
Hindawi Publishing Corporation
Boundary Value Problems
Volume 2007, Article ID 81415, 21 pages
doi:10.1155/2007/81415

Research Article
Harnack Inequalities: An Introduction

Moritz Kassmann

Received 12 October 2006; Accepted 12 October 2006

Recommended by Ugo Pietro Gianazza

The aim of this article is to give an introduction to certain inequalities named after Carl
Gustav Axel von Harnack. These inequalities were originally defined for harmonic func-
tions in the plane and much later became an important tool in the general theory of
harmonic functions and partial differential equations. We restrict ourselves mainly to the
analytic perspective but comment on the geometric and probabilistic significance of Har-
nack inequalities. Our focus is on classical results rather than latest developments. We
give many references to this topic but emphasize that neither the mathematical story of
Harnack inequalities nor the list of references given here is complete.
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1. Carl Gustav Axel von Harnack

C. G. Axel von Harnack
(1851–1888)

On May 7, 1851 the twins Carl Gustav Adolf von Harnack and Carl
Gustav Axel von Harnack are born in Dorpat, which at that time is
under German influence and is now known as the Estonian univer-
sity city Tartu. Their father Theodosius von Harnack (1817–1889)
works as a theologian at the university. The present article is con-
cerned with certain inequalities derived by the mathematician Carl
Gustav Axel von Harnack who died on April 3, 1888 as a Professor of
mathematics at the Polytechnikum in Dresden. His short life is de-
voted to science in general, mathematics and teaching in particular.
For a mathematical obituary including a complete list of Harnack’s
publications, we refer the reader to [1] (photograph courtesy of Professor em. Dr. med.
Gustav Adolf von Harnack, Düsseldorf).
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Carl Gustav Axel von Harnack is by no means the only family member working in
science. His brother, Carl Gustav Adolf von Harnack becomes a famous theologian and
Professor of ecclesiastical history and pastoral theology. Moreover, in 1911 Adolf von
Harnack becomes the founding president of the Kaiser-Wilhelm-Gesellschaft which is
called today the Max Planck society. That is why the highest award of the Max Planck
society is the Harnack medal.

After studying at the university of Dorpat (his thesis from 1872 on series of conic sec-
tions was not published), Axel von Harnack moves to Erlangen in 1873 where he becomes
a student of Felix Klein. He knows Erlangen from the time his father was teaching there.
Already in 1875, he publishes his Ph.D. thesis (Math. Annalen, Vol. 9, 1875, 1–54) entitled
“Ueber die Verwerthung der elliptischen Funktionen für die Geometrie der Curven drit-
ter Ordnung.” He is strongly influenced by the works of Alfred Clebsch and Paul Gordan
(such as A. Clebsch, P. Gordan, Theorie der Abelschen Funktionen, 1866, Leipzig) and is
supported by the latter.

In 1875 Harnack receives the so-called “venia legendi” (a credential permitting to teach
at a university, awarded after attaining a habilitation) from the university of Leipzig. One
year later, he accepts a position at the Technical University Darmstadt. In 1877, Harnack
marries Elisabeth von Oettingen from a village close to Dorpat. They move to Dresden
where Harnack takes a position at the Polytechnikum, which becomes a technical univer-
sity in 1890.

In Dresden, his main task is to teach calculus. In several talks, Harnack develops his
own view of what the job of a university teacher should be: clear and complete treatment
of the basic terminology, confinement of the pure theory and of applications to evident prob-
lems, precise statements of theorems under rather strong assumptions (Heger, Reidt (eds.),
Handbuch der Mathematik, Breslau 1879 and 1881).

From 1877 on, Harnack shifts his research interests towards analysis. He works on
function theory, Fourier series, and the theory of sets. At the age of 36, he has pub-
lished 29 scientific articles and is well known among his colleagues in Europe. From 1882
on, he suffers from health problems which force him to spend long periods in a sanato-
rium.

Harnack writes a textbook (Elemente der Differential-und Integralrechnung, 400 pages,
1881, Leipzig, Teubner) which receives a lot of attention. During a stay of 18 months
in a sanatorium in Davos, he translates the “Cours de calcul différentiel et intégral” of
J.-A. Serret (1867–1880, Paris, Gauthier-Villars), adding several long and significant
comments. In his last years, Harnack works on potential theory. His book entitled Die
Grundlagen der Theorie des logarithmischen Potentiales und der eindeutigen Potentialfunk-
tion in der Ebene (see [2]) is the starting point of a rich and beautiful story: Harnack
inequalities.

2. The classical Harnack inequality

In [2, paragraph 19, page 62], Harnack formulates and proves the following theorem in
the case d = 2.
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Theorem 2.1. Let u : BR(x0)⊂Rd →R be a harmonic function which is either nonnegative
or nonpositive. Then the value of u at any point in Br(x0) is bounded from above and below
by the quantities

u
(
x0
)
(

R

R+ r

)d−2 R− r

R+ r
, u

(
x0
)
(

R

R− r

)d−2 R+ r

R− r
. (2.1)

The constants above are scale invariant in the sense that they do not change for various
choices of R when r = cR, c ∈ (0,1) are fixed. In addition, they do neither depend on the
position of the ball BR(x0) nor on u itself. The assertion holds for any harmonic function
and any ball BR(x0). We give the standard proof for arbitrary d ∈ N using the Poisson
formula. The same proof allows to compare u(y) with u(y′) for y, y′ ∈ Br(x0).

