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1. Introduction

The main purpose of this paper is to get results on the solvability of the following bound-
ary value problem (BVP):

x′′(t)= f
(
t,x(t),x′(t)

)
,

Δx′
(
tk
)= bkx

′(tk
)
, Δx

(
tk
)= ckx

(
tk
)
,

x′(0)= 0, x(1)=
m−2∑

i=1

aix
(
ξi
)
,

(1.1)

where ξi ∈ (0,1), i= 1,2, . . . ,m− 2, 0 < ξ1 < ξ2 < ··· < ξm−2 < 1, ai ∈ R, i= 1,2, . . . ,m− 2,
∑m−2

i=1 ai �= 1, 0= t0 < t1 < t2 < ··· < tT < tT+1 = 1.
Such problems without impulses effects have been solved before, for example, in [1–3].

But as far as we know the publication on the solvability of m-point problems with im-
pulses is fewer [4]. Our main goal is to find condition for f ,bk,ck,1≤ k ≤ T , which guar-
antees the existence of at least one solution of problem (1.1). The proofs are based on
the Leray-Schauder continuation theorem [5] and the nonlinear alternative of Leray-
Schauder type [6].
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In order to define the concept of solution for BVP (1.1), we introduce the following
spaces of functions:

(i) PC[0,1]= {u : [0,1]→ R, u is continuous at t �= tk, u(t+
k ), u(t−k ) exist, and u(t−k )=

u(tk)};
(ii) PC1[0,1] = {u ∈ PC[0,1] : u is continuously differentiable at t �= tk, u′(0+),

u′(t+
k ), u′(t−k ) exist and u′(t−k )= u′(tk)};

(iii) PC2[0,1]= {u∈ PC1[0,1] : u is twice continuously differentiable at t �= tk}.
Note that PC[0,1] and PC1[0,1] are Banach spaces with the norms

‖u‖∞ = sup
{∣∣u(t)

∣
∣ : t ∈ [0,1]

}
, ‖u‖1 =max

{‖u‖∞,‖u′‖∞
}

, (1.2)

respectively.

Definition 1.1. The set � is said to be quasiequicontinuous in [0,c] if for any ε > 0 there
exists δ > 0 such that if x ∈�, k ∈ Z, t∗, t∗∗ ∈ (tk−1, tk]∩ [0,c], and |t∗ − t∗∗| < δ, then
|x(t∗)− x(t∗∗)| < ε.

Lemma 1.2 (compactness criterion [7]). The set �⊂ PC([0,c],Rn) is relatively compact if
and only if one has the following:

(1) � is bounded;
(2) � is quasiequicontinuous in [0,c].

Lemma 1.3 [7]. Let s∈ [0,T), ck ≥ 0, αk, k = 1, . . . , p, are constants and let p,q ∈ PC(J ,R),
x ∈ PC1(J ,R). If

x′(t)≤ p(t)x(t) + q(t), t ∈ [s,T), t �= tk,

x
(
t+
k

)≤ ckx
(
tk
)

+αk, tk ∈ [s,T),
(1.3)

then for t ∈ [s,T],

x(t)≤ x
(
s+)
(
∏

s<tk<t

ck

)

exp

(∫ t

s
p(u)du

)

+
∫ t

s

(
∏

u<tk<t

ck

)

exp

(∫ t

u
p(τ)dτ

)

q(u)du

+
∑

s<tk<t

(
∏

tk<ti<t

ci

)

exp

(∫ t

tk
p(τ)dτ

)

αk.

(1.4)

The result also holds if the above inequalities are reversed.

2. Main results

Theorem 2.1. Let f : [0,1]× R2 → R be a continuous function. Assume that there exist
p(t), q(t), and r(t) : [0,1]→ [0,∞) such that

∣
∣ f (t,u,v)

∣
∣≤ p(t)|u|+ q(t)|v|+ r(t) (2.1)
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for t ∈ [0,1] and all (u,v) ∈ R2. Then the BVP (1.1) has at least one solution in PC1[0,1]
provided

Q+B < 1, (2.2)
(

1 +

∑m−2
i=1

∣
∣ai
∣
∣

∣
∣1−∑m−2

i=1 ai
∣
∣

)(
P

1−Q−B
+C

)

< 1, (2.3)

where P = ∫ 1
0 p(t)dt, Q = ∫ 1

0 q(t)dt, B =∑T
k=1 |bk|, C =

∑T
k=1 |ck|.

Proof. Let Y = X = PC1[0,1]. Define a linear operator L : D(L)⊂ X → Y by setting

D(L)=
{

x ∈ PC2[0,1], x′(0)= 0, x(1)=
m−2∑

i=1

aix
(
ξi
)
}

, (2.4)

and for x ∈D(L) : Lx = (x′′,Δx′(tk),Δx(tk)). We also define a nonlinear mapping F : X →
Y by setting

(Fx)(t)= ( f (t,x(t),x′(t)
)
,bkx′

(
tk
)
,ckx

(
tk
))
. (2.5)

From the assumption on f , we see that F is a bounded mapping from X to Y . Next, it
is easy to see that L : D(L)→ Y is one-to-one mapping. Moreover, it follows easily using
Lemma 1.2 that L−1F : X → X is a compact mapping.

