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1. Introduction

Investigation of positive solutions of multipoint second-order ordinary boundary value
problems, initiated by Il’in and Moiseev [1, 2], has been extensively addressed by many
authors, for instance, see [3–6]. Multipoint problems refer to a different family of bound-
ary conditions in the study of disconjugacy theory [7]. Recently, Eloe and Ahmad [8]
addressed a nonlinear nth-order BVP with nonlocal conditions. Also, there has been a
considerable attention on p-Laplacian BVPs [9–18] as p-Laplacian appears in the study
of flow through porous media (p = 3/2), nonlinear elasticity (p ≥ 2), glaciology (1≤ p ≤
4/3), and so forth.

In this paper, we develop a monotone iterative technique to prove the existence of
extremal positive pseudosymmetric solutions for the following three-point second-order
p-Laplacian integrodifferential boundary value problem (BVP):

(
ψp
(
x′(t)

))′
+ a(t)

{
f
(
t,x(t)

)
+
∫ (1+η)/2

t
K
(
t,ζ ,x(ζ)

)
dζ
}
= 0, t ∈ (0,1),

x(0)= 0, x(η)= x(1), 0 < η < 1,

(1.1)

where p > 1, ψp(s)= s|s|p−2. Let ψq be the inverse of ψp.
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In passing, we note that the monotone iterative technique developed in this paper is
an application of Amann’s method [19] and the first term of the iterative scheme may be
taken to be a constant function or a simple function. The details of the monotone iter-
ative method can be found in [20–27] and for the abstract monotone iterative method,
see [28, 29]. To the best of the authors’ knowledge, this is the first paper dealing with the
integrodifferential equations in the present configuration. In fact, this work is motivated
by [11, 17, 18]. The importance of the work lies in the fact that integrodifferential equa-
tions are encountered in many areas of science where it is necessary to take into account
aftereffect or delay. Especially, models possessing hereditary properties are described by
integrodifferential equations in practice. Also, the governing equations in the problems of
biological sciences such as spreading of disease by the dispersal of infectious individuals,
the reaction-diffusion models in ecology to estimate the speed of invasion, and so forth
are integrodifferential equations.

2. Terminology and preliminaries

Let E = C[0,1] be the Banach space equipped with norm ‖x‖ =max0≤t≤1 |x(t)| and let
P be a cone in E defined by P = {x ∈ E : x is nonnegative, concave on [0,1], and pseu-
dosymmetric about (1 +η)/2 on [0,1]}.
Definition 2.1. A functional γ ∈ E is said to be concave on [0,1] if γ(tu + (1− t)v) ≥
tγ(u) + (1− t)γ(v), for all u,v ∈ [0,1] and t ∈ [0,1].

Definition 2.2. A function x ∈ E is said to be pseudosymmetric about (1 + η)/2 on [0,1]
if x is symmetric over the interval [η,1], that is, x(t)= x(1− (t−η)) for t ∈ [η,1].

Throughout the paper, it is assumed that
(A1) f : [0,1]× [0,∞)→ [0,∞) is continuous nondecreasing in x, and for any fixed

x ∈ [0,∞), f (t,x) is pseudosymmetric in t about (1 +η)/2 on (0,1);

(A2) K : [0,1]× [0,1]× [0,∞)→ [0,∞) is continuous nondecreasing in x, and for any
fixed (ζ ,x)∈ [0,1]× [0,∞), K(t,ζ ,x) is pseudosymmetric in t about (1 +η)/2 on
(0,1);

(A3) a(t)∈ L(0,1) is nonnegative on (0,1) and pseudosymmetric in t about (1 + η)/2
on (0,1). Further, a(t) is not identically zero on any nontrivial compact subin-
terval of (0,1).

Lemma 2.3. Any x ∈ P satisfies the following properties:
(i) x(t)≥ 2(1 +η)−1‖x‖min{t, (1− (t−η))}, t ∈ [0,1];

(ii) x(t)≥ 2η(1 +η)−1‖x‖, t ∈ [η, (1 +η)/2];

(iii) ‖x‖ = x((1 +η)/2).