Proof. Let us assume that u is nonnegative. Set ρ = |x− x0| and choose R′ ∈ (r,R). Since
u is continuous on BR′(x0), the Poisson formula can be applied, that is,

u(x)= R′2− ρ2

ωdR′

∫

∂BR′ (x0)
u(y)|x− y|−ddS(y). (2.2)

Note that

R′2− ρ2

(R′ + ρ)d
≤ R′2− ρ2

|x− y|d ≤
R′2− ρ2

(R′ − ρ)d
. (2.3)

Combining (2.2) with (2.3) and using the mean value characterization of harmonic func-
tions, we obtain

u
(
x0
)
(

R′

R′ + ρ

)d−2 R′ − ρ

R′ + ρ
≤ u(x)≤ u

(
x0
)
(

R′

R′ − ρ

)d−2 R′ + ρ

R′ − ρ
. (2.4)

Considering R′ → R and realizing that the bounds are monotone in ρ, inequality (2.1)
follows. The theorem is proved. �

Although the Harnack inequality (2.1) is almost trivially derived from the Poisson
formula, the consequences that may be deduced from it are both deep and powerful. We
give only four of them here.

(1) If u :Rd →R is harmonic and bounded from below or bounded from above then
it is constant (Liouville theorem).

(2) If u : {x ∈ R3; 0 < |x| < R} → R is harmonic and satisfies u(x) = o(|x|2−d) for
|x| → 0 then u(0) can be defined in such a way that u : BR(0)→ R is harmonic
(removable singularity theorem).

(3) Let Ω ⊂ Rd be a domain and (gn) be a sequence of boundary values gn : ∂Ω→
R. Let (un) be the sequence of corresponding harmonic functions in Ω. If gn
converges uniformly to g then un converges uniformly to u. The function u is
harmonic in Ω with boundary values g (Harnack’s first convergence theorem).

(4) Let Ω ⊂ Rd be a domain and (un) be a sequence of monotonically increasing
harmonic functions un : Ω→ R. Assume that there is x0 ∈Ω with |un(x0)| ≤ K
for all n. Then un converges uniformly on each subdomain Ω′ �Ω to a harmonic
function u (Harnack’s second convergence theorem).
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There are more consequences such as results on gradients of harmonic functions. The
author of this article is not able to judge when and by whom the above results were proved
first in full generality. Let us shortly review some early contributions to the theory of
Harnack inequalities and Harnack convergence theorems. Only three years after [2] is
published Poincaré makes substantial use of Harnack’s results in the celebrated paper
[3]. The first paragraph of [3] is devoted to the study of the Dirichlet problem in three
dimensions and the major tools are Harnack inequalities.

Lichtenstein [4] proves a Harnack inequality for elliptic operators with differentiable
coefficients and including lower order terms in two dimensions. Although the methods
applied are restricted to the two-dimensional case, the presentation is very modern. In
[5] he proves the Harnack’s first convergence theorem using Green’s functions. As Feller
remarks [6], this approach carries over without changes to any space dimension d ∈N.
Feller [6] extends several results of Harnack and Lichtenstein. Serrin [7] reduces the as-
sumptions on the coefficients substantially. In two dimensions, [7] provides a Harnack
inequality in the case where the leading coefficients are merely bounded; see also [8] for
this result.

A very detailed survey article on potential theory up to 1917 is [9] (most articles refer
wrongly to the second half of the third part of volume II, Encyklopädie der mathema-
tischen Wissenschaften mit Einschluss ihrer Anwendungen. The paper is published in the
first half, though). Paragraphs 16 and 26 are devoted to Harnack’s results. There are also
several presentations of these results in textbooks; see as one example [10, Chapter 10].
Kellogg formulates the Harnack inequality in the way it is used later in the theory of
partial differential equations.

Corollary 2.2. For any given domain Ω⊂Rd and subdomain Ω′ �Ω, there is a constant
C = C(d,Ω′,Ω) > 0 such that for any nonnegative harmonic function u : Ω→R,

sup
x∈Ω′

u(x)≤ C inf
x∈Ω′

u(x). (2.5)

Before talking about Harnack inequalities related to the heat equation, we remark that
Harnack inequalities still hold when the Laplace operator is replaced by some fractional
power of the Laplacian. More precisely, the following result holds.

