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1. Introduction

In a previous paper [1], the first author demonstrated that the classical shooting method
could be effectively used to establish existence and multiplicity results for boundary value
problems of second-order ordinary differential equations. This approach has an advan-
tage over the traditional method of using fixed point theorems on cones by Krasnosel’skiĭ
[2]. It has come to our attention after the publication of [1] that Baxley and Haywood [3]
had also used similar ideas to study Dirichlet boundary value problems.

In this article, we continue our exposition by further extending this shooting method
approach to treat multipoint boundary value problems with a nonhomogeneous bound-
ary condition at the right endpoint, and homogeneous boundary condition at the left
endpoint of the most general type, that is, the Robin boundary condition which includes
both Dirichlet and Neumann boundary conditions as special cases.

The study of multipoint boundary value problems for linear second-order differential
equations was initiated by Il’in and Moiseev [4, 5]. Nonlinear second-order boundary
value problems with three-point boundary conditions were first studied by Gupta [6, 7]
followed by many others, notably Marano [8]. Please consult the articles cited in the
References Section.
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Symmetric positive solutions for Dirichlet boundary value problems, which are related
to second-order elliptic partial differential equations, were studied by Constantian [9],
Avery [10], and Henderson and Thompson [11]. We defer a discussion of these results in
relation to ours to the last section of this paper.

We will first establish two existence results (Theorems 3.1 and 3.2) on multipoint prob-
lems for the second-order differential equation

u′′(t) + a(t) f
(
u(t)

)= 0, t ∈ (0,1), (1.1)

where the nonlinear term is in a separable format, and a and f are continuous functions
satisfying

a : [0,1]−→ [0,∞), a(t) �≡ 0,

f : [0,∞)−→ [0,∞), f (u) > 0 for u > 0.
(1.2)

Note that the assumption that f (u) does not vanish for u > 0 is a technical assumption
imposed for convenience. Without this assumption, the second inequality sign in (1.8)
and (1.9) below may not be strict.

Analogous results (Theorems 3.3 and 3.4) are then formulated and extended to non-
linear equations of the more general form

y′′(t) +F
(
t, y(t)

)= 0, t ∈ (0,1), (1.3)

where the nonlinear term may not be in a separable format.
In both [12, 13], the Neumann boundary condition

u′(0)= 0 (1.4)

is imposed on the left endpoint. Some other authors use the Dirichlet condition

u(0)= 0. (1.5)

The results in this paper are applicable to the most general Robin boundary condition of
the form

(sinθ)u(0)− (cosθ)u′(0)= 0, (1.6)

where θ is a given number in [0,3π/4). The choices θ = 0 and π/2 correspond, respec-
tively, to the Neumann and Dirichlet conditions (1.4) and (1.5). We leave out those θ
in [3π/4,π] as solutions satisfying the corresponding Robin’s condition cannot furnish a
positive solution for our boundary value problem. To see this, note that if θ ∈ [3π/4,π],
then u′(0)= u(0)tanθ ≤−u(0). Since u(t) is concave, u(t) must lie below the line joining
the points (0,u(0)) and (1,0), so u(t) cannot be positive in [0,1].

The second boundary condition we impose involves m− 2 given points ξi ∈ (0,1),
i = 1, . . . ,m− 2, together with t = 1. Let ki, i = 1, . . . ,m− 2 be another set of m− 2 given
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positive numbers, and b≥ 0. We require the solution to satisfy

u(1)−
m−2∑

i=1

kiu
(
ξi
)= b ≥ 0. (1.7)

The boundary value problem for the differential equation (1.1) with boundary conditions
(1.6) and (1.7) is often referred to as the m-point problem. When b = 0, the multipoint
boundary condition is said to be homogeneous. Otherwise, it is called nonhomogeneous.
In the special case when m= 3, only one interior point ξ = ξ1 is used and the boundary
value problem is called a three-point problem.

In the case of left Neumann problem, it is known that a necessary condition for the
existence of a positive solution is

0 <
∑
ki < 1. (1.8)

To see this, we put b = 0 in (1.7) and use the fact that u(1) < u(ξi) for all i, because u(t) is
a concave function in [0,1].