Proof. (i) For any x ∈ P, we define

xη =
⎧
⎪⎨

⎪⎩

x(t), t ∈ [0,1],

x
(
1− (t−η)

)
, t ∈ [1,1 +η],

(2.1)
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and note that xη is nonnegative, concave, and symmetric on [0,1 + η] with ‖xη‖ = ‖x‖.
From the concavity and symmetry of xη, it follows that

xη ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2(1 +η)−1
∥
∥xη
∥
∥t, t ∈

[
0,

1 +η
2

]
,

2(1 +η)−1
∥
∥xη
∥
∥(1− (t−η)

)
, t ∈

[
1 +η

2
,1 +η

]
,

(2.2)

which, in view of xη(t)= x(t) on [0,1], yields

x(t)≥ 2(1 +η)−1‖x‖min
{
t,
(
1− (t−η)

)}
, t ∈ [0,1]. (2.3)

The proof of (ii) is similar to that of (i) while (iii) can be proved using the properties of
the cone P. �

Let us define an operator Ω : P→ E by

(Ωx)(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

0
ψq

[∫ (1+η)/2

w
a(ν)

{
f
(
ν,x(ν)

)
+
∫ (1+η)/2

ν
K
(
ν,ζ ,x(ζ)

)
dζ
}
dν
]
dw,

t ∈
[

0,
1 +η

2

]
,

∫ η

0
ψq

[∫ (1+η)/2

w
a(ν)

{
f
(
ν,x(ν)

)
+
∫ (1+η)/2

ν
K
(
ν,ζ ,x(ζ)

)
dζ
}
dν
]
dw

+
∫ 1

t
ψq

[∫ w

(1+η)/2
a(ν)

{
f
(
ν,x(ν)

)
+
∫ ν

(1+η)/2
K
(
ν,ζ ,x(ζ)

)
dζ
}
dν
]
dw,

t ∈
[

1 +η
2

,1
]
.

(2.4)

Obviously, (Ωx) ∈ E is well defined and x is a solution of problem (1.1) if and only if
Ωx = x. Now, we prove the following lemma which plays a pivotal role to prove the main
result.

Lemma 2.4. Assume that (A1), (A2), and (A3) hold. Then Ω : P→ P is continuous, compact,
and nondecreasing.

Proof. The nondecreasing nature of Ω follows from the fact that f and K are nondecreas-
ing in x and that a is nonnegative. Now, for any x ∈ P, let y =Ωx. Then

y′(t)= ψq
[∫ (1+η)/2

t
a(ν)

{
f
(
ν,x(ν)

)
+
∫ (1+η)/2

ν
K
(
ν,ζ ,x(ζ)

)
dζ
}
dν
]

, (2.5)

(
ψp
((
y′(t)

)))′ = −a(t)
{
f
(
t,x(t)

)
+
∫ (1+η)/2

t
K
(
t,ζ ,x(ζ)

)
dζ
}
≤ 0, (2.6)

that is, y = Ωx is concave. To show that Ω is compact, we take a set A ⊂ P. For x ∈ A,
let y =Ωx, which is bounded in E as the nonlinear functions f and K are continuous.
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The expression for (Ωx)′ is given by (2.5). If A is bounded, then the set {(Ωx)′ : x ∈A} is
bounded, and henceΩA is equicontinuous. By the Arzela-Ascoli theorem, ΩA is relatively
compact. Now, we show that (Ωx) is pseudosymmetric about (1 +η)/2 on [0,1]. For that,
we note that (1− (t−η))∈ [(1 +η)/2,1] for all t ∈ [η, (1 +η)/2]. Thus,

(Ωx)
(
1− (t−η)

)

=
∫ η

0
ψq

[∫ (1+η)/2

w
a(ν)

{
f
(
ν,x(ν)

)
+
∫ (1+η)/2

ν
K
(
ν,ζ ,x(ζ)

)
dζ
}
dν
]
dw

+
∫ 1

1−(t−η)
ψq

[∫ w

(1+η)/2
a(ν)

{
f
(
ν,x(ν)

)
+
∫ ν

(1+η)/2
K
(
ν,ζ ,x(ζ)

)
dζ
}
dν
]
dw

=
∫ η

0
ψq

[∫ (1+η)/2

w
a(ν)

{
f
(
ν,x(ν)

)
+
∫ (1+η)/2

ν
K
(
ν,ζ ,x(ζ)