Theorem 2.3. Let α∈ (0,2) and C(d,α)= (αΓ((d +α)/2))/(21−απd/2Γ(1−α/2)) (C(d,α)
is a normalizing constant which is important only when considering α→ 0 or α→ 2). Let
u :Rd →R be a nonnegative function satisfying

−(−Δ)α/2u(x)= C(d,α) lim
ε→0

∫

|h|>ε
u(x+h)−u(x)

|h|d+α
dh= 0 ∀x ∈ BR(0). (2.6)

Then for any y, y′ ∈ BR(0),

u(y)≤
∣
∣
∣
∣
R2−|y|2
R2−|y′|2

∣
∣
∣
∣

α/2∣∣
∣
∣
R−|y|
R+ |y′|

∣
∣
∣
∣

−d
u(y′). (2.7)

Poisson formulae for (−Δ)α/2 are proved in [11]. The above result and its proof can
be found in [12, Chapter IV, paragraph 5]. First, note that the above inequality reduces
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to (2.1) in the case α = 2. Second, note a major difference: here the function u is as-
sumed to be nonnegative in all of Rd. This is due to the nonlocal nature of (−Δ)α/2.
Harnack inequalities for fractional operators are currently studied a lot for various gen-
eralizations of (−Δ)α/2. The interest in this field is due to the fact that these operators
generate Markov jump processes in the same way (1/2)Δ generates the Brownian motion
and

∑d
i, j=1 ai j(·)DiDj a diffusion process. Nevertheless, in this article we restrict ourselves

to a survey on Harnack inequalities for local differential operators.
It is not obvious what should be/could be the analog of (2.1) when considering non-

negative solutions of the heat equation. It takes almost seventy years after [2] before this
question is tackled and solved independently by Pini [13] and Hadamard [14]. The sharp
version of the result that we state here is taken from [15, 16].

Theorem 2.4. Let u∈ C∞((0,∞)×Rd) be a nonnegative solution of the heat equation, that
is, (∂/∂t)u−Δu= 0. Then

u
(
t1,x

)≤ u
(
t2, y

)
(
t2
t1

)d/2
e|y−x|

2/4(t2−t1), x, y ∈Rd, t2 > t1. (2.8)

The proof given in [16] uses results of [17] in a tricky way. There are several ways to
reformulate this result. Taking the maximum and the minimum on cylinders, one obtains

sup
|x|≤ρ,θ−1 <t<θ

−
2

u(t,x)≤ c inf
|x|≤ρ,θ+

1 <t<θ
+
2

u(t,x) (2.9)

for nonnegative solutions to the heat equation in (0,θ+
2 )×BR(0) as long as θ−2 < θ+

1 . Here,
the positive constant c depends on d, θ−1 , θ−2 , θ+

1 , θ+
2 , ρ, R. Estimate (2.9) can be illu-

minated as follows. Think of u(t,x) as the amount of heat at time t in point x. Assume
u(t,x)≥ 1 for some point x ∈ Bρ(0) at time t ∈ (θ−1 ,θ−2 ). Then, after some waiting time,
that is, for t > θ+

1 , u(t,x) will be greater some constant c in all of the ball Bρ(0). It is nec-
essary to wait some little amount of time for the phenomenon to occur since there is a
sequence of solutions un satisfying un(1,0)/un(1,x)→ 0 for n→∞; see [15]. As we see,
the statement of the parabolic Harnack inequality is already much more subtle than its
elliptic version.

3. Partial differential operators and Harnack inequalities

The main reason why research on Harnack inequalities is carried out up to today is that
they are stable in a certain sense under perturbations of the Laplace operator. For exam-
ple, inequality (2.5) holds true for solutions to a wide class of partial differential equa-
tions.

3.1. Operators in divergence form. In this section, we review some important results
in the theory of partial differential equations in divergence form. Suppose Ω ⊂ Rd is a
bounded domain. Assume that x 
→ A(x) = (ai j(x))i, j=1,...,d satisfies ai j ∈ L∞(Ω) (i, j =
1, . . . ,d) and

λ|ξ|2 ≤ ai j(x)ξiξ j ≤ λ−1|ξ|2 ∀x ∈Ω, ξ ∈Rd (3.1)
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for some λ > 0. Here and below, we use Einstein’s summation convention. We say that
u∈H1(Ω) is a subsolution of the uniformly elliptic equation

−div
(
A(·)∇u)=−Di

(
ai j(·)Dju

)= f (3.2)

in Ω if
∫

Ω
ai jDiuDjφ ≤

∫

Ω
f φ for any φ∈H1

0 (Ω), φ ≥ 0 in Ω. (3.3)

Here, H1(Ω) denotes the Sobolev space of all L2(Ω) functions with generalized first
derivatives in L2(Ω). The notion of supersolution is analogous. A function u ∈ H1(Ω)
satisfying

∫
Ω ai jDiuDjφ =

∫
Ω f φ for any φ ∈H1

0 (Ω) is called a weak solution in Ω. Let us
summarize Moser’s results [18] omitting terms of lower order.

Theorem 3.1 (see [18]). Let f ∈ Lq(Ω), q > d/2.

Local boundedness. For any nonnegative subsolution u∈H1(Ω) of (3.2) and any BR(x0) �
Ω, 0 < r < R, p > 0,

sup
Br (x0)

u≤ c
{

(R− r)−d/p‖u‖Lp(BR(x0)) +R2−d/q‖ f ‖Lq(BR(x0))
}

, (3.4)

where c = c(d,λ, p,q) is a positive constant.