In the case of the left Dirichlet problem, the corresponding necessary condition is

0 <
∑
kiξi < 1. (1.9)

To see this, we use the fact that u(t) is a concave function, and so u(t) lies strictly above
the straight line joining the origin (0,0) with the point (1,u(1)). Therefore, u(ξi) > ξiu(1)
for all i. Plugging these inequalities and b = 0 into (1.7) gives (1.9).

We will state and prove the corresponding necessary condition for the general Robin
condition in the next Section, see Lemma 2.2.

In [12], Ma proved the following existence result for the homogeneous three-point
problem. Define

f0 = lim
u→0+

f (u)
u

, f∞ = lim
u→∞

f (u)
u

. (1.10)

Theorem 1.1. The three-point problem (1.1), (1.5), and (1.7) (with m= 3 and b = 0) has
at lease a positive solution if either

(a) f0 = 0 and f∞ =∞ (the superlinear case) or
(b) f0 =∞ and f∞ = 0 (the sublinear case).

For the nonhomogeneous problem, Ma [14] has the following result for the superlin-
ear case.

Theorem 1.2. Suppose that f (u) is superlinear as in case (a) of Theorem 1.1. There exists
a positive number b∗ such that for all b ∈ (0,b∗), the nonhomogeneous three-point problem
(1.1), (1.5), and (1.7) has at least one positive solution. Furthermore, for b > b∗, there is no
positive solution.

In a recent paper by Sun et al. [13], Theorem 1.2 was extended to the multipoint Neu-
mann problem (1.4) and (1.7). The authors also stated an analogue for the sublinear case
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(i.e., when f0 =∞ and f∞ = 0 as in case (b) of Theorem 1.1) without providing a proof.
However, the simple counterexample

u′′(t) + 1= 0, u′(0)= 0, u(1)− u(1/2)
2

= b (1.11)

has the solution u(t)=−t2/2 + 2b+ 7/8 for all b > 0, showing that the result as stated in
[13, Theorem 1.2] is false.

Since our technique of proof uses the shooting method, the issues of continuability
and uniqueness of initial value problems for the differential equations (1.1) or (1.3) arise
naturally. In fact, these issues have already been discussed in [1]. The readers can be re-
ferred to that paper for more details. We only give a brief summary below. It is well known
that continuability and uniqueness may not always hold for initial value problems of gen-
eral nonlinear equations. In particular, it is known, see, for example, Coffman and Wong
[15], that solutions of superlinear equation may not be continuable to a solution defined
on the entire interval [0,1]. This is not a problem for our study because in our technique,
we only need to be able to extend the solution up to its first zero. Since the solution is
concave, this poses no problem at all. We also know that solutions of initial value prob-
lems may not be unique if f (u) is not Lipschitz continuous. In such a situation, we can
approximate f (u) by Lipschitz continuous functions, obtain existence for the smoothed
equation, and then use a compactness (passing to limit) argument to derive solutions for
the original equation.

2. Auxiliary lemmas

Our first Lemma has already been presented in [1]. It is repeated here for the sake of
easy reference. It is a simple consequence of a well-known fact in the Sturm Comparison
theory of linear differential equations.

Lemma 2.1. Let Y(t) and Z(t) be, respectively, positive solutions of the two linear differential
equations

Y ′′(t) + b(t)Y(t)= 0,

Z′′(t) +B(t)Z(t)= 0,
(2.1)

in the interval [0,1] such that Y ′(0)/Y(0) ≥ Z′(0)/Z(0), and we assume that b(t) ≤ B(t)
for all t ∈ [0,1]. Let ξi ∈ (0,1) and ki > 0, i= 1, . . . ,m− 2 be 2m− 4 given constants, and let
τ ∈ [0,1] be any constant greater than all the ξi, then

m−2∑

i=1

kiY
(
ξi
)

Y(τ)
≤

m−2∑

i=1

kiZ
(
ξi
)

Z(τ)
. (2.2)

