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1. Introduction

The positivity of solutions for parabolic problems is the base of comparison principle
which is important in monotonic methods used for these problems. Recently, Yin [1] de-
veloped several results in applications of the comparison principle, especially on nonlocal
problems. Earlier works on problems with nonlocal boundary conditions can be found in
[2], and some of references can be found in [1, 3]. In the literature, for example [2, 4–6],
a restriction on the boundary condition (see (2.1)) of the kind

∫
Ω

∣∣k(x, y)
∣∣dy < 1, k(x, y)≥ 0, (AK)

where k represents the kernel of the nonlocal boundary condition, is sufficient to obtain
the comparison principles. Recent results show that this restriction is not necessary for
problems with lower regularity (see [3, Theorem 3.11] for problem with Dirichlet-type
nonlocal boundary value). Moreover, in [7], an existence result for classical solutions
of a parabolic problem with nonlocal boundary condition was obtained. In [8] we find
an illustration of how the boundary kernel influences some results such as those on the
eigenvalues problem and on the decay of solutions for evolution equation with a special
kernel. In this paper, we give some general comparison results without the restriction
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(AK). Then, we use these results to discuss nonlocal boundary problems for a semilinear
and a fully nonlinear equations.

2. Case of a semilinear equation

In this section, we are interested in the positivity of solution of the following problem:

ut +A(t,x)u≥ 0, t > 0, x ∈Ω,

(
β(t,x)∂νu+α(t,x)u

)≥
∫
Ω
k(t,x; y)u(t, y)dy, t > 0, x ∈ Γ,

u(0,x)= u0(x), x ∈Ω,

(2.1)

where

A(t,x)u :=−a∇2u+�b∇u+ cu (2.2)

with a := (ai j)n×n, �b := {b1, . . . ,bn}T, ((a,�b,c),(α,β),k,u0) ∈ C([0,T],E), E := C(Ω,
Rn2+n+1)×C(Γ,R2)×C(Γ×Ω,R)×C2(Ω,R),

a∇2u=
n∑

i, j=1

ai j
∂2u

∂xi∂xj
, �b∇u=

n∑
i=1

bi
∂u

∂xi
, (2.3)

and the elliptic operator A satisfies the following: there exists a δ0 > 0 such that

ξTaξ ≥ δ0|ξ|2, ∀ξ ∈Rn. (2.4)

The boundary Γ= ∂Ω of the bounded domain Ω⊂Rn is a smooth (n− 1)-dimensional
manifold and ν is the outward unit normal vector to Γ.

We also assume the following hypotheses.
(H∗) α(t,x)≥ 1, β(t,x)≥ 0, k(t,x, y), and u0(x) satisfy the compatibility condition

β(0,x)∂νu+α(0,x)u≥
∫
Ω
k(0,x; y)u0(y)dy on Γ. (2.5)

LetQT = (0,T]×Ω.A (classical) solution u(t,x) of (2.1) should be inC1,2(QT)∩C0,1(QT).
We have the following result.

Theorem 2.1. If u0 is nonnegative, then the solution u(t,x) of problem (2.1) is nonnegative.

Proof. We can find a positive function φ(x)∈ C2(Ω) such that

φ(x)≡ 1, ∂νφ(x)≥ 0 on Γ,

min
Ω

φ(x)≥ ε > 0,
∫
Ω

∣∣k(t,x, y)φ(y)
∣∣dy < 1, t ∈ [0,T], x ∈ Γ.