Weak Harnack inequality. For any nonnegative supersolution u∈H1(Ω) of (3.2) and any
BR(x0) �Ω, 0 < θ < ρ < 1, 0 < p < n/(n− 2),

inf
BθR(x0)

u+R2−d/q‖ f ‖Lq(BR(x0)) ≥ c
{
R−d/p‖u‖Lp(BρR(x0))

}
, (3.5)

where c = c(d,λ, p,q,θ,ρ) is a positive constant.

Harnack inequality. For any nonnegative weak solution u∈H1(Ω) of (3.2) and any BR(x0)
�Ω,

sup
BR/2(x0)

u≤ c
{

inf
BR/2(x0)

u+R2−d/q‖ f ‖Lq(BR(x0))

}
, (3.6)

where c = c(d,λ,q) is a positive constant.

Let us comment on the proofs of the above results. Estimate (3.4) is proved already in
[19] but we explain the strategy of [18]. By choosing appropriate test functions, one can
derive an estimate of the type

‖u‖Ls2 (Br2 (x0)) ≤ c‖u‖Ls1 (Br1 (x0)), (3.7)

where s2 > s1, r2 < r1, and c behaves like (r1 − r2)−1. Since (|Br(x0)|−1
∫
Br (x0)u

s)1/s →
supBr (x0)u for s→∞, a careful choice of radii ri and exponents si leads to the desired
result via iteration of the estimate above. This is the famous “Moser’s iteration.” The test
functions needed to obtain (3.7) are of the form φ(x) = τ2(x)us(x) where τ is a cut-off
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function. Additional minor technicalities such as the possible unboundedness of u and
the right-hand side f have to be taken care of.

The proof of (3.5) can be split into two parts. For simplicity, we assume x0 = 0, R= 1.
Set ũ= u+ ‖ f ‖Lq + ε and v = ũ−1. One computes that v is a nonnegative subsolution to
(3.2). Applying (3.4) gives for any ρ ∈ (θ,1) and any p > 0,

sup
Bθ

ũ−p ≤ c
∫

Bρ

ũ−p or, equivalently

inf
Bθ

ũ≥ c
(∫

Bρ

ũ−p
)−1/p

= c
(∫

Bρ

ũp
∫

Bρ

ũ−p
)−1/p(∫

Bρ

ũp
)1/p

,

(3.8)

where c = c(d,q, p,λ,θ,ρ) is a positive constant. The key step is to show the existence of
p0 > 0 such that

((∫

Bρ

ũp
)(∫

Bρ

ũ−p
))−1/p

≥ c⇐⇒
(∫

Bρ

ũp
)1/p

≤ c
(∫

Bρ

ũ−p
)−1/p

. (3.9)

This estimate follows once one establishes for ρ < 1

∫

Bρ

ep0|w| ≤ c(d,q,λ,ρ), (3.10)

for w = ln ũ− (|Bρ|)−1
∫
Bρ| ln ũ. Establishing (3.10) is the major problem in Moser’s ap-

proach and it becomes even more difficult in the parabolic setting. One way to prove
(3.10) is to use φ = ũ−1τ2 as a test function and show with the help of Poincaré’s inequal-
ity w ∈ BMO, where BMO consists of all L1-functions with “bounded mean oscillation,”
that is, one needs to prove

r−d
∫

Br (y)

∣
∣w−wy,r

∣
∣≤ K ∀Br(y)⊂ B1(0), (3.11)

where wy,r = (1/|Br(y)|)∫Br (y)w. Then the so-called John-Nirenberg inequality from [20]

gives p0 > 0 and c = c(d) > 0 with
∫
Br (y) e

(p0/K)|w−wy,r | ≤ c(d)rd and thus (3.10). Note that
[19] uses the same test function φ = ũ−1τ2 when proving Hölder regularity. Reference
[21] gives an alternative proof avoiding this embedding result. But there is as well a direct
method of proving (3.10). Using Taylor’s formula it is enough to estimate the L1-norms of
|p0w|k/k! for large k. This again can be accomplished by choosing appropriate test func-
tions. This approach is explained together with many details of Moser’s and De Giorgi’s
results in [22].

On one hand, inequality (3.6) is closely related to pointwise estimates on Green func-
tions; see [23, 24]. On the other hand, a very important consequence of Theorem 3.1 is
the following a priori estimate which is independently established in [19] and implicitely
in [25].
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Corollary 3.2. Let f ∈ Lq(Ω), q > d/2. There exist two constants α = α(d,q,λ) ∈ (0,1),
c = c(d,q,λ) > 0 such that for any weak solution u ∈ H1(Ω) of (3.2) u ∈ Cα(Ω) and for
any BR �Ω and any x, y ∈ BR/2,

∣
∣u(x)−u(y)

∣
∣≤ cR−α|x− y|α{R−d/2‖u‖L2(BR) +R2−d/q‖ f ‖Lq(BR)

}
, (3.12)

where c = c(d,λ,q) is a positive constant.

De Giorgi [19] proves the above result by identifying a certain class to which all pos-
sible solutions to (3.2) belong, the so-called De Giorgi class, and he investigates this class
carefully. DiBenedetto/Trudinger [26] and DiBenedetto [27] are able to prove that all
functions in the De Giorgi class directly satisfy the Harnack inequality.