If we assume, furthermore, that b(t) �≡ B(t), then strict inequality holds in (2.2).
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Proof. The classical Sturm comparison theorem has a strong form that yields the inequal-
ity

Y ′(t)
Y(t)

≥ Z′(t)
Z(t),

t ∈ [0,1], (2.3)

where strict inequality will hold if we know, in addition, that b �≡ B in [0, t]. One way to
prove this is to note that the function r(t)= Y ′(t)/Y(t) satisfies a Riccati equation of the
form

r′(t) + b(t) + r2(t)= 0. (2.4)

The function s(t) = Z′(t)/Z(t) satisfies an analogous Riccati equation. The inequality
r(t)≥ s(t) follows by applying results in differential inequalities to compare the two Ric-
cati equations.

Let ξ be any point in (0,τ). By integrating over [ξ,τ], we see that

log
(
Y(ξ)
Y(τ)

)
=−

∫ τ

ξ

Y ′(t)
Y(t)

dt ≤−
∫ τ

ξ

Z′(t)
Z(t)

dt = log
(
Z(ξ)
Z(τ)

)
. (2.5)

Hence, Y(ξ)/Y(τ) ≤ Z(ξ)/Z(τ). In particular, the inequality is true for ξ = ξi, and the
conclusion of the lemma follows by taking the appropriate linear combination of the
various fractions. �

Lemma 2.2. A necessary condition for the homogeneous Robin multipoint boundary value
problem, with θ �= π/2, to have a positive solution is

m−2∑

i=1

ki
(
1 + ξi tanθ

)

1 + tanθ
< 1. (2.6)

Proof. Let S be the tangent line to the solution curve u(t) at the initial point (0,u(0)).
Let Y(t) be the function that is represented by S. Then Y satisfies the simple differential
equation Y ′′(t)= 0. We can use Lemma 2.1 to compare u(t) with Y(t) to get

u
(
ξi
)

u(1)
>
Y
(
ξi
)

Y(1)
= 1 + ξi tanθ

1 + tanθ
. (2.7)

Substituting these inequalities into the homogeneous Robin boundary condition gives
(2.6). �

The next lemma is reminiscent of the eigenvalue problem of a linear equation.

Lemma 2.3. Consider the homogeneous linear multipoint boundary value problem

y′′(t) + λa(t)y(t)= 0, t ∈ (0,1), (2.8)

(see (1.6)), y(1)−
m−2∑

i=1

ki y
(
ξi
)= 0, (2.9)
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where λ is a positive parameter, and a(t)≥ 0, a(t) �≡ 0. Furthermore, assume that (2.6) holds.
Then there exists a unique constant Lθ > 0 for which the problem, with λ= Lθ , has a positive
nontrivial solution.

Proof. Let y(t;λ) be the “shooting” solution of the initial value problem for (2.8) with
y(0,λ)= 1 and y′(0,λ)= tanθ, when θ �= π/2. In the Dirichlet case θ = π/2, we let y(0,λ)
= 0 and y′(0,λ) = 1. Let us increase λ continuously from 0 to the first value λ = Λθ for
which y(1;Λθ)= 0. The assumption that a(t) �≡ 0 is needed here to ensure that Λθ exists.

For λ∈ [0,Λθ), y(1,λ) > 0, and we can define

φ(λ)=
m−2∑

i=1

ki y
(
ξi;λ

)

y(1,λ)
, (2.10)

which is a continuous function of λ. Condition (2.6) implies that φ(0) < 1. On the other
hand, limλ→Λθ φ(λ) =∞. Hence, by the intermediate value theorem, there exists a value
λ= Lθ such that φ(λ)= 1, and this yields a solution of the boundary value problems (2.8)
and (2.9).

The uniqueness of Lθ follows from the fact that φ(λ) is a strictly increasing function of
λ, which is a simple corollary of Lemma 2.1. �

In the proof of Lemma 2.3, we see that if y(1,λ) > 0, then φ(λ) is defined and finite.
Later in Section 3, we have occasions to make use of the inverse of this simple fact, namely,
that if φ(λ) (or a similar function) is defined and finite, then y(1;λ) (or the value at t = 1
of a similar function) is positive.