We note that x ∈ PC1[0,1] is a solution of (1.1) if and only if x is a fixed point of the
equation

x = L−1Fx. (2.6)

We apply the Leray-Schauder continuation theorem to obtain the existence of a solution
for x = L−1Fx.

To do this, it suffices to verify that the set of all possible solutions of the family of
equations:

x′′(t)= λ f
(
t,x(t),x′(t)

)
,

Δx′
(
t+
k

)= λbkx
′(tk

)
, Δx

(
tk
)= λckx

(
tk
)
,

x′(0)= 0, x(1)=
m−2∑

i=1

aix
(
ξi
)
.

(2.7)

Integrate (2.7) from 0 to t to obtain

x′(t)= λ
∫ t

0
f
(
s,x(s),x′(s)

)
ds+ λ

∑

0<tk<t

bkx
′(tk

)
. (2.8)
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By condition (2.1), we have

∣
∣x′(t)

∣
∣≤

∫ t

0

[
p(s)‖x‖+ q(s)‖x′‖+ r(s)

]
ds+

T∑

k=1

|bk|‖x′‖

≤ (Q+B)‖x′‖+P‖x‖+R1,

(2.9)

where R1 =
∫ 1

0 r(t)dt. Thus,

‖x′‖ ≤ 1
1−Q−B

(
P‖x‖+R1

)
. (2.10)

Integrate (2.8) from t to 1 to obtain

− x(t)

= λ

{∫ 1

0
H(t,s) f

(
s,x(s),x′(s)

)
ds+

∫ 1

t

∑

0<tk<s

bkx
′(tk

)
ds+

∑

t<tk<1

ckx
(
tk
)

+
1

1−∑m−2
i=1 ai

m−2∑

i=1

ai

[∫ 1

0
H
(
ξi,s

)
f
(
s,x(s),x′(s)

)
ds
∫ 1

ξi

∑

0<tk<s

bkx
′(tk

)
ds+

∑

ξi<tk<1

ckx
(
tk
)
]}

,

(2.11)

where

H(t,s)=
⎧
⎨

⎩
1− t, 0≤ s≤ t ≤ 1,

1− s, 0≤ t ≤ s≤ 1.
(2.12)

So

‖x‖ ≤
(

1 +

∑m−2
i=1

∣
∣ai
∣
∣

∣
∣1−∑m−2

i=1 ai
∣
∣

)
[
(P +C)‖x‖+ (Q+B)‖x′‖+R1

]
. (2.13)

Equations (2.10) and (2.13) imply

‖x‖ ≤
(

1 +

∑m−2
i=1

∣
∣ai
∣
∣

∣
∣1−∑m−2

i=1 ai
∣
∣

)[(
P

1−Q−B
+C

)
‖x‖+R1

]
. (2.14)

It follows from the assumption (2.3) that there is a constant M1 in dependent of λ ∈
[0,1] such that ‖x‖ ≤M1. Furthermore, by (2.10), there is a constant M2 such that ‖x′‖ ≤
M2. It is now immediate that the set of solutions of the family of equations (2.7) is, a
priori, bounded in PC1[0,1] by a constant independent of λ∈ [0,1]. This completes the
proof of the theorem.

Theorem 2.2. Let f : [0,1]×R2 → R. Assume that the following conditions hold:
(H1) | f (t,u,v)| ≤ q(t)w(max{|u|,|v|}) on [0,1]×R2 with w > 0 continuous and non-

decreasing on [0,∞), q(t) : [0,1]→ [0,∞) is continuous;
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(H2) bk ≥ 0, and

C

(

1 +

∑m−2
i=1

∣
∣ai
∣
∣

∣
∣1−∑m−2

i=1 ai
∣
∣

)

< 1,

sup
r≥0

r

w(r)
>M3 =

(

1 +

∑m−2
i=1

∣
∣ai
∣
∣

∣
∣1−∑m−2

i=1 ai
∣
∣

)[

1−C

(

1 +

∑m−2
i=1

∣
∣ai
∣
∣

∣
∣1−∑m−2

i=1 ai
∣
∣

)]−1

Q,

(2.15)

where Q = ∫ 1
0

∏
0<tk<1(1 + bk)q(s)ds.

Then (1.1) has at least one solution.

Choose M̃ > 0 such that

M̃

w
(
M̃
) >M3. (2.16)

To show that (1.1)) has at least one solution, we consider the operator

x = λL−1Fx, λ∈ [0,1], (2.17)

which is equivalent to (2.7). Let x ∈ PC1[0,1] be any solution of (2.7), from (H1), we have

− q(t)w
(‖x‖1

)≤ x′′(t)≤ q(t)w
(‖x‖1

)
. (2.18)

Consider the inequalities

x′′(t)≤ q(t)w
(‖x‖1

)
,

x′
(
tk
)= (1 + bk

)
x
(
tk
)
,

x′(0)= 0,

x′′(t)≥−q(t)w
(‖x‖1

)
,

x′
(
tk
)= (1 + bk

)
x
(
tk
)
,

x′(0)= 0.

