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1. Introduction

In this paper, we discuss the existence and uniqueness of solution to the boundary value prob-
lem

(
φ
(
x′))′ + λq(t)f(x) = 0, t ∈ (0, 1), λ > 0,

x(0) = x(1) = 0,
(1.1)

where φ(s) = |s|p−2s, p > 1, and f may be singular at x = 0.
By a solution x to (1.1) we mean a function x ∈ C1[0, 1], φ(x′) ∈ AC[0, 1] such that

x satisfies (1.1) and the boundary condition; here AC[0, 1] denotes the space of absolutely
continuous functions defined on [0, 1].

It is of interest to note here that the existence of positive solutions to problem (1.1) has
been studied in great detail in the literature, see [1–10]. However, there are few works on the
uniqueness of solutions for boundary problems to the singular one-dimension p-Laplacian.
In this paper, we present a new existence and uniqueness theory by using mixed monotone
method which has been used in [11, 12].
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2. Preliminaries

Let E = C[0, 1], with the norm ‖u‖ = maxt∈[0,1]|u(t)|, so E is a Banach space. Also, we define

P = {u ∈ E : u is concave on [0, 1] and u(0) = u(1) = 0}. (2.1)

One may readily verify that P is a cone in E. e ∈ P , with ‖e‖ ≤ 1, e /= θ. Define

Qe = {x ∈ P | x /= θ, there exist constants m, M > 0 such that me ≤ x ≤ Me}. (2.2)

Now we give a definition (see [13]).

Definition 2.1. Assume A : Qe ×Qe → Qe. A is said to be mixed monotone if A(x, y) is nonde-
creasing in x and nonincreasing in y, that is, if x1 ≤ x2 (x1, x2 ∈ Qe) impliesA(x1, y) ≤ A(x2, y)
for any y ∈ Qe, and y1 ≤ y2 (y1, y2 ∈ Qe) implies A(x, y1) ≥ A(x, y2) for any x ∈ Qe. x∗ ∈ Qe is
said to be a fixed point of A if A(x∗, x∗) = x∗.

Theorem 2.2 (see [11]). Suppose that A : Qe × Qe → Qe is a mixed monotone operator and there
exists a constant β, 0 ≤ β < 1 such that

A

(
tx,

1
t
y

)
≥ tβA(x, y), ∀x, y ∈ Qe, 0 < t < 1. (2.3)

Then A has a unique fixed point x∗ ∈ Qe. Moreover, for any (x0, y0) ∈ Qe ×Qe,

xn = A
(
xn−1, yn−1

)
, yn = A

(
yn−1, xn−1

)
, n = 1, 2, . . . , (2.4)

satisfy

xn −→ x∗, yn −→ x∗, (2.5)

where

∥
∥xn − x∗∥∥ = o

(
1 − rβ

n)
,

∥
∥yn − x∗∥∥ = o

(
1 − rβ

n)
, (2.6)

0 < r < 1, r is a constant from (x0, y0).

Theorem 2.3 (see [11, 13]). Suppose that A : Qe ×Qe → Qe is a mixed monotone operator and there
exists a constant β ∈ (0, 1) such that (2.3) holds. If x∗

λ
is a unique solution of equation

A(x, x) = λx (λ > 0) (2.7)

in Qe, then ‖x∗
λ
− x∗

λ0
‖ → 0, λ → λ0. If 0 < β < 1/2, then 0 < λ1 < λ2 implies x∗

λ1
≥ x∗

λ2
, x∗

λ1 /= x∗
λ2
,

and

lim
λ→+∞

∥∥x∗
λ

∥∥ = 0, lim
λ→0+

∥∥x∗
λ

∥∥ = +∞. (2.8)
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3. Existence and uniqueness

In this section, we discuss the singular one-dimension p-Laplacian

(
φ
(
x′))′ + q(t)f(x) = 0, t ∈ (0, 1),

x(0) = x(1) = 0.
(3.1)