3. Main results

To study the multipoint problem, we use the shooting solution u(t;h), which satisfies the
initial condition

u(0;h)= h, u′(0;h)= h tanθ, (3.1)

for θ �= π/2, and

u(0;h)= 0, u′(0;h)= h, (3.2)

for the Dirichlet case.
The function u(t;h) concaves downwards. It can happen that u(t;h) intersects the t-

axis at some point t = τ ≤ 1. Such a function cannot be a positive solution to our bound-
ary value problem. In the contrary case, suppose that u(t;h) remains positive in [0,1].

We define two functions

φ(h)=
m−2∑

i=1

kiu
(
ξi;h

)

u(1,h)
(3.3)

ψ(h)=max

(

u(1;h)−
m−2∑

i=1

kiu
(
ξi;h

)
,0

)

, (3.4)
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which are continuous in h (when restricted to where the functions are defined). The first
function is similar to φ(λ) defined in (2.10), except that we use u(t;h) instead of y(t;λ).
Note that ψ(h)= 0 if and only if φ(h)≥ 1.

The second function ψ can be extended to include all h≥ 0 by simply defining ψ(h)=
0 if u(t;h) vanishes at some t ≤ 1. The extended function ψ(h) becomes a continuous
function of h∈ [0,∞).

It is obvious from the definition that for b > 0, u(t;κ) furnishes a solution to our mul-
tipoint problem if and only if ψ(κ) = b. For b = 0, u(t;κ) is a nontrivial solution if and
only if κ �= 0 and is a boundary point of the set of points {h > 0 | ψ(h) = 0} (in other
words, ψ(κ)= 0, and every neighborhood of κ contains points for which ψ(h) > 0).

We can now state our first result.

Theorem 3.1. Suppose that (1.2) hold, and

limsup
u→0+

f (u)
u

< Lθ , liminf
u→∞

f (u)
u

> Lθ , (3.5)

where Lθ is the positive constant guaranteed by Lemma 2.3. Then there exists a constant
b∗ > 0 such that the BVP (1.1), (1.6), and (1.7) has

(1) at least two positive solutions for b ∈ (0,b∗),
(2) at least one positive solution for b = 0 or b∗,
(3) and no positive solution for b > b∗.

Proof. The first condition means that when u is sufficiently small, the nonlinear term
a(t) f (u(t)) is dominated by the linear function La(t)u(t). More precisely, let L1 be any
number such that

limsup
u→0+

f (u)
u

< L1 < Lθ. (3.6)

Then there exists a u1 > 0 such that for all u∈ [0,u1],

f (u) < L1u < Lθu. (3.7)

Let us shoot a solution u(t;h) with a sufficiently small h. Since u(t;h) concaves down-
wards, its curve lies below the straight line that is tangent to the curve at the point (0,h).
By choosing h sufficiently small, say for h < h1 for some h1 > 0, we can guarantee that
u(t;h)≤ u1 for all t ∈ [0,1]. The inequality (3.7), therefore, holds for all t close to t = 0,
up to the first zero of u(t,h) if there is one before t = 1. This allows us to compare u(t;h)
with solutions of

z′′(t) +L1a(t)z(t)= 0, z(0)= h≤ h1, z′(0)= h tanθ, (3.8)

at least in the neighborhood of 0 before the first zero of u(t;h). It is easy to see that, in fact,
z(t)= hy(t;L1), where y(t;λ) is the solution of (2.8) defined in the proof of Lemma 2.3.
By the Sturm comparison theorem, u(t;h) ≥ z(t) ≥ hy(t;Lθ) for all t. Since y(t;Lθ) sat-
isfies the boundary condition (2.9), we see that y(t;Lθ) does not vanish in [0,1]. Hence,
u(t;h) does not vanish in [0,1], and the comparison of u(t;h) with z(t) is actually valid
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on the entire interval [0,1]. Another implication is that ψ(h) will now be determined by
(3.4) instead of being set simply to 0 in the case when the solution vanishes somewhere
in [0,1].