(2.6)
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Let us consider the function v := u/φ. We have

vt + Ã(t,x)v ≥ 0, t > 0, x ∈Ω,

(
β∂νv+ α̃v

)≥
∫
Ω
k̃(t,x; y)v(t, y)dy, t > 0, x ∈ Γ,

v(0,x)= v0(x) := u0(x)/φ(x), x ∈Ω,

(2.7)

where

Ã(t,x)v :=−a∇2v+
�̃
b∇v+ c̃v,

α̃ := β∂νφ+α,

k̃(t,x; y) := k(t,x; y)φ(y),

(2.8)

with

�̃
b :=− 2

φ
(∇φ)Ta +�b, c̃ :=− 1

φ

[
a∇2φ−�b∇φ]+ c. (2.9)

Without loss of generality, we can suppose that c̃ > 0, otherwise, we replace v by eλtv with
a λ > 0 large enough to have λ+ c̃ > 0. Following the same approach in [2] and using (2.6)
we show that v(t,x) ≥ 0. In fact, suppose there exists a (t∗,x∗) ∈ (0, T]×Ω such that
v(t∗,x∗) < 0. If x∗ ∈ Γ and v(t∗,x∗)=min{v(t,x) : (t,x)∈Qt∗} < 0, then using (2.6) we
get

0 > v
(
t∗,x∗

)≥ (α̃v)|x∗ ≥
(
β∂νv+ α̃v

)|x∗ ≥
∫
Ω
k̃
(
t∗,x∗; y

)
v
(
t∗, y

)
dy

≥
∫
Ω

∣∣k̃(t∗,x∗; y
)∣∣dy v(t∗,x∗

)
> v
(
t∗,x∗

)
,

(2.10)

which is impossible. And if x∗ ∈Ω, then using the first inequality in (2.7) we get

0≤ (vt + Ãv
)∣∣

(t∗,x∗) ≤ c̃
(
t∗,x∗

)
v
(
t∗,x∗

)
< 0, (2.11)

which is also impossible.
Therefore, we conclude that v(t,x)≥ 0 on QT and thus u≥ 0 in QT . �

Remark 2.2. The existence of the function φ can be obtained by means of the function

φε,ϑ =
⎧⎨
⎩

1, x ∈Ω, dist(x,Γ) < ϑ,

ε, x ∈Ω, dist(x,Γ) > ϑ.
for small positive numbers ε, ϑ. (2.12)

We define φ by

φ(x)= r−n
∫
Ω
ρ
(
x− y

r

)
φε,ϑ(y)dy, (2.13)
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where the constants ε and ϑ are small enough so that (2.6) holds. Here r = ϑ/4 and

ρ(x)=

⎧⎪⎪⎨
⎪⎪⎩

[∫
|y|≤1

e1/(|y|2−1)dy
]−1

· e1/(|x|2−1), |x| < 1,

0, |x| ≥ 1.
(2.14)

It is obvious that

ε ≤ φ(x)≤ 1, for x ∈Ω, ∂νφ|Γ ≡ 0. (2.15)

Let M = sup{|k(t,x, y)| : (t,x, y)∈ [0,T]× ∂Ω×Ω}. If θ and ε satisfy M(|Γ|(5θ/4) +
ε|Ω|) < 1, where |Ω| denotes the measure of Ω, then (2.6) holds.

More generally, if α≥ α0 > 0, we can get a similar result replacing k by k/(α0).
In addition, for some special domainsΩ, we can construct φ according to the geometry

of Ω as in the following example.

Example 2.3. Let us consider the following problem on BR := {x ∈Rn,|x| < R}:

ut −Δu= 0, x ∈ BR, t > 0,

∂νu+αu= k
∫
BR

u(t, y)dy, |x| = R, t > 0,

u(0,x)= u0(x), x ∈ BR,

(2.16)

with the corresponding compatibility condition. In (2.16), α and k are constants. Then,
φ can be chosen as the following:

φ(x)=
⎧⎨
⎩
ε+ (1− ε)

(
R2− ϑ2

)−4(|x|2− ϑ2
)4

, R− ϑ≤ |x| ≤ R,

ε, |x| ≤ R− ϑ
(2.17)

with ε and ϑ verifying

∂νφ= 8R(1− ε)
R2− ϑ2

≥ 0, |k|((ε− 1)
∣∣BR−ϑ

∣∣+
∣∣BR

∣∣) < 1. (2.18)

Remark 2.4. The condition α(t,x)≥ 1 in (H∗) is not necessary. We can just assume that
α > 0 on [0,T]× Γ and we replace β and k, respectively, by β/α and k/α. This means that
we can prove Theorem 2.1 without assuming α(t,x)≥ 1.