The author of this article would like to emphasize that [2] already contains the main
idea to the proof of Corollary 3.2. At the end of paragraph 19, Harnack formulates and
proves the following observation in the two-dimensional setting:

Let u be a harmonic function on a ball with radius r. Denote by D the
oscillation of u on the boundary of the ball. Then the oscillation of u on an
inner ball with radius ρ < r is not greater than (4/π)arcsin(ρ/r)D.

Interestingly, Harnack seems to be the first to use the auxiliary function v(x) = u(x)−
(M +m)/2 where M denotes the maximum of u and m the minimum over a ball. The use
of such functions is the key step when proving Corollary 3.2.

So far, we have been speaking of harmonic function or solutions to linear elliptic par-
tial differential equations. One feature of Harnack inequalities as well as of Moser’s ap-
proach to them is that linearity does not play an important role. This is discovered by
Serrin [28] and Trudinger [29]. They extend Moser’s results to the situation of nonlinear
elliptic equations of the following type:

div A(·,u,∇u) +B(·,u,∇u)= 0 weakly in Ω, u∈W
1,p
loc (Ω), p > 1. (3.13)

Here, it is assumed that with κ0 > 0 and nonnegative κ1, κ2,

κ0|∇u|p− κ1 ≤ A(·,u,∇u) ·∇u,
∣
∣A(·,u,∇u)

∣
∣+

∣
∣B(·,u,∇u)

∣
∣≤ κ2

(
1 + |∇u|p−1).

(3.14)

Actually, [29] allows for a more general upper bound including important cases such as
−Δu= c|∇u|2. Note that the above equation generalizes the Poisson equation in several
aspects. A(x,u,∇) may be nonlinear in ∇u and may have a nonlinear growth in |∇u|,
that is, the corresponding operator may be degenerate. In [28, 29], a Harnack inequality
is established and Hölder regularity of solutions is deduced. Trudinger [30] relaxes the
assumptions so that the minimal surface equation which is not uniformly elliptic can be
handled. A parallel approach to regularity questions of nonlinear elliptic problems using
the ideas of De Giorgi but avoiding Harnack’s inequality is carried out by Ladyzhen-
skaya/Uralzeva; see [31] and the references therein.

It is mentioned above that Harnack inequalities for solutions of the heat equation are
more complicated in their formulation as well as in the proofs. This does not change when
considering parabolic differential operators in divergence form. Besides the important
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articles [13, 14], the most influential contribution is made by Moser [15, 32, 33]. Assume
(t,x) 
→ A(t,x)= (ai j(t,x))i, j=1,...,d satisfies ai j ∈ L∞((0,∞)×Rd) (i, j = 1, . . . ,d) and

λ|ξ|2 ≤ ai j(t,x)ξiξ j ≤ λ−1|ξ|2 ∀(t,x)∈ (0,∞)×Rd, ξ ∈Rd, (3.15)

for some λ > 0.

Theorem 3.3 (see [15, 32, 33]). Assume u∈ L∞(0,T ;L2(BR(0)))∩L2(0,T ;H1(BR(0))) is a
nonnegative weak solution to the equation

ut −div
(
A(·,·)∇u)= 0 in (0,T)×BR(0). (3.16)

Then for any choice of constants 0 < θ−1 < θ−2 < θ+
1 < θ+

2 , 0 < ρ < R there exists a positive
constant c depending only on these constants and on the space dimension d such that (2.9)
holds.

Note that both “sup” and “inf” in (2.9) are to be understood as essential supremum
and essential infimum, respectively. As in the elliptic case, a very important consequence
of the above result is that bounded weak solutions are Hölder-continuous in the interior
of the cylindrical domain (0,T)×BR(0); see [15, Theorem 2] for a precise statement. The
original proof given in [15] contains a faulty argument in Lemma 4, this is corrected in
[32]. The major difficulty in the proof is, similar to the elliptic situation, the application
of the so-called John-Nirenberg embedding. In the parabolic setting, this is particularly
complicated. In [33], the author provides a significantly simpler proof by bypassing this
embedding using ideas from [21]. Fabes and Garofalo [34] study the parabolic BMO
space and provide a simpler proof to the embedding needed in [15].

Ferretti and Safonov [35, 36] propose another approach to Harnack inequalities in
the parabolic setting. Their idea is to derive parabolic versions of mean value theorems
implying growth lemmas for operators in divergence form as well as in nondivergence
form (see Lemma 3.5 for the simplest version).

Aronson [37] applies Theorem 3.3 and proves sharp bounds on the fundamental so-
lution Γ(t,x;s, y) to the operator ∂t −div(A(·,·)∇):

c1(t− s)−d/2e−c2|x−y|2/|t−s| ≤ Γ(t,x;s, y)≤ c3(t− s)−d/2e−c4|x−y|2/|t−s|. (3.17)

The constants ci > 0, i = 1, . . . ,4, depend only on d and λ. It is mentioned above that
Theorem 3.3 also implies Hölder a priori estimates for solutions u of (3.16). At the time
of [15], these estimates are already well known due to the fundamental work of Nash
[25]. Fabes and Stroock [38] apply the technique of [25] in order to prove (3.17). In
other words, they use an assertion following from Theorem 3.3 in order to show another.
This alone is already a major contribution. Moreover, they finally show that the results
of [25] already imply Theorem 3.3. See [39] for fine integrability results for the Green
function and the fundamental solution.