Throughout this section we assume that

f(x) = g(x) + h(x), (3.2)

where

g : [0,+∞) −→ [0,+∞) is continuous and nondecreasing ;

h : (0,+∞) −→ (0,+∞) is continuous and nonincreasing .
(3.3)

Theorem 3.1. Suppose that there exists α ∈ (0, p − 1) such that

g(tx) ≥ tαg(x), (3.4)

h
(
t−1x

) ≥ tαh(x), (3.5)

for any t ∈ (0, 1) and x > 0, and q ∈ C((0, 1), (0,∞)) satisfies

∫1

0
t−α(1 − t)−αq(t)dt < +∞, 0 < α < p − 1. (3.6)

Then (3.1) has a unique positive solution x∗
λ
(t).

And moreover, 0 < λ1 < λ2 implies that x∗
λ1

≤ x∗
λ2
, x∗

λ1 /= x∗
λ2
. If α/(p − 1) ∈ (0, 1/2), then

lim
λ→0+

∥∥x∗
λ

∥∥ = 0, lim
λ→+∞

∥∥x∗
λ

∥∥ = +∞. (3.7)

Lemma 3.2. Let u, v be solutions to
(
φ
(
u′))′ + λq(t)t−α(1 − t)−α = 0, t ∈ (0, 1), λ > 0, q(t)t−α(1 − t)−α ∈ L1(0, 1),

u(0) = u(1) = 0,
(
φ
(
v′))′ + λq(t)tα(1 − t)α = 0, t ∈ (0, 1), λ > 0, q(t)tα(1 − t)α ∈ L1(0, 1),

v(0) = v(1) = 0,

(3.8)

then there exist positive constants Cu, Cv such that

t(1 − t)‖u‖ ≤ u(t) ≤ Cut(1 − t), t(1 − t)‖v‖ ≤ v(t) ≤ Cvt(1 − t). (3.9)

Proof. Because q(t)t−α(1 − t)−αq(t)tα(1 − t)α ≥ 0, then u, v is concave and positive on (0, 1). As
u, v ∈ C1[0, 1], thus

lim
t→0

u(t)
t

= u′(0), lim
t→1

u(t)
1 − t

= −u′(1), lim
t→0

v(t)
t

= v′(0), lim
t→1

v(t)
1 − t

= −v′(1). (3.10)
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Let

Cu = sup
t∈(0,1)

u(t)
t(1 − t)

, Cv = sup
t∈(0,1)

v(t)
t(1 − t)

, (3.11)

then 0 < Cu, Cv < ∞, and

u(t) ≤ Cu t(1 − t), v(t) ≤ Cv t(1 − t). (3.12)

Since u, v is concave, then

u(t) ≥ t(1 − t)‖u‖, v(t) ≥ t(1 − t)‖v‖. (3.13)

So we have

t(1 − t)‖u‖ ≤ u(t) ≤ Cut(1 − t), t(1 − t)‖v‖ ≤ v(t) ≤ Cvt(1 − t). (3.14)

Lemma 3.3 (see [7]). If u, v ∈ C1[0, 1] satisfies

−(φ(u′))′ ≥ −(φ(v′))′, a.e. t ∈ [0, 1],

u(0) ≥ v(0), u(1) ≥ v(1),
(3.15)

then u(t) ≥ v(t) for all t ∈ [0, 1].

Proof of Theorem 3.1. Since (3.5) holds, let t−1x = y, one has

h(y) ≥ tαh(ty). (3.16)

Then

h(ty) ≤ 1
tα
h(y), ∀t ∈ (0, 1), y > 0. (3.17)

Let y = 1. The above inequality is

h(t) ≤ 1
tα
h(1), ∀t ∈ (0, 1). (3.18)

From (3.5), (3.17), and (3.18), one has

h
(
t−1x

) ≥ tαh(x), h

(
1
t

)
≥ tαh(1), h(tx) ≤ 1

tα
h(x), h(t) ≤ 1

tα
h(1), t ∈ (0, 1), x > 0.