Let us now consider the decay behavior of the following control problem:

ut +A(x)u+ω(x)u= 0, t > 0, x ∈Ω,

β(x)∂νu+α(x)u=
∫
Ω
k(x; y)u(t, y)dy, t > 0, x ∈ Γ,

u(0,x)= u0(x), x ∈Ω,

(Pω)
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where A is an elliptic operator defined as in (2.2) with ((a,�b,c),(α,β),k,u0)∈ E. Follow-
ing the same approach as in [4], we obtain that the C-norm U(t) := maxΩ |u(t,x)|, u
being the classical solution of problem (P0) (ω ≡ 0 in (Pω) decays to zero exponentially
provided that

∫
Ω |k(x; y)|dy < 1).

For any k(x, y)∈ C(Γ×Ω), we can find ω and φ such that

c̃+ω ≥ 0,
∫
Ω

∣∣k(x; y)φ(y)
∣∣dy < 1, (2.19)

where c̃ and φ are defined in (2.6) and (2.9), and the functions β, α, and k also satisfy
some corresponding conditions as in (H∗). Hence, by using the same method as in [4],
we have the following theorem.

Theorem 2.5. For any fixed k(x, y), there exist a function ω and positive constants M and
λ such that the solution u of problem (Pω) satisfies

∥∥u(t,·)∥∥C(Ω) ≤Me−λt, ∀t ≥ 0. (2.20)

We can look at the following one-dimensional example.

Example 2.6. Let Ω= [a,3π− a] with a∈ (0,π/2). The following problem

ut −uxx −u+ωu= 0, in QT ,

u(t,a)= u(t,3π− a)= 1
2

tana
∫ 3π−a

a
u(t, y)dy,

u(0,x)= sinx

(Eω)

has a solution u(t,x)≡ sinx when ω = 0. But when ω = 1, (E1) has a decay solution u=
e−t sinx. We can see that

∫
Ω kdy = ((3π− 2a)/2)tana > 1 when a∈ (arctan1/π,π/2).

We propose to use a positivity result of Theorem 2.1 in order to establish a comparison
principle for a semilinear parabolic equation with nonlinear nonlocal boundary condi-
tion. Let us consider the following problem:

ut − a∇2u= f (t,x,u,∇u) in QT ,

β∂νu+u=
∫
Ω
k
(
t,x, y;u(t, y)

)
dy on (0,T)×Γ,

u(0,x)= u0(x), x ∈Ω,

(SP)

where a, β, and u0 satisfy the hypotheses above, and f and k satisfying the following
hypotheses:

(i) k(·;u)∈ C([0, T]×Γ×Ω) and k(t,x, y;·)∈ C1(R);
(ii) f satisfies the following Lipschitz condition: there exists L1, L2 > 0 such that

f (t,x,u,P)− f (t,x,v,P)≤ L1(u− v), if u≥ v;∣∣ f (t,x,u,P)− f (t,x,u,Q)
∣∣≤ L2|P−Q|. (2.21)
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A function u(t,x)∈ C1,2(QT)∩C0,1(QT) is called an upper solution of (SP) on QT if it
satisfies

ut − a∇2u≥ f (t,x,u,∇u) in QT ,

β∂νu+u≥
∫
Ω
k
(
t,x, y;u(t, y)

)
dy on (0,T)×Γ,

u(0,x)≥ u0(x), x ∈Ω.

(2.22)

A lower solution is defined analogously by reversing the inequalities in (2.22). A solution
u of problem (SP) means that u is both an upper and a lower solutions.

Theorem 2.7. If u,v are, respectively, an upper and a lower solutions of the problem (SP),
then u≥ v for all (t,x)∈QT .