Knowing extensions of Harnack inequalities from linear problems to nonlinear prob-
lems like [28, 29], it is a natural question whether such an extension is possible in the
parabolic setting, that is, for equations of the following type:

ut −div A(t,·,u,∇u)= B(t,·,u,∇) in (0,T)×Ω. (3.18)
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But the situation turns out to be very different for parabolic equations. Scale invariant
Harnack inequalities can only be proved assuming linear growth of A in the last argu-
ment. First results in this direction are obtained parallely by Aronson/Serrin [40], Ivanov
[41], and Trudinger [42]; see also [43–45]. For early accounts on Hölder regularity of
solutions to (3.18) see [46–49]. In a certain sense, these results imply that the differential
operator is not allowed to be degenerate or one has to adjust the scaling behavior of the
Harnack inequality to the differential operator. The questions around this subtle topic are
currently of high interest; we refer to results by Chiarenza/Serapioni [50], DiBenedetto
[51], the survey [52], and latest achievements by DiBenedetto, Gianazza, Vespri [53–55]
for more information.

3.2. Degenerate operators. The title of this section is slightly confusing since degenerate
operators like div A(t,·,u,∇u) are already mentioned above. The aim of this section is to
review Harnack inequalities for linear differential operators that do not satisfy (3.1) or
(3.15). Again, the choice of results and articles mentioned is very selective. We present
the general phenomenon and list related works at the end of the section.

Assume that x 
→ A(x)= (ai j(x))i, j=1,...,d satisfies aji = ai j ∈ L∞(Ω) (i, j = 1, . . . ,d) and

λ(x)|ξ|2 ≤ ai j(x)ξiξ j ≤Λ(x)|ξ|2 ∀x ∈Ω, ξ ∈Rd, (3.19)

for some nonnegative functions λ, Λ. As above, we consider the operator div
(
A(·)∇u).

Early accounts on the solvability of the corresponding degenerate elliptic equation to-
gether with qualitative properties of the solutions include [56–58]. A Harnack inequality
is proved in [59]. It is obvious that the behavior of the ratio Λ(x)/λ(x) decides whether
local regularity can be established or not. Fabes et al. [60] prove a scale invariant Har-
nack inequality under the assumption Λ(x)/λ(x)≤ C and that λ belongs to the so-called
Muckenhoupt class A2, that is, for all balls B ⊂Rd the following estimate holds for a fixed
constant C > 0:

(
1
|B|

∫

B
λ(x)dx

)(
1
|B|

∫

B

(
λ(x)

)−1
dx
)
≤ C. (3.20)

The idea is to establish inequalities of Poincaré type for spaces with weights where the
weights belong to Muckenhoupt classes Ap and then to apply Moser’s iteration tech-
nique. If Λ(x)/λ(x) may be unbounded, one cannot say in general whether a Harnack
inequality or local Hölder a priori estimates hold. They may hold [61] or may not [62].
Chiarenza/Serapioni [50, 63] prove related results in the parabolic setup. Their findings
include interesting counterexamples showing once more that degenerate parabolic oper-
ators behave much different from degenerate elliptic operators. Kružkov/Kolodı̄ı̆ [64] do
prove some sort of classical Harnack inequality for degenerate parabolic operators but
the constant depends on other important quantities which makes it impossible to deduce
local regularity of bounded weak solutions.

Assume that both λ, Λ satisfy (3.20) and the following doubling condition:

λ(2B)≤ cλ(B), Λ(2B)≤ cΛ(B), (3.21)
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where λ(M) = ∫M λ and Λ(M) = ∫MΛ. Then certain Poincaré and Sobolev inequalities
hold with weights λ, Λ. Chanillo/Wheeden [65] prove a Harnack inequality of type (2.5)
where the constant C depends on λ(Ω′), Λ(Ω′). For Ω= BR(x0) and Ω′ = BR/2(x0), they
discuss in [65] optimality of the arising constant C. In [66], a Green function correspond-
ing to the degenerate operator is constructed and estimated pointwise under similar as-
sumptions.

Let us list some other articles that deal with questions similar to the ones mentioned
above.

Degenerate elliptic operators: [67] establishes a Harnack inequality, [68] investigates
Green’s functions; [69, 70] allow for different new kinds of weights; [71] studies X-elliptic
operators; [72] further relaxes assumptions on the weights and allows for terms of lower
order; [73] investigates quite general subelliptic operators in divergence form; [74] stud-
ies lower order terms in Kato-Stummel classes; [75] provides a new technique by by-
passing the constructing of cut-off functions; [76] proves a Harnack inequality for the
two-weight subelliptic p-Laplacian.

Degenerate parabolic operators: [77] establishes a Harnack inequality; [78] allows for
time-dependent weights; [79] establishes bounds for the fundamental solution; [80] al-
lows for terms of lower order; [81] studies a class of hypoelliptic evolution equations.

