλ-homogeneous and hypoelliptic, the same properties hold for
�(m+1). On the other hand, by Step 1, u(z) = O(zm) as z →∞, so that u is a tempered
distribution. Then, by Luo’s paper [5, Theorem 1], u is a polynomial function. �

Remark 2.4. It is well known that hypothesis (2.9) in the previous theorem cannot be
removed. Indeed, if �= Δ− ∂t is the classical heat operator and u(x, t)= exp(x1 + ···+
xN +Nt), x = (x1, . . . ,xN )∈RN and t ∈R, we have

�u= 0 in RN+1, u≥ 0, (2.15)

and u is not a polynomial function.

In the previous theorem, the degree of the polynomial function u can be estimated in
terms of the ones of p and q. For this, we need some more notation. If α=(α1, . . . ,αN ,αN+1)
is a multi-index with (N + 1) nonnegative integer components, we let

|α|dλ := σ1α1 + ···+ σNαN + 2αN+1, (2.16)
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and, if z = (x, t)= (x1, . . . ,xN , t)∈RN+1,

zα := xα1
1 ···xαNN tαN+1 . (2.17)

As a consequence, we can write every polynomial function p in RN+1, as follows:

p(z)=
∑

|α|dλ≤m
cαz

α (2.18)

with m∈ Z, m≥ 0, and cα ∈R for every multi-index α. If

∑

|α|dλ=m
cαz

α �≡ 0 in RN+1, (2.19)

then we set

m= degdλ p. (2.20)

If p is independent of t, that is, if p is a polynomial function in RN , we denote by

degDλ
p (2.21)

the degree of p with respect to the dilations (Dλ)λ>0. Obviously, in this case, degDλ
p =

degdλ p.

Proposition 2.5. Let u, p :RN+1 →R be polynomial functions such that

�u= p in RN+1. (2.22)

Assume u≥ 0. Thus, the following statements hold.
(i) If p ≡ 0, then u= constant.

(ii) If p �≡ 0, then

degdλ u= 2 + degdλ p. (2.23)

This proposition is a consequence of the following lemma.

Lemma 2.6. Let u : RN+1 → R be a nonnegative polynomial function dλ-homogeneous of
degree m> 0. Then �u �≡ 0 in RN+1.

Proof. We argue by contradiction and assume �u = 0. Since u is nonnegative and dλ-
homogeneous of strictly positive degree, we have

u(0,0)= 0=min
RN+1

u. (2.24)

Let us now denote by � the �-propagation set of (0,0) in RN+1, that is, the set

� := {z ∈RN+1 : there exists an �-admissible path η : [0,T]−→RN+1,

s.t. η(0)= (0,0), η(T)= z
}
.

(2.25)
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From hypotheses (H2), we obtain � = RN×]−∞,0] so that, since (0,0) is a minimum
point of u and the minimum spread all over � (see [7]), we have

u(z)= u(0,0)= 0 ∀z ∈RN×]−∞,0]. (2.26)

Then, being u a polynomial function, u ≡ 0 in RN+1. This contradicts the assumption
degdλ u > 0, and completes the proof. �

Proof of Proposition 2.5. Obviously, if u = constant, we have nothing to prove. If we as-
sume m := degdλ u > 0 and prove that

m≥ 2, p �≡ 0, degdλ p =m− 2, (2.27)

then it would complete the proof. Let us write u as follows:

u= u0 +u1 + ···+um, (2.28)

where uj is a polynomial function dλ-homogeneous of degree j, j = 0, . . . ,m, and um �≡ 0
in RN+1.

Then

p =�u=�u0 + �u1 + ···+ �um, (2.29)

and, since � is dλ-homogeneous of degree two,
(
�uj

)(
dλ(x)

)= λj−2�uj(x) (2.30)

so that �u0 =�u1 ≡ 0 and degdλ �uj = j− 2 if and only if �uj �≡ 0.
On the other hand, the hypothesis u≥ 0 implies um ≥ 0 so that, being um �≡ 0 and dλ-

homogeneous of degree m> 0, by Lemma 2.6, we get �um �≡ 0. Hence m≥ 2. Moreover,
by (2.29), p =�u �≡ 0 and

degdλ p = degdλ �um =m− 2. (2.31)
�

This proposition allows us to make more precise the conclusion of Theorem 2.3. In-
deed, we have the following.