Using Lemma 2.1, we have

φ(h)≥ φ(L1
)
> φ
(
Lθ
)= 1. (3.9)

It follows that u(1,h)−∑kiu(ξi;h) > 1 and consequently ψ(h) > 0. Recall that this fact is
proved for all h∈ (0,h1).

Next, let us study the function ψ(h) when h is large. The second condition of (3.5)
is similar to the first one, and suggests an analogous situation. Let L2 be any number
between Lθ and liminfu→∞ f (u)/u. By hypothesis, we can find a u2 large enough such
that

f (u)≥ L2u > Lθu (3.10)

for all u≥ u2. This allows us to compare solutions of (1.1) with solutions of

w′′(t) +L2a(t)w(t)= 0, w(0)= h≥ u2, w′(0)= h tanθ (3.11)

(note that w(t) is simply hy(t;L2)) as long as u(t;h) remains above u2. This last require-
ment complicates our arguments because we have no guarantee that u(t;h)≥ u2 when t
is near 1. The Dirichlet case has an additional complication because u(t;0) = 0, and we
have to deal with those points that are near t = 0.

In the following, we present the detailed proof for the Neumann case. The proof for
the general case is similar, with an appropriate modification of the value of τ. We leave
the Dirichlet case to the readers.

We now assume only the Neumann case with u(0;h) = h and u′(0,h) = 0. Suppose
that u(τ;h) = u2 for some t = τ. We claim that if τ ≤ 1− u2/h, then u(t;h) must vanish
somewhere in [τ,1]. In such cases, by definition, ψ(h)= 0. To prove the claim, in the tu-
plane, we draw a straight line S joining the points (0,h) and (1,0). The point (1−u2/h,u2)
lies on S. The solution curve u(t;h) intersects the straight line S at the initial point (0,h)
but stays above S at least for a neighborhood near t = 0. If τ ≤ 1− u2/h, then the point
on the curve at t = τ is below S. Therefore, the solution curve intersects S at a second
point somewhere before τ. Since u(t;h) is concave, it cannot intersect S at a third point,
so u(t;h) must lie strictly below S in [t,1], forcing it to vanish somewhere before reaching
t = 1.

It, therefore, remains to find what ψ(h) is when τ > 1−u2/h. By choosing h sufficiently
large, we can make τ as close to 1 as we please. Let us determine how close it should be in
order to work for us. We know that φ(L2) > φ(Lθ)= 1. By continuity, we can pick a point
τ1 close to, but distinct from, 1 such that

m−2∑

i=1

kiw
(
ξi
)

w
(
τ1
) =

m−2∑

i=1

ki y
(
ξi;L2

)

y
(
τ1;L2

) ≥ 1. (3.12)

Now, we let h2 be chosen such that τ1 = 1−u2/h2.
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Figure 3.1. Graph of ψ(h) (Theorem 3.1).

We claim that ψ(h) = 0 for all h > h2. Let us consider all shooting solutions u(t;h)
with initial height h ≥ h2. If u(τ1;h) ≤ u2, then u(t;h) must have reached u2 before τ1 <
1−u2/h. By the above claim, we know that ψ(h)= 0. So we assume that u(τ1;h) > u2. In
the interval [0,τ1], comparing (1.1) with w is valid and Lemma 2.1 gives

m−2∑

i=1

kiu
(
ξi;h

)

u
(
τ1;h

) ≥
m−2∑

i=1

kiw
(
ξi
)

w
(
τ1
) ≥ 1. (3.13)

Even though we do not have precise information on how u(t;h) behaves in the interval
[τ1,1], we can still determine ψ(h). It can happen that u(t;h) has a zero in this interval.
Then ψ(h)= 0, by definition. If u(t;h) has no zero in [τ,1], we know that it is a decreasing
function, and so u(τ1;h) > u(1;h). Hence,

φ(h)=
m−2∑

i=1

kiu
(
ξi;h

)

u(1;h)
>
m−2∑

i=1

kiu
(
ξi;h

)

u
(
τ1;h

) ≥ 1. (3.14)

It then follows that ψ(h)= 0.
To summarize, the continuous function ψ(h) is positive in a right neighborhood of

h= 0, and 0 for all h > h2. It, therefore, is bounded above. Let the least upper bound be b∗,
which is obviously positive, and suppose that it is attained at a point κ∗ > 0, ψ(κ∗)= b∗.
Figure 3.1 illustrates a concrete example.