)
dζ
}
dν
]
dw

−
∫ η

t
ψq

[∫ 1−(w−η)

(1+η)/2
a(ν)

{
f
(
ν,x(ν)

)
+
∫ ν

(1+η)/2
K
(
ν,ζ ,x(ζ)

)
dζ
}
dν
]
dw

=
∫ η

0
ψq

[∫ (1+η)/2

w
a(ν)

{
f
(
ν,x(ν)

)
+
∫ (1+η)/2

ν
K
(
ν,ζ ,x(ζ)

)
dζ
}
dν
]
dw

+
∫ t

η
ψq

[∫ (1+η)/2

w
a(ν)

{
f
(
ν,x(ν)

)
+
∫ 1−(ν−η)

(1+η)/2
K
(
ν,ζ ,x(ζ)

)
dζ
}
dν
]
dw

=
∫ η

0
ψq

[∫ (1+η)/2

w
a(ν)

{
f
(
ν,x(ν)

)
+
∫ ν

(1+η)/2
K
(
ν,ζ ,x(ζ)

)
dζ
}
dν
]
dw

+
∫ t

η
ψq

[∫ (1+η)/2

w
a(ν)

{
f
(
ν,x(ν)

)
+
∫ (1+η)/2

ν
K
(
ν,ζ ,x(ζ)

)
dζ
}
dν
]
dw

=
∫ t

0
ψq

[∫ (1+η)/2

w
a(ν)

{
f
(
ν,x(ν)

)
+
∫ (1+η)/2

ν
K
(
ν,ζ ,x(ζ)

)
dζ
}
dν
]
dw = (Ωx)(t).

(2.7)

Next, we show that (Ωx) is nonnegative. By the symmetry of (Ωx) on [(1 + η)/2,1],
it follows that (Ωx)′((1 + η)/2) = 0. The concavity of (Ωx) implies that (Ωx)′(t) ≥ 0,
t ∈ [0,(1 + η)/2]. Therefore, (Ωx)(1) = (Ωx)(η) ≥ (Ωx)(0) = 0. Consequently, we have
(Ωx)(t)≥ 0 as (Ωx) is concave. Hence we conclude that ΩP ⊆ P. �

3. Main result

Theorem 3.1. Assume that (A1), (A2), and (A3) hold. Further, there exist positive numbers
θ1 and θ2 such that θ2 < θ1 and

sup
0≤t≤1

{
f
(
t,θ1

)
+
∫ (1+η)/2

t
K
(
t,ζ ,θ1

)
dζ
}
≤ ψp

(
θ1Θ1

)
,

inf
η≤t≤(1+η)/2

{
f
(
t,2η(1 +η)−1θ2

)
+
∫ (1+η)/2

t
K
(
t,ζ ,2η(1 +η)−1θ2

)
dζ
}
≥ ψp

(
θ2Θ2

)
,

(3.1)
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where

Θ1 = 1
∫ (1+η)/2

0 ψq
[∫ (1+η)/2

w a(ν)dν
]
dw

, Θ2 = 1
∫ (1+η)/2
η ψq

[∫ (1+η)/2
w a(ν)dν

]
dw

. (3.2)

Then there exist extremal positive, concave, and pseudosymmetric solutions α∗, β∗ of (1.1)
with θ2 ≤ ‖α∗‖ ≤ θ1, limn→∞αn = limn→∞Ωnα0 = α∗, where α0(t) = θ1, t ∈ [0,1], and
θ2 ≤ ‖β∗‖ ≤ θ1, limn→∞βn = limn→∞Ωnβ0 = β∗, where β0(t) = 2θ2(1 + η)−1 min{t, (1−
(η− t))}, t ∈ [0,1].