3.3. Operators in nondivergence form. A major breakthrough on Harnack inequalities
(maybe the second one after Moser’s works) is obtained by Krylov and Safonov [82–84].
They obtain parabolic and elliptic Harnack inequalities for partial differential operators
in nondivergence form. We review their results without aiming at full generality. Assume
(t,x) 
→ A(t,x) = (ai j(t,x))i, j=1,...,d satisfies (3.15). Set Qθ,R(t0,x0) = (t0 + θR2)× BR(x0)
and Qθ,R =Qθ,R(0,0).

Theorem 3.4 (see [83]). Let θ > 1 and R≤ 2, u∈W1,2
2 (Qθ,R), u≥ 0 be such that

ut − ai jDiDju= 0 a.e. in Qθ,R. (3.22)

Then there is a constant C depending only on λ, θ, d such that

u
(
R2,0

)≤ Cu
(
θR2,x

) ∀x ∈ BR/2. (3.23)

The constant C stays bounded as long as (1− θ)−1 and λ−1 stay bounded.

An important consequence of the above theorem are a priori estimates in the para-
bolic Hölder spaces for solutions u; see [83, Theorem 4.1]. Hölder regularity results and
a Harnack inequality for solutions to the elliptic equation ai jDiDju= 0 under the general
assumptions above are proved first by Safonov [84].

In a certain sense, these results extend research developed for elliptic equations in
[85–87]. Nirenberg proves Hölder regularity for solutions u in two dimensions. In higher
dimensions, he imposes a smallness condition on the quantity

∑
i, j(ai j(x)− δi j(x))2; see

[88]. Cordes [86] relaxes the assumptions and Landis [87, 89] proves Harnack inequali-
ties but still requires the dispersion of eigenvalues of A to satisfy a certain smallness. Note
that [85, 86] additionally explain how to obtain C1,α-regularity of u from Hölder regu-
larity which is important for existence results. The probabilistic technique developed by
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Figure 3.1. Hitting times for a diffusion (figure courtesy of R. Husseini, SFB 611, Bonn).

Krylov and Safonov in order to prove Theorem 3.4 resembles analytic ideas used in [89]
(unfortunately, the book was not translated until much later; see [90]). The key idea is to
prove a version of what Landis calls “growth lemma” (DiBenedetto [27] refers to the same
phenomenon as “expansion of positivity”). Here is such a result in the simplest case.

Lemma 3.5. Assume Ω⊂ Rd is open and z ∈Ω. Suppose |Ω∩BR(z)| ≤ ε|BR(z)| for some
R > 0, ε ∈ (0,1). Then for any function u∈ C2(Ω)∩C(Ω) with

−Δu(x)≤ 0, 0 < u(x)≤ 1 ∀x ∈Ω∩BR(z),

u(x)= 0 ∀x ∈ ∂Ω∩BR(z)
(3.24)

the estimate u(z)≤ ε holds.

As just mentioned, the original proof of Theorem 3.4 is probabilistic. Let us briefly
explain the key ingredient of this proof. The technique involves hitting times of diffusion
processes and implies an (analytic) result like Lemma 3.5 for quite general uniformly
elliptic operators. One considers the diffusion process (Xt) associated to the operator
ai jDiDj via the martingale problem. This process solves the following system of ordinary
stochastic differential equations dXt = σtdBt. Here (Bt) is a d-dimensional Brownian mo-
tion and σTt σt = A.

Assume that P(X0 ≤ αR) = 1 where α ∈ (0,1). Let Γ ⊂ Q1,R be a closed set satisfying
|Γ| ≥ ε|Q1,R| for some ε > 0. For a set M ⊂ (0,∞)×Rd let us denote the time when (Xt)
hits the boundary ∂M by τ(M)= inf{t > 0; (t,Xt)∈ ∂M}, see Figure 3.1. The key idea in
the proof of [82] is to show that there is δ > 0 depending only on d, λ, α, ε such that

P
(
τ(Γ) < τ

(
Q1,R

))≥ δ ∀R∈ (0,1). (3.25)

The Harnack inequality, Theorem 3.4 and its elliptic counterpart open up the modern
theory of fully nonlinear elliptic and parabolic equations of the form

F
(·,D2u

)= 0 in Ω, (3.26)
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where D2u denotes the Hessian of u. Evans [91] and Krylov [92] prove interior C2,α(Ω)-
regularity, Krylov [93] also proves C2,α(Ω)-regularity. The approaches are based on the
use of Theorem 3.4; see also the presentation in [94]. Harnack inequalities are proved by
Caffarelli [95] for viscosity solutions of fully nonlinear equations; see also [96].

4. Geometric and probabilistic significance

In this section, let us briefly comment on the non-Euclidean situation. Whenever we
write “Harnack inequality” or “elliptic Harnack inequality” without referring to a certain
type of differential equation, we always mean the corresponding inequality for nonneg-
ative harmonic functions, that is, functions u satisfying Δu = 0 including cases where Δ
is the Laplace-Beltrami operator on a manifold. Analogously, the expression “parabolic
Harnack inequality” refers to nonnegative solutions of the heat equation.