(2.19)

By Lemma 1.3, we have

x′(t)≤w
(‖x‖1

)
∫ t

0

∏

0<tk<t

(
1 + bk

)
q(s)ds

≤Qw
(‖x‖1

)
,

x′(t)≥−w(‖x‖1
)
∫ t

0

∏

0<tk<t

(
1 + bk

)
q(s)ds

≥−Qw(‖x‖1
)
.

(2.20)

From (2.20), we can deduce

∣
∣x′(t)

∣
∣≤Qw

(‖x‖1
)
, (2.21)
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and so

‖x′‖ ≤Qw
(‖x‖1

)
. (2.22)

Using x(t)= x(1)− ∫ 1
t x

′(s)ds−∑t<tk<1 ckx(tk) and x(1)=∑m−2
i=1 aix(ξi), we have

x(t)=− 1

1−∑m−2
i=1 ai

m−2∑

i=1

ai

⎡

⎣
∫ 1

ξi
x′(s)ds+

∑

ξi<tk<1

ckx
(
tk
)
⎤

⎦−
∫ 1

t
x′(s)ds−

∑

t<tk<1

ckx
(
tk
)
,

(2.23)
which implies

|x(t)| ≤
(

1 +

∑m−2
i=1

∣
∣ai
∣
∣

∣
∣1−∑m−2

i=1 ai
∣
∣

)
(‖x′‖+C‖x‖), (2.24)

and so

‖x‖ ≤
(

1 +

∑m−2
i=1

∣
∣ai
∣
∣

∣
∣1−∑m−2

i=1 ai
∣
∣

)[

1−C

(

1 +

∑m−2
i=1

∣
∣ai
∣
∣

∣
∣1−∑m−2

i=1 ai
∣
∣

)]−1

‖x′‖

≤
(

1 +

∑m−2
i=1

∣
∣ai
∣
∣

∣
∣1−∑m−2

i=1 ai
∣
∣

)[

1−C

(

1 +

∑m−2
i=1

∣
∣ai
∣
∣

∣
∣1−∑m−2

i=1 ai
∣
∣

)]−1

Qw
(‖x‖1

)
.

(2.25)

Now, (2.22) together with (2.25) imply ‖x‖1 �= M̃. Set

U = {u∈ PC1[0,1] : ‖u‖1 < M̃
}

, K = E = PC1[0,1], (2.26)

then the nonlinear alternative of Leray-Schauder type [6] guarantees that L−1F has a fixed
point, that is, (1.1) has a solution x ∈ PC1[0,1], which completes the proof. �

3. Examples

Example 3.1. Consider the boundary value problem

x′′ = f
(
t,x,x′

)
, t ∈ [0,1], t �= 1

2
,

Δx′
(
tk
)= 1

6
x′
(
tk
)
, Δx

(
tk
)= 1

4
x
(
tk
)
, tk = 1

2
,

x′(0)= 0, x(1)= 1
2
x
(

1
3

)
− 1

3
x
(

2
3

)
,

(3.1)

where

f (t,u,v)= t5u+
1
2
t3v+ t2[1 + cos

(
u200 + v30)]. (3.2)

It is easy to see that

∣
∣ f (t,u,v)

∣
∣≤ p(t)|u|+ q(t)|v|+ r(t) (3.3)
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with p(t)= t5, q(t)= (1/2)t3, r(t)= 2t2. Clearly, P = 1/6, Q = 1/8, B = 1/6, C = 1/4, and

Q+B = 7
24

< 1,

(

1 +

∑m−2
i=1

∣
∣ai
∣
∣

∣
∣1−∑m−2

i=1 ai
∣
∣

)(
P

1−Q−B
+C

)
= 33

34
< 1. (3.4)

By Theorem 2.1, (3.1) has at least one solution.

Example 3.2. Consider the boundary value problem

x′′ = f
(
t,x,x′

)
, t ∈ [0,1], t �= 1

2
,

Δx′
(
tk
)= x′

(
tk
)
, Δx

(
tk
)= 1

3
x
(
tk
)
, tk = 1

2
,

x′(0)= 0, x(1)= 1
2
x
(

1
3

)
− 1

2
x
(

2
3

)
,

(3.5)

where

f (t,u,v)= e−t
(
uα + vβ

)
+μe−t (3.6)

with α∈ [0,1], β ∈ [0,1], μ > 0. It is easy to see that

∣
∣ f (t,u,v)

∣
∣≤ q(t)w

(
max

{|u|,|v|}) (3.7)

with q(t)= e−t, w(s)= sα + sβ +μ. Clearly

C

(

1 +

∑m−2
i=1

∣
∣ai
∣
∣

∣
∣1−∑m−2

i=1 ai
∣
∣

)

= 2
3
< 1,

sup
r≥0

r

w(r)
= sup

r≥0

r

rα + rβ +μ
=∞,

(3.8)

so (H2) is true. Theorem 2.2 shows that (3.5) has at least one solution.
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