(3.19)

Similarly, from (3.4), one has

g(tx) ≥ tαg(x), g(t) ≥ tαg(1), t ∈ (0, 1), x > 0. (3.20)
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Let t = 1/x, x > 1, one has

g(x) ≤ xαg(1), x ≥ 1. (3.21)

Let e(t) = t(1 − t), and we define

Qe =
{
x ∈ C[0, 1] | 1

M
t(1 − t) ≤ x(t) ≤ Mt(1 − t), t ∈ [0, 1]

}
, (3.22)

whereM > 1 is chosen such that

M > max
{
C

(p−1)/(p−1−α)
u

(
g(1) + h(1)

)1/(p−1−α)
, ‖v‖−(p−1)/(p−1−α)(g(1) + h(1)

)−1/(p−1−α)}
. (3.23)

For any fixed x, y ∈ Qe,consider the following boundary value problem:

φ
(
w′(t)

)′ + λq(t)
[
g
(
x(t)

)
+ h

(
y(t)

)]
= 0, t ∈ (0, 1), λ > 0;

w(0) = w(1) = 0.
(3.24)

By (3.18)–(3.21), for x, y ∈ Qe, we can obtain

g
(
x(t)

) ≤ g
(
Mt(1 − t)

) ≤ g(M) ≤ Mαg(1), t ∈ (0, 1),

h
(
y(t)

) ≤ h

(
1
M

t(1 − t)
)

≤ t−α(1 − t)−αh
(

1
M

)

≤ Mαt−α(1 − t)−αh(1), t ∈ (0, 1).

(3.25)

So,

g
(
x(t)

)
+ h

(
y(t)

) ≤ Mα[g(1) + t−α(1 − t)−αh(1)
]

≤ Mαt−α(1 − t)−α(g(1) + h(1)), t ∈ (0, 1),
(3.26)

then λq(t)[g(x(t))+h(y(t))] ∈ L1(0, 1). It follows from [7] that, for each fixed x, y ∈ Qe, problem
(3.22) has a solution w ∈ C1[0, 1], and (3.24) is equivalent to

w(t) = λ1/(p−1)
∫ t

0
φ−1

(
τ +

∫1

s

q(r)
[
g
(
x(r)

)
+ h

(
y(r)

)]
dr

)
ds, 0 ≤ t ≤ 1, (3.27)

where τ = φ(w′(1)) is a solution of the equation

∫1

0
φ−1

(
τ +

∫1

s

q(r)
[
g
(
x(r)

)
+ h

(
y(r)

)]
dr

)
ds = 0. (3.28)

For any x, y ∈ Qe, we define

A(x, y)(t) = w(t) = λ1/(p−1)
∫ t

0
φ−1

(
τ +

∫1

s

q(r)
[
g
(
x(r)

)
+ h

(
y(r)

)]
dr

)
ds, (3.29)

then A(x, y)(t) is concave on (0, 1), for any (x, y) ∈ Qe ×Qe, q(t)[g(x(t) + h(y(t)))] ∈ L1(0, 1).
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First, we show for any (x, y) ∈ Qe, A(x, y) ∈ Qe.
Let x, y ∈ Qe, from (3.19) and (3.20), we have

g
(
x(t)

) ≥ g

(
1
M

t(1 − t)
)

≥ tα(1 − t)αg
(

1
M

)
≥ tα(1 − t)α

1
Mα

g(1),

h
(
y(t)

) ≥ h
(
Mt(1 − t)

) ≥ h(M) = h

(
1

1/M

)
≥ 1
Mα

h(1), t ∈ (0, 1).
(3.30)

Thus, we have

g
(
x(t)

)
+ h

(
y(t)

) ≥ 1
Mα

[
g(1)tα(1 − t)α + h(1)

]
. (3.31)

So, we can obtain

(∗) g(x(t)) + h
(
y(t)

) ≤ Mα[g(1) + t−α(1 − t)−αh(1)
]

≤ Mαt−α(1 − t)−α
(
g(1) + h(1)

)
, t ∈ (0, 1),

(∗∗) g(x(t)) + h
(
y(t)

) ≥ 1
Mα

[
g(1)tα(1 − t)α + h(1)

]

≥ M−αtα(1 − t)α
(
g(1) + h(1)

)
, t ∈ (0, 1).