Proof. Let us consider the function w(t,x)= u(t,x)− v(t,x). This function verifies

wt − a∇2w ≥ f (t,x,u,∇u)− f (t,x,v,∇v) in QT ,

β∂νw+w ≥
∫
Ω
ku
(
t,x, y;ξ(t, y)

)
w(t, y)dy on (0,T)×Γ,

w(0,x)= u0(x)− v0(x)≥ 0, x ∈Ω

(2.23)

with ξ situated between u and v.
We note that the right-hand side of the first inequality in (2.23) depends on u and∇u,

thus, Theorem 2.1 cannot be applied directly. We introduce

w(t,x)=V(t,x)φ(x)eλt, (2.24)

where φ(x) satisfies (2.6) with k(t,x, y) replaced by ku(t,x, y,ξ(t, y)) and

λ > L1 + max
Ω

{
L2
∣∣∇φ(x)

∣∣+ a∇2φ(x)
φ(x)

}
. (2.25)

If there is a point (t,x)∈ (0,T]×Ω such that w(t,x) < 0, then V will attain its negative
minimum at some point (t1,x1) with

V
(
t1,x1

)
< 0, Vt

(
t1,x1

)≤ 0, ∇V(t1,x1
)= 0. (2.26)

Hence, using the hypotheses on f , we obtain a contradiction since we have

0≥Vt ≥−
(
λ−L1− L2|∇φ|

φ
− a∇2φ

φ

)
V > 0 at

(
t1,x1

)
if x1 ∈Ω. (2.27)

We obtain also a contradiction if x1 ∈ Γ since we have
∫
Ω

∣∣ku(t1,x1, y,ξ
(
t1, y

))∣∣φ(y)dy < 1. (2.28)

We thus conclude that V ≥ 0, and therefore, w(t,x)≥ 0 on QT . �
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A similar result can be obtained for parabolic systems with changing-sign kernels. Note
that in [9, Example 2.1], the kernel Kij appearing in the boundary condition is assumed
to be positive.

Remark 2.8. From the above discussion, the result of Theorem 2.7 holds true if we just
assume k and f to be locally (one side) Lipschitz continuous, respectively, on u and ∇u,
that is, k(·,u)∈ C([0, T]×Γ×Ω) for any fixed u and there exists L,L1,L2 > 0 such that

∣∣k(t,x, y,u)− k(t,x, y,v)
∣∣≤ L(ρ)|u− v|;

f (t,x,u,P)− f (t,x,v,P)≤ L1(ρ)(u− v), if u≥ v;
∣∣ f (t,x,u,P)− f (t,x,u,Q)

∣∣≤ L2(ρ)|P−Q|

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

when |u|,|v| ≤ ρ. (2.29)

The uniqueness of the solution of problem (SP) is a direct consequence of Theorem
2.7. Using the upper and lower solutions, some existence theorems of the solutions for
problem (SP) will be obtained by monotonicity methods (see [2]). We can also discuss
the quadric convergence of iterative series constructed using upper and lower solutions
(see [10]). Here we do not give more details about that.

3. A fully nonlinear equation

Let us consider a general nonlinear parabolic equation with nonlinear and nonlocal
boundary conditions

ut = f
(
t,x,u,∇u,∇2u

)
in QT ,

β∂νu+u=
∫
Ω
k(t,x, y;u)dy on (0,T]×Γ,

u(0,x)= u0(x) in Ω,

(Pf)

where f ∈C(QT×R×Rn×Rn2
,R),∇u=(ux1 , . . . ,uxn), and∇2u= (ux1x1 ,ux1x2 , . . . ,uxnxn).

In order to establish the comparison principle, we give a definition of elliptic function.
We say that f ∈ C(QT ×R×Rn×Rn2

,R) is elliptic at point (t0,x0) if for any u, P, R, S
with R= (Rij)n×n, S= (Si j)n×n, verifying ΛT(R− S)Λ≥ 0 for any vector Λ∈Rn, we have
f (t0,x0,u,P,R)≥ f (t0,x0,u,P,S). If f is elliptic for every (t,x)∈QT , then f is said to be
elliptic in QT . In the remainder of this paper, we assume f to be elliptic in QT .