Proposition 2.7. Let u, p,q :RN+1 →R be polynomial functions such that

�u= p in RN+1,

u≥ q in RN+1.
(2.32)

Then

degdλ u≤max
{

2 + degdλ p,degdλ q
}
. (2.33)

In particular, and more precisely, if q = 0, that is, if u≥ 0, then

degdλ u= 2 + degdλ p if p �≡ 0,

u= constant if p ≡ 0.
(2.34)
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Proof. If q ≡ 0, the assertion is the one of Proposition 2.5. Suppose q �≡ 0. By letting v :=
u− q, we have

�v = p−�q, v ≥ 0. (2.35)

By Proposition 2.5, we have

degdλ v ≤ 2 + degdλ(p−�q)≤ 2 + max
{

degdλ p,degdλ q− 2
}=max

{
2 + degdλ p,degdλ q

}

(2.36)

and (2.33) follows. �

Proposition 2.7, together with Theorem 2.3, extends and improves the Liouville-type
theorems contained in [2, 4] (precisely [2, Theorem 1.1] and [4, Theorem 1.2]).

From Theorem 2.3 and Proposition 2.7, we straightforwardly get the following poly-
nomial Liouville theorem for the stationary operator �0 in (1.3).

Theorem 2.8. Let P,Q :RN →R be polynomial functions and let U :RN →R be a smooth
function such that

�0U = P, U ≥Q, in RN . (2.37)

Then, U is a polynomial function and

degDλ
U ≤max

{
2 + degDλ

P,degDλ
Q
}
. (2.38)

In particular, and more precisely, if Q ≡ 0, that is, if U ≥ 0, then

degDλ
U = 2 + degDλ

P if P �≡ 0,

U = constant if P ≡ 0.
(2.39)

Proof. Let us define

u(x, t)=U(x), p(x, t)= P(x), q(x, t)=Q(x). (2.40)

Then p, q are polynomial functions in RN+1 and u is a smooth solution to the equation

�u= p in RN+1, (2.41)

such that u≥ q. Moreover,

u(0, t)=U(0)=O(1) as t −→∞. (2.42)

Then, by Theorem 2.3, u is a polynomial function in RN+1. This obviously implies that
U is a polynomial in RN . The second part of the theorem immediately follows from
Proposition 2.5. �
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Remark 2.9. The class of our stationary operators �0 also contains “parabolic”-type op-
erators like, for example, the following “forward-backward” heat operator

�0 := ∂2
x1

+ x1∂x2 in R2. (2.43)

Nevertheless, in Theorem 2.8, we do not require any a priori behavior at infinity, like
condition (2.9) in Theorem 2.3.

3. Asymptotic Liouville theorems in halfspaces

The operator � in our class do not satisfy the usual Liouville property. Precisely, if u is a
nonnegative solution to

�u= 0 in RN+1, (3.1)

then we cannot conclude that u ≡ constant without asking an extra condition on the
solution u (see Theorem 2.3 and Remark 2.4).

However, if we also assume that � is left translation invariant with respect to the com-
position law of some Lie group in RN+1, then we can show that every nonnegative solution
of (3.1) is constant at t =−∞.

To be precise, let us fix the new hypothesis on � and give the definition of �-parabolic
trajectory.