Let b ∈ (0,b∗). Then, by continuity, ψ(h) must assume the value b at least twice: once
at a point κ1 in (0,κ∗) and once at a point κ2 in (κ∗,∞). Each of these furnishes a solution
to the multipoint problem. It is, of course, possible that there may be other solutions, in
particular when the function ψ(h) has multiple local maxima and local minima. If b = b∗,
then h= κ∗ gives a solution to the multipoint problem. If b = 0, then the first value κ in
(κ∗,∞), for which ψ(κ) = 0, gives a solution to the multipoint problem. There may or
may not be a solution for h in (0,κ∗) because it can happen that the only value h that
solves ψ(h) = 0 is h = 0, which corresponds to the trivial solution. For b > b∗, ψ(h) = b
has no solution and neither does the multipoint boundary value problem. �

Theorem 3.2. Suppose that (1.2) hold, and

limsup
u→∞

f (u)
u

< Lθ. (3.15)
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b

κ1 κ2 κ3 κ

Figure 3.2. Graph of ψ(h) (Theorem 3.2).

Then for all b > 0, the boundary value problem (1.1), (1.6), and (1.7) has at least one positive
solution. If, in addition,

liminf
u→0+

f (u)
u

> Lθ , (3.16)

then the same multipoint problem with b = 0 has at least one positive solution.

Proof. The arguments are the same as those used to prove Theorem 3.1, except that we
interchange the parts regarding large and small h, respectively, and the conclusions are
different.

Assume first that only (3.15) holds. Let L1 be a number between limsupu→∞ f (u)/u
and Lθ , and let u1 be so large that f (u)/u≤ L1 < Lθ , for u≥ u1.

We can compare the shooting solution u(t;h) with z(t) = hy(t;L1) as we do in the
proof of Theorem 3.1. Since z(1) > 0, we can take h > u1/z(1). This ensures that u(t;h)
remains greater than u1 for all t ∈ [0,1] so that the comparison is valid in the entire
interval [0,1]. In particular, we have

u(1;h)≥ z(1)= hy(1;Lθ
)
. (3.17)

We see that

lim
h→∞

u(1;h)=∞. (3.18)

Now, Lemma 2.1 gives φ(h)≤ φ(L1) < φ(Lθ)= 1. This implies that

ψ(h)= u(1;h)−
m−2∑

i=1

kiu
(
ξi;h

)≥ (1−φ(h)
)
u(1;h)−→∞ (3.19)

as h→∞. We thus see that ψ(h) is a continuous function on [0,∞), with the proper-
ties that ψ(0)= 0 and ψ(h)→∞. This is depicted in Figure 3.2. Note also that the func-
tion ψ(h) may vanish on a subinterval of [0,∞), and this situation is also illustrated in
Figure 3.2.

On account of this, any b > 0 is in the range of ψ(h) and the corresponding boundary
value problem has at least one positive solution.

To prove the part concerning b = 0, we have to show that ψ(h) = 0 for all h that are
sufficiently small. This is done by using the second condition (3.16) to compare u(t;h)
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with w(t) = hy(t;L2) as in the proof of Theorem 3.1. In fact, the argument is easier this
time since the comparison condition is now satisfied for all t ∈ [0,1], and we do not
need to find special treatments for a set of t such as those near t = 1 in the proof of
Theorem 3.1. �

We remark that Theorem 3.2 does not assert the uniqueness of the positive solution
when b = 0. In fact, in the example shown in Figure 3.2, there are three positive solutions,
corresponding to the points κ1, κ2, and κ3.