(3.32)

So

−[φ(w′)]′ ≤ q(t)Mαt−α(1 − t)−α
(
g(1) + h(1)

)
, (3.33)

that is,

−[φ(w′)]′ ≤ −Mα(g(1) + h(1)
)[
φ
(
u′)]′. (3.34)

Similarly,

−[φ(w′)]′ ≥ q(t)M−αtα(1 − t)α
(
g(1) + h(1)

)
, (3.35)

that is,

−[φ(w′)]′ ≥ −M−α(g(1) + h(1)
)[
φ
(
v′)]′. (3.36)

By Lemma 3.3,

w(t) ≤ Mα/(p−1)(g(1) + h(1)
)1/(p−1)

u(t)

≤ Cu

(
g(1) + h(1)

)1/(p−1)
Mα/(p−1)t(1 − t) ≤ Mt(1 − t),

w(t) ≥ M−α/(p−1)(g(1) + h(1)
)1/(p−1)

v(t)

≥ ‖v‖M−α/(p−1)(g(1) + h(1)
)1/(p−1)

t(1 − t) ≥ 1
M

t(1 − t).

(3.37)

So, the operator A is well defined.
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Next, for any l ∈ (0, 1), one has

q(t)
[
g
(
lx(t)

)
+ h

(
l−1y(t)

)] ≥ lαq(t)
[
g
(
x(t)

)
+ h

(
y(t)

)]
. (3.38)

Then by Lemma 3.3 we have

A
(
lx, l−1y

)
(t) ≥ lα/(p−1)A(x, y)(t)

(
0 < β =

α

p − 1
< 1

)
. (3.39)

So the conditions of Theorems 2.2 and 2.3 hold. Therefore, there exists a unique x∗
λ
∈ Qe

such that Aλ(x∗, x∗) = x∗
λ
. It is easy to check that x∗

λ
is a unique positive solution of (3.1)

for given λ > 0. Moreover, Theorem 2.3 means that if 0 < λ1 < λ2, then x∗
λ1
(t) ≤ x∗

λ2
(t),

x∗
λ1
(t) /= x∗

λ2
(t) and if α/(p − 1) ∈ (0, 1/2), then

lim
λ→0+

∥
∥x∗

λ

∥
∥ = 0, lim

λ→+∞

∥
∥x∗

λ

∥
∥ = +∞. (3.40)

This completes the proof.

Example 3.4. Consider the following singular p-Laplace boundary value problem:

(
φ
(
x′))′ + λq(t)

(
μxa + x−b) = 0, t ∈ (0, 1);

x(0) = x(1) = 0,
(3.41)

where λ, a, b > 0, μ ≥ 0, q ∈ C(0, 1), q > 0, t ∈ (0, 1), and

∫1

0
q(t)t−α(1 − t)−αdt < +∞, 0 < α = max{a, b} < p − 1. (3.42)

Applying Theorem 3.1, we can find that (3.41) has a unique positive solution x∗
λ
(t). In

addition, 0 < λ1 < λ2 implies x∗
λ1

≤ x∗
λ2
, x∗

λ1 /= x∗
λ2
. If α/(p − 1) ∈ (0, 1/2), then

lim
λ→0+

∥∥x∗
λ

∥∥ = 0, lim
λ→+∞

∥∥x∗
λ

∥∥ = +∞. (3.43)

To see that, we put

β =
α

p − 1
, g(x) = μxa, h(x) = x−b. (3.44)

Thus 0 < β < 1 and

g(tx) = tag(x) ≥ tαg(x), h(t−1x) = tbh(x) ≥ tαh(x), (3.45)

for any t ∈ (0, 1) and x > 0, thus all conditions in Theorem 3.1 are satisfied.
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