Suppose � satisfies (H2) of the introduction and, instead of (H1), the following con-
dition

(H1)∗ There exists a homogeneous Lie group in RN+1,

L = (RN+1,◦,dλ
)

(3.2)

such that � is left translation invariant on L and dλ-homogeneous of degree two.
We assume the composition law ◦ is Euclidean in the time variable, that is,

(x, t)◦ (x′, t′)= (c(x, t,x′, t′), t+ t′
)
, (3.3)

where c(x, t,x′, t′) denotes a suitable function of (x, t) and (x′, t′).
It is a standard matter to prove the existence of a positive constant C such that

|z ◦ ζ| ≤ C
(|z|+ |ζ|) ∀z,ζ ∈RN+1. (3.4)

Let γ : [0,∞[→RN be a continuous function such that

limsup
s→∞

∣∣γ(s)
∣∣2

s
<∞ (3.5)

(here | · | denotes the Dλ-homogeneous norm (1.11)).
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Then, the path

s �−→ η(s)= (γ(s),T − s
)
, T ∈R, (3.6)

will be called an �-parabolic trajectory.
Obviously, the curve

s �−→ η(s)= (α,T − s), α∈RN , T ∈R (3.7)

is an �-parabolic trajectory. It can be proved that every integral curve of the vector fields
Y in (1.2) also is an �-parabolic trajectory (see [3, Lemma 3]).

Our first asymptotic Liouville theorem is the following one.

Theorem 3.1. Let � satisfy hypotheses (H1)∗ and (H2), and let u be a nonnegative solution
to the equation

�u= 0 (3.8)

in the halfspace

S=RN×]−∞,0[. (3.9)

Then, for every �-parabolic trajectory η,

lim
s→∞u

(
η(s)

)= inf
S
u. (3.10)

In particular

lim
t→−∞u(x, t)= inf

S
u ∀x ∈RN . (3.11)

The proof of this theorem relies on a left translation and scaling invariant Harnack
inequality for nonnegative solutions to �u= 0.

For every z0 ∈RN+1 and M > 0, let us put

Pz0 (M) := z0 ◦P(M), (3.12)

where

P(M) := {(x, t)∈RN+1 : |x|2 ≤−Mt
}
. (3.13)

Then, the following theorem holds.

Theorem 3.2 (left and scaling invariant Harnack inequality). Let u be a nonnegative so-
lution to

�u= 0 in RN×]−∞,0[. (3.14)
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Then, for every z0 ∈ RN×]−∞,0[ and M > 0, there exists a positive constant C = C(M),
independent of z0 and u, such that

sup
Pz0 (M)

u≤ Cu
(
z0
)
. (3.15)

Proof. It follows from Theorem 2.1 and the left translation invariance of �. The details
are contained in [3, Proof of Theorem 3]. �

From this theorem we obtain the proof of Theorem 3.1.

Proof of Theorem 3.1. We may assume infS u= 0. Let η(s)= (γ(s),s0− s), s0 ≤ 0, s≥ s0 be
an �-parabolic trajectory. Then, there exists M0 > 0 such that

∣∣γ(s)
∣∣2 ≤M0s ∀s≥ s∗, (3.16)

where s∗ > 0 is big enough. Let us put M = 2C(M2
0 + 1)1/4 where C is the positive constant

in the triangular inequality (3.4). Let ε > 0 be arbitrarily fixed and choose zε = (xε, tε)∈ S
such that

u
(
zε
)
< ε. (3.17)

Now, for every s≥ s∗, we have

∣∣z−1
ε ◦η(s)

∣∣≤ C
(∣∣z−1

ε

∣∣+
∣∣η(s)

∣∣)

≤ C
(∣∣z−1

ε

∣∣+
(
M2

0 + 1
)1/4√

s
)

= C
√
s− s0 + tε

( ∣∣z−1
ε

∣∣
√
s− s0 + tε

+
(
M2

0 + 1
)1/4

√
s

s− s0 + tε

)
.

(3.18)

Then, there exists T = T(ε) > 0 such that

∣∣z−1
ε ◦η(s)

∣∣≤M
√
s− s0 + tε ∀s > T. (3.19)

This implies that

η(s)∈ zε ◦P(M)≡ Pzε(M) ∀s > T. (3.20)

On the other hand, by the Harnack inequality of Theorem 3.2, there exists C∗ = C∗(M) >
0 independent of zε and ε such that

sup
Pzε (M)

u≤ C∗u
(
zε
)
. (3.21)

Therefore,

u
(
η(s)

)≤ C∗ε ∀s > T. (3.22)

Since C∗ is independent of ε, this proves the theorem. �
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Theorem 3.1 is contained in [3, Theorem 1]. The idea of our proof is taken from
Glagoleva’s paper [8], in which classical parabolic operators of Cordes-type are consid-
ered. For the heat equation, a stronger version of Theorem 3.1 was proved by Bear [9].