It is interesting to note the asymmetry between Theorems 3.1 and 3.2. In Theorem 3.1,
we need both asymptotic conditions to prove the existence of positive solutions to the
boundary value problem, while in Theorem 3.2, we need only one asymptotic condition
to get the existence of the solutions. In addition, Theorem 3.1 gives at least two positive
solutions to the boundary value problem for b < b∗, while Theorem 3.2 can only guaran-
tee at least one positive solution for all b > 0.

By examining the proof of Theorem 3.1 more closely, it is not difficult to see that the
only places where the separable format of the nonlinear term is needed are to enable us
to compare the nonlinear term of (1.1) with the linear terms of the comparing equations
(3.8) and (3.11). If we include that as part of the hypotheses, we can obtain the following
analogous results concerning the more general nonlinear equivalent (1.3).

Theorem 3.3. Suppose that (1.2) hold, and there exist four constants L1, L2, u1, and u2 such
that

0 < L1 < Lθ < L2, 0 < u1 < u2,

F(t,u)≤ L1a(t)u, ∀u < u1,

F(t,u)≥ L2a(t)u, ∀u > u2.

(3.20)

Then the conclusions of Theorem 3.1 hold for the BVP (1.3), (1.6), and (1.7).

Likewise, we have the following.

Theorem 3.4. If we replace condition (3.15) by the existence of two constants L1 and u1

such that

F(t,u)≤ L1a(t)u, ∀u > u1, (3.21)

and condition (3.16) by the existence of two constants L2 and u2 such that

F(t,u)≥ L2a(t)u, ∀u < u2, (3.22)

then the conclusions of Theorem 3.2 hold for the BVP (1.3), (1.6), and (1.7).

Let us assume, in addition, that a(t) > 0 for all t ∈ [0,1], and b(t)≥ 0 is a given func-
tion on [0,1]. Theorem 3.4 obviously implies the following extension of Theorem 3.2 to
the “forced” equation

u′′(t) + a(t) f
(
u(t)

)
+ b(t)= 0, t ∈ (0,1). (3.23)
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Theorem 3.5. Suppose that (1.2) hold, and a(t) > 0 and b(t)≥ 0 are in [0,1]. Then Theo-
rem 3.2 continues to hold for (3.23).

Proof. Let F(t,u) = a(t) f (u) + b(t). Then the hypotheses of Theorem 3.5 imply the hy-
potheses of Theorem 3.4, and the same conclusions of Theorem 3.2 hold. �

Note again the asymmetry, Theorem 3.1 does not appear to have a similar extension
to the forced equation.

4. Discussion and examples

(1) Theorem 1.1 has been extended by Raffoul [16] by showing that it still holds if f0 and
f∞ are positive finite constants satisfying certain bounds. The constants given by Raffoul
are not the best possible. Our Theorems 3.1 and 3.2 include Raffoul’s results and give the
best possible constant Lθ . A discussion of Raffoul’s results can be found in [1]. In [17],
Liu and Yu proved results similar to that of Theorem 1.1 for the homogeneous three-
point problem. Liu [18] further improved Theorem 1.1 by considering cases when both
of f0 and f∞ are finite or zero. He also proved existence theorems when both f0 and f∞
are finite. In all these cases, he also assumed that f (u) is either bounded above or below
by a constant multiple of |u| in certain specified intervals. The techniques used in this
paper can easily be extended to generalize these results.

(2) With the exception of a few, for example, [1, 3], most of the results on the ex-
istence of solutions to multipoint boundary value problems are based upon fixed-point
theorems of Krasnoselskii’s type; see Krasnoselskii [2], Guo and Lakshmikantham [19],
and recent articles of Ma [12, 14, 20], Liu [18], and Sun et al. [13]. Other methods in
nonlinear functional analysis such as Leray-Schauder continuation theorem, nonlinear
alternative of Leray-Schauder fixed point theorem, and coincidence degree theory have
also been used, see Mawhin [21, 22]. In most cases, the conditions imposed are stronger
than those required by using the shooting method and Sturm comparison theorem as dis-
cussed in the previous work [1] and in this paper. Nevertheless, the abstract methods in
Banach spaces have the important advantage over the shooting method; in that, it can be
applied to higher-order equations, in higher dimensions, and to equations with deviating
arguments.