Proof. We define

P
[
θ2,θ1

]= {α∈ P : θ2 ≤ ‖α‖ ≤ θ1
}

, (3.3)

and show that ΩP[θ2,θ1]⊆ P[θ2,θ1]. Let α∈ P[θ2,θ1], then

0≤ α(t)≤ max
0≤s≤1

α(s)= ‖α‖ ≤ θ1. (3.4)

By Lemma 2.3(ii), we have

min
η≤t≤(1+η)/2

α(t)≥ 2η(1 +η)−1‖α‖ ≥ 2η(1 +η)−1θ2. (3.5)

Now, by assumptions (A1) and (A2), and (3.1), for t ∈ [η, (1 +η)/2], we obtain

0≤ f
(
t,α(t)

)
+
∫ (1+η)/2

t
K
(
t,ζ ,α(ζ)

)
dζ ≤ f

(
t,θ1

)
+
∫ (1+η)/2

t
K
(
t,ζ ,θ1

)
dζ

≤ sup
0≤t≤1

{
f
(
t,θ1

)
+
∫ (1+η)/2

t
K
(
t,ζ ,θ1

)
dζ
}
≤ ψp

(
θ1Θ1

)
,

f
(
t,α(t)

)
+
∫ (1+η)/2

t
K
(
t,ζ ,α(ζ)

)
dζ

≥ f
(
t,2η(1 +η)−1θ2

)
+
∫ (1+η)/2

t
K
(
t,ζ ,2η(1 +η)−1θ2

)
dζ

≥ inf
η≤t≤(1+η)/2

{
f
(
t,2η(1 +η)−1θ2

)
+
∫ (1+η)/2

t
K
(
t,ζ ,2η(1 +η)−1θ2

)
dζ
}
≥ ψp

(
θ2Θ2

)
.

(3.6)

By Lemma 2.4, (Ωα)∈ P. Therefore, by Lemma 2.3(iii), ‖(Ωα)‖ = (Ωα)((1 +η)/2). Note
that θj and Θ j are constants and ψq(ψp(θjΘ j))= θjΘ j , j = 1,2. Now, we use (3.2)–(3.6)
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to obtain

∥
∥(Ωα)

∥
∥= (Ωα)

(
1 +η

2

)

=
∫ (1+η)/2

0
ψq

[∫ (1+η)/2

w
a(ν)

{
f
(
ν,α(ν)

)
+
∫ (1+η)/2

ν
K
(
ν,ζ ,α(ζ)

)
dζ
}
dν
]
dw

≥
∫ (1+η)/2

η
ψq

[∫ (1+η)/2

w
a(ν)

{
f
(
ν,α(ν)

)
+
∫ (1+η)/2

ν
K
(
ν,ζ ,α(ζ)

)
dζ
}
dν
]
dw

≥
∫ (1+η)/2

η
ψq

[∫ (1+η)/2

w
a(ν)ψp

(
θ2Θ2

)
dν
]
dw

=
∫ (1+η)/2

η
ψq

[∫ (1+η)/2

w
a(ν)dν

]
dwψq

[
ψp
(
θ2Θ2

)]

=
∫ (1+η)/2

η
ψq

[∫ (1+η)/2

w
a(ν)dν

]
dw
(
θ2Θ2

)= θ2,

(3.7)

where we have used the fact that ψq(s1s2)= ψq(s1)ψq(s2) as ψq(s)= s1/(p−1) for s > 0. Sim-
ilarly, we have

∥
∥(Ωα)

∥
∥= (Ωα)

(
1 +η

2

)

=
∫ (1+η)/2

0
ψq

[∫ (1+η)/2

w
a(ν)

{
f
(
ν,α(ν)

)
+
∫ (1+η)/2

ν
K
(
ν,ζ ,α(ζ)

)
dζ
}
dν
]
dw

≤
∫ (1+η)/2

0
ψq

[∫ (1+η)/2

w
a(ν)ψp

(
θ1Θ1

)
dν
]
dw = θ1.

(3.8)

Thus, it follows that θ2 ≤ ‖(Ωα)‖ ≤ θ1 for α∈ P[θ2,θ1]. Hence, ΩP[θ2,θ1]⊆ P[θ2,θ1].
Now, we set α0(t)= θ1 (∈ P[θ2,θ1]), t ∈ [0,1], and α1 =Ωα0 (∈ P[θ2,θ1]). We denote

αn+1 =Ωαn =Ωn+1α0, n= 1,2, . . . . (3.9)

In view of the fact thatΩP[θ2,θ1]⊆P[θ2,θ1], it follows that αn∈P[θ2,θ1] for n= 0,1,2, . . ..
Since Ω is compact by Lemma 2.4, therefore, we assert that the sequence {αn}∞n=1 has a
convergent subsequence {αnk}∞k=1 such that αnk → α∗.