A function u(t,x)∈ C1,2(QT)∩C0,1(QT) is said to be an upper solution (resp., a lower
solution) of problem (Pf) on QT if u satisfies the following system:

ut ≥ (≤) f
(
t,x,u,∇u,∇2u

)
in QT ,

β∂νu+u≥ (≤)
∫
Ω
k(t,x, y;u)dy on (0,T]×Γ,

u(0,x)≥ (≤)u0(x) in Ω.

(3.1)
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Assuming β to be positive, k to be continuous, and there exists a nonnegative C([0,T]×
Γ×Ω)-function L2 verifying

k(t,x, y,u)− k(t,x, y,v)≥ L2(t,x, y)(u− v) if u≥ v, (3.2)

we get the following theorem.

Theorem 3.1. Let u and v be, respectively, an upper and lower solutions of problem (Pf).
Suppose u(0,x) > v(0,x) and one of the first two inequalities in (3.1) to be strict. Then
u(t,x) > v(t,x) on QT .

Proof. Let us consider the function U(t,x) = u(t,x)− v(t,x). If the conclusion was not
true, then the initial condition implies that U(t,x) > 0 for some t > 0 and there exists
(t1,x1) ∈ QT such that U(t1,x1) = 0. We can assume that (t1,x1) is the first nonnegative
maximum point, that is,

U(t,x) > 0, ∀t < t1, x ∈Ω. (3.3)

We have that (t1,x1) �∈QT . In fact, if (t1,x1)∈QT , then we have

Ut ≤ 0, ∇U = 0, ΛT
(
Uxixj

)
n×nΛ≥ 0 at

(
t1,x1

)
. (3.4)

Using the ellipticity of f , we obtain that

Ut
(
t1,x1

)
> f
(
t1,x1,u,∇u,∇2u

)− f
(
t1,x1,v,∇v,∇2v

)≥ 0, (3.5)

which is in contradiction with (3.4). Hence, U(t,x) > 0 in Qt1 . We have also (t1,x1) �∈
(0,T]×Γ. Otherwise,

0≥ β∂νU +U ≥
∫
Ω
L2Udy > 0, at

(
t1,x1

)
, (3.6)

which leads to a contradiction again.
Finally, we conclude that U(t,x) > 0, that is, u(t,x) > v(t,x) on QT . �

Let us now assume β to be positive, f satisfying locally one-side Lipschitz conditions,
that is, for |u| ≤ ρ and |v| ≤ ρ, there exists a constant L1(ρ) such that

f (t,x,u,P,R)− f (t,x,v,P,R)≤ L1(u− v), if u≥ v. (3.7)

We also assume k to be continuous and there exist two nonnegative C([0,T]× Γ×Ω)-
functions, L2 and L2, such that

L2(t,x, y)(u− v)≤ k
(
(t,x, y);u

)− k
(
(t,x, y);v

)≤ L2(t,x, y)(u− v), if u≥ v. (3.8)
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Then, for ε > 0, it is obvious that

(
εeδt

)
t = δεeδt > f

(
t,x,u+ εeδt,∇(u+ εeδt

)
,∇2(u+ εeδt

))− f
(
t,x,u,∇u,∇2u

)
(3.9)

whenever δ > L1.
Let ũ= u+ εeδt with δ > L1 and suppose L2 |Ω| < 1, then

ũt = ut + δεeδt > f
(
t,x, ũ,∇ũ,∇2ũ

)
, in QT ,

β∂νũ+ ũ≥ εeδt +
∫
Ω
k(t,x, y;u)dy >

∫
Ω
k(t,x, y; ũ)dy, on (0,T]×Γ,

ũ(0,x)= u(0,x) + ε, in Ω.

(3.10)

This means that ũ is a (strict) upper solution as well as u. Letting ε → 0+ and using
Theorem 3.1, we obtain the following corollary.

Corollary 3.2. Under the above assumptions, if u and v are, respectively, the upper and
the lower solutions of problem (Pf) and if L2|Ω| < 1, then u(t,x)≥ v(t,x) on QT .

The uniqueness of the solution for problem (Pf) can be easily obtained and an exten-
sion to a fully nonlinear system can be derived.
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