The following theorem improves Theorem 3.1.

Theorem 3.3. Let � and u as in Theorem 3.1. For every M > 0 and t < 0, define

M(u, t)= sup
{
u(x, t) : |x|2 ≤−Mt

}
. (3.23)

Then

lim
t→−∞M(u, t)= inf

S
u. (3.24)

Proof. Let ε be arbitrarily fixed and let zε = (xε, tε)∈ S be such that

u
(
zε
)
<m+ ε, m := inf

S
u. (3.25)

Let M0 be a positive constant that will be chosen later independently of ε. Since u−m is
a nonnegative solution to �v = 0 in S, the Harnack inequality of Theorem 3.2 implies

u(z)−m≤ C0
(
u
(
zε
)−m

) ∀z ∈ Pzε
(
M0
)
, (3.26)

where C0 = C0(M0) is independent of ε (and u).
Let C be the constant in the triangularity inequality (3.4) and choose T = T(u,ε) > 0

such that

T > 2
∣∣zε− 1

∣∣2
+ 2
∣∣tε
∣∣. (3.27)

Then, if z = (x, t)∈ S with t <−T and |x|2 <−Mt, we have

∣∣z−1
ε ◦ z∣∣≤ C

(∣∣zε
∣∣−1

+ |z|)≤ C
(∣∣zε

∣∣−1
+
(√

M + 1
)√−t)

= C
√
tε− t

( ∣∣z−1
ε

∣∣
√
tε− t

+
(√

M + 1
)
√

1
1−∣∣tε/t

∣∣

)

≤ C
√
tε− t

(
1 +
√

2
(√

M + 1
))=: M0.

(3.28)

Then, by (3.25) and (3.26),

m≤ u(z)≤m+C0ε (3.29)

for every z = (x, t)∈ S with t <−T and |x|2 <−Mt. Thus

m≤M(u, t)≤m+C0ε ∀t <−T. (3.30)

Since C0 does not depend on ε, this completes the proof. �
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4. Some examples

In this section, we show some explicit examples of operators to which our results apply.

Example 4.1 (heat operators on Carnot groups). Let (RN ,◦) be a Lie group inRN . Assume
that RN can be split as follows:

RN =RN1 ×···×RNm (4.1)

and that the dilations

Dλ :RN −→RN , Dλ
(
x(N1), . . . ,x(Nm))= (λx(N1), . . . ,λmx(Nm))

x(Ni) ∈RNi , i= 1, . . . ,m, λ > 0,
(4.2)

are automorphisms of (RN ,◦).
We also assume

rankLie
{
X1, . . . ,XN1

}
(x)=N ∀x ∈RN , (4.3)

where the Xj ’s are left invariant on (RN ,◦) and

Xj(0)= ∂

∂x(N1)
j

, j = 1, . . . ,N1. (4.4)

ThenG= (RN ,◦,δλ) is a Carnot group whose homogeneous dimension Q0 is the natural
number

Q0 :=N1 + 2N2 +mNm. (4.5)

The vector fields X1, . . . ,XN1 are the generators of G,

ΔG :=
N1∑

j=1

X2
j (4.6)

is the canonical sub-Laplacian on G and the parabolic operator

�= ΔG− ∂t in RN+1 (4.7)

is called the canonical heat operator on G. Obviously � can be written as in (3.25). More-
over, if we define

L = (RN+1,◦,dλ
)

(4.8)

with dλ(x, t)= (Dλx,λ2t) and the composition law ◦ given by

(x, t)◦ (x′, t′)= (x ◦ x′, t+ t′), (4.9)

then L is a homogeneous group, and the operator � in (4.7) satisfies condition (H1)∗.
We explicitly remark that the homogeneous dimension of L is Q :=Q0 + 2.