Since α1 ∈ P[θ2,θ1], therefore, 0 ≤ α1(t) ≤ ‖α1‖ ≤ θ1 = α0(t), t ∈ [0,1]. Applying the
nondecreasing property of Ω, we have Ωα1 ≤Ωα0, which implies that α2 ≤ α1. Hence by
induction, we obtain αn+1 ≤ αn, n= 0,1,2, . . .. Thus, αn → α∗. Taking the limit n→∞ in
(3.9) yields Ωα∗ = α∗. Since ‖α∗‖ ≥ θ2 > 0 and α∗ is a nonnegative concave function on
[0,1], we conclude that α∗(t) > 0, t ∈ (0,1).
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Now, we set β0(t) = 2θ2(1 + η)−1 min{t, (1 − (η − t))}, t ∈ [0,1], and note that
‖β0‖ = θ2, β0 ∈ P[θ2,θ1]. Letting β1 =Ωβ0 (∈ P[θ2,θ1]), we define

βn+1 =Ωβn =Ωn+1β0, n= 1,2, . . . . (3.10)

By Lemma 2.3(i), we have

β1(t)≥ ∥∥β1
∥
∥2(1 +η)−1 min

{
t,
(
1− (η− t))}

≥ 2θ2(1 +η)−1 min
{
t,
(
1− (η− t))}= β0(t), t ∈ [0,1].

(3.11)

Again, using the nondecreasing property of Ω, we get Ωβ1 ≥Ωβ0, that is, β2 ≥ β1. Em-
ploying the arguments similar to {αn}∞n=1, it is straightforward to show that βnk → β∗ and
β∗(t) > 0, t ∈ (0,1).

Now, utilizing the well-known fact that a fixed point of the operator Ω in P must be
a solution of (1.1) in P, it follows from the monotone iterative technique [20] that α∗

and β∗ are the extremal positive, concave, and pseudosymmetric solutions of (1.1). This
completes the proof. �

Remark 3.2. In case the Lipschitz condition is satisfied by the functions involved, the
extremal solutions α∗ and β∗ obtained in Theorem 3.1 coincide, and then (1.1) would
have a unique solution in P[θ2,θ1].

Example 3.3. Let us consider the boundary value problem

(|x′|3x′)′(t) + a(t)
{
f
(
t,x(t)

)
+
∫ 2/3

t
K
(
t,ζ ,x(ζ)

)
dζ
}
= 0, t ∈ (0,1),

x(0)= 0, x
(

1
3

)
= x(1),

(3.12)

where a(t)= t−1/2(4/3− t)−1/2, f (t,x(t))= (x(t))3 + ln[1 + (x(t))2], K(t,ζ ,x(ζ))= x(ζ) +
ln[1 + (x(ζ))3]. It can easily be verified that a(t) is nonnegative and pseudo-symmetric
about 2/3 on (0,1), f (t,x(t)) and K(t,ζ ,x(ζ)) are continuous and nondecreasing in x.
Moreover, we observe that

limu→0 inf
t∈[1/3,2/3]

f
(
t,u(t)

)
+
∫ 2/3
t K

(
t,ζ ,u(ζ)

)
dζ

ψ5(u)

= limu→0 inf
t∈[1/3,2/3]

u3 + ln
[
1 +u2

]
+
∫ 2/3
t

[
u+ ln

(
1 +u3

)]
dζ

u4
= +∞,

limu→+∞ inf
t∈[0,1]

f
(
t,u(t)

)
+
∫ 2/3
t K

(
t,ζ ,u(ζ)

)
dζ

ψ5(u)

= limu→+∞ inf
t∈[0,1]

u3 + ln
[
1 +u2

]
+
∫ 2/3
t

[
u+ ln

(
1 +u3

)]
dζ

u4
= 0.

(3.13)

Thus, by Theorem 3.1, there exist extremal positive, concave, and pseudosymmetric so-
lutions for the boundary value problem (3.12).
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Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
Email address: amnieto@usc.es

mailto:bmuhammed@kau.edu.sa
mailto:amnieto@usc.es

	1. Introduction
	2. Terminology and preliminaries
	3. Main result
	Acknowledgments
	References