(3) The shooting method and Sturm’s comparison theorem are effective when the non-
linear function is bounded by a linear growth. In the case of (1.1), the corresponding lin-
ear differential operator is invertible on a suitable function space. This is known as the
nonresonance case and Leray-Schauder degree theory has been applied to study m-point
problems. For results on three-point boundary conditions, see Gupta et al. [23, 24] and
Gupta and Trofimchuk [25]. Gupta [6, 7] further employed a nonlinear alternative of
Leray-Schauder fixed point theorem to obtain sharper conditions where the coefficient
function in (1.1) is not required to be continuous but only integrable in [0,1]. For results
related to multipoint boundary conditions, see Guo et al. [26]. For the resonance case
with nonlinear function still subject to linear growth, see Gupta [27, 28] and Feng and
Webb [29].
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(4) In Feng and Webb [29, 30] and Feng [31], more general nonlinear functions subject
to certain sign conditions and quadratic growth are studied. It is interesting to see if the
shooting method and Sturm comparison theorem can be extended to such cases.

(5) Multipoint problems have been studied for p-Laplacian equations; see, for exam-
ple, [32]. The shooting method can be easily adapted to get similar results for such equa-
tions because the Sturm comparison theorem remains valid for p-Laplacian equations.

(6) Another generalization of the multipoint problem can be obtained by replacing
(1.7) by an integral condition (sometimes called a nonlocal condition) such as

u(1)=
∫ 1

0
k(t)u(t)dt (4.1)

and the corresponding nonhomogeneous form. This can be considered as the continu-
ous analogue of the discrete m-point condition. The shooting method can also be easily
adapted to treat such generalizations.

(7) Numerous authors have derived results guaranteeing multiple solutions to various
boundary value problems. Typically, assumptions are imposed on the nonlinear function
so that it is alternatively large and then small in successive subintervals of [0,∞). See [1]
for a discussion of such results.

We close our discussion with three examples.

Example 4.1. The forced equation (3.23) in Theorem 3.5 is an example that is covered
by the general case (1.3) and cannot be put into the separable format (1.1). A similar
example that is covered by Theorem 3.3 but not Theorem 3.1 is

u′′(t) + a(t) f
(
u(t)

)
+ b(t)g

(
u(t)

)= 0, (4.2)

where a(t) > 0, b(t)≥ 0 in [0,1], and g(u) is a continuous nonnegative function such that
g(0)= 0.

Example 4.2. Consider the second-order nonlinear differential equation

u′′(t) +
u2(t)

1 +u(t)
= 0, t ∈ (0,1), (4.3)

subject to the Robin boundary condition at the left end-point

u′(0)= u(0), u(1)− 1
3
u
(

1
2

)
= b. (4.4)

Here, f0 = 0 and f∞ = 1 as defined by (1.10).

Theorem 3.1 shows that there exists a positive number b∗ such that the boundary
value problem (4.3) and (4.4) has at least two positive solutions for all b, 0 ≤ b < b∗, at
least one positive solution for b = b∗, and has no solution for b∗ > 0. Here, Theorem 1.2
and other similar results such as Raffoul [16], Liu [18], and Liu and Yu [17] are not
applicable.
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Example 4.3. Consider the second-order nonlinear equation

u′′(t) +

∣
∣u(t)

∣
∣γ

1 +u(t)
= 0, t ∈ (0,1), 0 < γ < 1, (4.5)

subject to the Dirichlet boundary condition at the left end-point

u(0)= 0, u(1)− 1
2
u
(

1
3

)
− 1

3
u
(

1
2

)
= b ≥ 0. (4.6)

Here, f0 =∞ and f∞ = 0, which is typical in the sublinear case. Theorem 3.2 is applicable
(by choosing any Lθ > 0) and we conclude that the boundary value problem (4.5) and
(4.6) always has a positive solution for all b ≥ 0. This example is not covered by either
Theorem 1.1 or any other previously known results applicable to the sublinear case.
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