In [1, page 70], it is proved that � also satisfies (H2).
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Remark 4.2. The stationary part of the operator � in (4.7) is the sub-Laplacian ΔG. For
this kind of operator, the polynomial Liouville theorem in Theorem 2.8 was first proved
in [10, Theorem 1.4].

Example 4.3 (B-Kolmogorov operators). Let us split RN as follows:

RN =Rp×Rr (4.10)

and denote by x = (x(p),x(r)) its points. Let B be an N ×N real matrix taking the following
block form:

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 ··· 0
B1 0 0 ··· 0
0 B2 ··· ··· ···
...

...
. . .

...
...

0 0 0 Bk 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.11)

where Bj is an r j × r j−1 matrix with rank r j , and r0 = p ≥ r1 ≥ ··· ≥ rk ≥ 1, r0 + r1 + ···+
rk =N . Denote

E(t)= exp(−tB) (4.12)

and introduce in RN+1 the following composition law

(x, t)◦ (y,τ) := (y +E(τ)x, t+ τ
)
. (4.13)

The triplet

K= (RN+1,◦,dλ
)

(4.14)

is a homogeneous Lie group with respect to the dilations

dλ(x, t)= dλ
(
x(p),x(r1), . . . ,x(rk), t

)= (λx(p),λ3x(r1), . . . ,λ2k+1x(rk),λ2t
)

(4.15)

(see [11]). The homogeneous dimension of K is

Q = p+ 3r1 + ···+ (2k+ 1)rk + 2. (4.16)

We call K a B-Kolmogorov-type group.
Let us now consider the operator

�= ΔRp + 〈Bx,D〉− ∂t, (4.17)

where ΔRp denotes the usual Laplace operator in Rp, 〈·,·〉 is the inner product in RN ,
and D = (∂x1 , . . . ,∂xN ). In this case, we have

Y = 〈Bx,D〉− ∂t. (4.18)

The operator � satisfies (H1)∗ and (H2), and it is left translation invariant on K (see
[1, 11]).
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Remark 4.4. The matrix E(t) in (4.13) takes the following triangular form:

E(t)=
(

Ip 0
E1(t) Ir

)
, (4.19)

where Ip and Ir are the identity matrix in Rp and Rr , respectively. Then, the composition
law in K has the following structure:

(
x(p),x(r), t

)◦ (y(p), y(r),τ
)= (x(p) + y(p),x(r) + y(r) +E1(τ)x(p), t+ τ

)
. (4.20)

Remark 4.5. The stationary part of �,

�0 = ΔRp + 〈Bx,D〉, (4.21)

is contained in the class of degenerate Ornstein-Uhlenbeck operators studied by Priola
and Zabczyk [12], where a Liouville theorem for bounded solutions is proved.

Example 4.6 (sub-Kolmogorov operators). Let G = (Rp ×Rq,◦,d(1)
λ ) be a Carnot group

with first layer Rp and let K = (Rp ×Rr ×R,◦,d(2)
λ ) be a Kolmogorov group. Let L =

(RN+1,◦,dλ), N = p+ q+ r,

L =G�K (4.22)

be the link of G and K (see [13, Section 5.2]).
Then, if Y is a derivative operator transverse toG (see [13, Definition 4.5]), and X1, . . . ,

Xp are the generators of G, the operator

�=
p∑

j=1

X2
j +Y , in RN+1, (4.23)

satisfies (H1)∗ and (H2).

Example 4.7 (a nontranslations invariant operator). The operator

�= ∂2
x1

+ x2m+1
1 ∂x2 − ∂t in R3 (4.24)

m∈N, satisfies hypotheses (H1) and (H2). The relevant dilation group is given by

dλ
(
x1,x2, t

)= (λx1,λ2m+3x2,λ2). (4.25)

Finally, it is easy to recognize that there is no Lie group structure in R3 leaving left trans-
lation invariant the operator �.
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