Bombieri/Giusti [21] prove a Harnack inequality for elliptic differential equations
on minimal surfaces using a geometric analysis perspective. Reference [21] is also well-
known for a technique that can replace the use of the John-Nirenberg lemma in Moser’s
iteration scheme; see the discussion above. The elliptic Harnack inequality is proved for
Riemannian manifolds by Yau [97]. A major breakthrough, the parabolic Harnack in-
equality and differential versions of it for Riemannian manifolds with Ricci curvature
bounded from below is obtained by Li/Yau [17] with the help of gradient estimates. In
addition, they provide sharp bounds on the heat kernel.

Fundamental work has been carried out proving Harnack inequalities for various geo-
metric evolution equations such as the mean curvature flow of hypersurfaces and the
Ricci flow of Riemannian metrics. We are not able to give details of these results here
and we refer the reader to the following articles: [98–107]. Finally, we refer to [108] for a
detailed discussion of how the so called differential Harnack inequality of [17] enters the
work of G. Perelman.

The parabolic Harnack inequality is not only a property satisfied by nonnegative solu-
tions to the heat equation. It says a lot about the structure of the underlying manifold or
space. Independently, Saloff-Coste [109] and Grigor’yan [110] prove the following result.
Let (M,g) be a smooth, geodesically complete Riemannian manifold of dimension d. Let
r0 > 0. Then the two properties

∣
∣B(x,2r)

∣
∣≤ c1

∣
∣B(x,r)

∣
∣, 0 < r < r0, x ∈M, (4.1)

∫

B(x,r)

∣
∣ f − fx,r

∣
∣2 ≤ c2r

2
∫

B(x,2r)
|∇ f |2, 0 < r < r0, x ∈M, f ∈ C∞(M), (4.2)

together are equivalent to the parabolic Harnack inequality. Equation (4.1) is called vol-
ume doubling condition and (4.2) is a weak version of Poincaré’s inequality. Since both
conditions hold for manifolds with Ricci curvature bounded from below, these results
imply several but not all results obtained in [17]. See also [111] for another presentation
of this relation.

The program suggested by [109, 110] is carried out by Delmotte [112] in the case of
locally finite graphs and by Sturm [113] for time dependent Dirichlet forms on locally
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compact metric spaces including certain subelliptic operators. For both results a prob-
abilistic point of view is more than helpful. An elliptic Harnack inequality is used by
Barlow and Bass to construct a Brownian motion on the Sierpiński carpet in [114]; see
[115, 116] for related results. A parabolic Harnack inequality with a non-diffusive space-
time scaling is proved on infinite connected weighted graphs [117]. Moreover it is shown
that this inequality is stable under bounded transformations of the conductances.

It is interesting to note that the elliptic Harnack inequality is weaker than its parabolic
counterpart. For instance, it does not imply (4.1) for all x ∈M. It is not known which set
of conditions is equivalent to the elliptic Harnack inequality. Even on graphs, the situa-
tion can be difficult. The graph version of the Sierpińkski gasket, for instance, satisfies the
elliptic Harnack inequality but not (4.2). Graphs with a bottleneck-structure again might
satisfy the elliptic Harnack inequality but violate (4.1); see [118] for a detailed discussion
of these examples and [119, 120] for recent progress in this direction.

5. Closing remarks

As pointed out in the abstract, this article is incomplete in many respects. It is con-
cerned with Harnack inequalities for solutions of partial differential equations. Emphasis
is placed on elliptic and parabolic differential equations that are nondegenerate. Degen-
erate operators are mentioned only briefly. Fully nonlinear operators, Schrödinger opera-
tors, and complex valued functions are not mentioned at all with only few exceptions. The
same applies to boundary Harnack inequalities, systems of differential equations, and the
interesting connection between Harnack inequalities and problems with free boundaries.
In Section 2, Harnack inequalities for nonlocal operators are mentioned only briefly al-
though they attract much attention at present; see [121, 122]. In the above presentation,
the parabolic Harnack inequality on manifolds is not treated according to its significance.
Harmonic functions in discrete settings, that is, on graphs or related to Markov chains are
not dealt with; see [123–128] for various aspects of this field.

It would be a major and very interesting research project to give a complete account of
all topics where Harnack inequalities are involved.
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Grushin type operators,” Communications in Partial Differential Equations, vol. 19, no. 3-4, pp.
523–604, 1994.

[70] V. De Cicco and M. A. Vivaldi, “Harnack inequalities for Fuchsian type weighted elliptic equa-
tions,” Communications in Partial Differential Equations, vol. 21, no. 9-10, pp. 1321–1347,
1996.

[71] Cr. E. Gutiérrez and E. Lanconelli, “Maximum principle, nonhomogeneous Harnack inequal-
ity, and Liouville theorems for X-elliptic operators,” Communications in Partial Differential
Equations, vol. 28, no. 11-12, pp. 1833–1862, 2003.

[72] A. Mohammed, “Harnack’s inequality for solutions of some degenerate elliptic equations,” Re-
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