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We consider the nonlinear eigenvalue problems u
′′
+ rf(u) = 0, 0 < t < 1, u(0) = 0, u(1) =

∑m−2
i=1 αiu(ηi), where m ≥ 3, ηi ∈ (0, 1), and αi > 0 for i = 1, . . . , m − 2, with

∑m−2
i=1 αi < 1; r ∈ R;

f ∈ C1(R,R). There exist two constants s2 < 0 < s1 such that f(s1) = f(s2) = f(0) = 0 and
f0 := limu→0(f(u)/u) ∈ (0,∞), f∞ := lim|u|→∞(f(u)/u) ∈ (0,∞). Using the global bifurcation tech-
niques, we study the global behavior of the components of nodal solutions of the above problems.

Copyright q 2008 Y. An and R. Ma. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

In [1], Ma and Thompson were concerned with determining values of real parameter r, for
which there exist nodal solutions of the boundary value problems:

u′′ + ra(t)f(u) = 0, 0 < t < 1,

u(0) = u(1) = 0,
(1.1)

where a and f satisfy the following assumptions:

(H1) f ∈ C(R,R) with sf(s) > 0 for s /= 0;

(H2) there exist f0, f∞ ∈ (0,∞) such that

f0 = lim
|s|→0

f(s)
s

, f∞ = lim
|s|→∞

f(s)
s

; (1.2)

(H3) a : [0, 1] → [0,∞) is continuous and a(t)/≡ 0 on any subinterval of [0, 1].

Using Rabinowitz global bifurcation theorem, Ma and Thompson established the following
theorem.
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Theorem 1.1. Let (H1), (H2), and (H3) hold. Assume that for some k ∈ N, either

λk
f∞

< r <
λk
f0

(1.3)

or

λk
f0

< r <
λk
f∞

. (1.4)

Then (1.1) have two solutions u+
k
and u−

k
such that u+

k
has exactly k − 1 zeros in (0, 1) and is positive

near 0, and u−
k
has exactly k − 1 zeros in (0, 1) and is negative near 0. In (1.3) and (1.4), λk is the kth

eigenvalue of

ϕ′′ + λa(t)ϕ = 0, 0 < t < 1, ϕ(0) = ϕ(1) = 0. (1.5)

Recently, Ma [2] extended this result and studied the global behavior of the components
of nodal solutions of (1.1) under the following conditions:

(H1′) f ∈ C(R,R) and there exist two constants s2 < 0 < s1, such that f(s1) = f(s2) = f(0) =
0 and sf(s) > 0 for s ∈ R \ {0, s1, s2};

(H4) f satisfies Lipschitz condition in [s2, s1].

Using Rabinowitz global bifurcation theorem, Ma established the following theorem.

Theorem 1.2. Let (H1′), (H2), (H3), and (H4) hold. Assume that for some k ∈ N,

λk
f∞

<
λk
f0

. (1.6)

Then
(i) if r ∈ (λk/f∞, λk/f0], then (1.1) have at least two solutions u±

k,∞, such that u
+
k,∞ has exactly

k − 1 zeros in (0, 1) and is positive near 0, and u−
k,∞ has exactly k − 1 zeros in (0, 1) and is negative

near 0,
(ii) if r ∈ (λk/f0,∞), then (1.1) have at least four solutions u±

k,∞ and u±
k,0, such that u

+
k,∞ (resp.,

u+
k,0) has exactly k − 1 zeros in (0, 1) and is positive near 0; u−

k,∞ (resp., u−
k,0) has exactly k − 1 zeros in

(0, 1) and is negative near 0.

Remark 1.3. Let (H1′), (H2), (H3), and (H4) hold. Assume that for some k ∈ N, λk/f0 < λk/f∞.
Similar results to Theorem 1.2 have also been obtained.

Making a comparison between the above two theorems, we see that as f has two zeros
s1, s2 : s2 < 0 < s1, the bifurcation structure of the nodal solutions of (1.1) becomes more
complicated: two new nodal solutions are obtained when r > max{λk/f0, λk/f∞}.

In [3], Ma and O’Regan established some existence results (which are similar to
Theorem 1.1) of the nodal solutions of them-point boundary value problems

u′′ + f(u) = 0, 0 < t < 1,

u(0) = 0, u(1) =
m−2∑

i=1

αiu
(
ηi
) (1.7)
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under the following condition:

(H1′′) f ∈ C1(R,R) with sf(s) > 0 for s /= 0.

Remark 1.4. For other results about the existence of nodal solution of multipoint boundary
value problems, we can see [4–7].

Of course an interesting question is, as for m-point boundary value problems, when
f possesses zeros in R \ {0}, whether we can obtain some new results which are similar to
Theorem 1.2.

We consider the eigenvalue problems

u′′ + rf(u) = 0, 0 < t < 1, (1.8)

u(0) = 0, u(1) =
m−2∑

i=1

αiu
(
ηi
)
, (1.9)

where m ≥ 3, ηi ∈ (0, 1), and αi > 0 for i = 1, . . . , m − 2. Also using the global bifurcation
techniques, we study the global behavior of the components of nodal solutions of (1.8), (1.9)
and give a positive answer to the above question. However, when m-point boundary value
condition (1.9) is concerned, the discussion is more difficult since the problem is nonsymmetric
and the corresponding operator is disconjugate.

In the following paper, we assume that

(H0) αi > 0 for i = 1, . . . , m − 2, with 0 <
∑m−2

i=1 αi < 1;

(H̃1) f ∈ C1(R,R) and there exist two constants s2 < 0 < s1, such that f(s1) = f(s2) =
f(0) = 0;

(H2) there exist f0, f∞ ∈ (0,∞) such that

f0 = lim
|s|→0

f(s)
s

, f∞ = lim
|s|→∞

f(s)
s

. (1.10)

The rest of the paper is organized as follows. Section 2 contains preliminary definitions
and some eigenvalue results of corresponding linear problems of (1.8), (1.9). In Section 3,
we give two Rabinowize-type global bifurcation theorems. Finally, in Section 4, we consider
two bifurcation problems related to (1.8), (1.9), and use the global bifurcation theorems from
Section 3 to analyze the global behavior of the components of nodal solutions of (1.8), (1.9).

2. Preliminary definitions and eigenvalues of corresponding linear problems

Let Y = C[0, 1] with the norm

‖u‖∞ = max
t∈[0,1]

∣
∣u(t)

∣
∣. (2.1)

Let

X =

{

u ∈ C1[0, 1] | u(0) = 0, u(1) =
m−2∑

i=1

αiu
(
ηi
)
}

,

E =

{

u ∈ C2[0, 1] | u(0) = 0, u(1) =
m−2∑

i=1

αiu
(
ηi
)
} (2.2)
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with the norm

‖u‖X = max
{‖u‖∞, ‖u′‖∞}, ‖u‖E = max{‖u‖∞, ‖u′‖∞, ‖u′′‖∞

}
, (2.3)

respectively. Define L : E → Y by setting

Lu := −u′′, u ∈ E. (2.4)

Then L has a bounded inverse L−1 : Y → E and the restriction of L−1 to X, that is, L−1 : X → X
is a compact and continuous operator, see [3, 4, 8].

Let E = R × E under the product topology. As in [9], we add the points {(λ,∞) | λ ∈ R}
to our space E. For any C1 function u, if u(x0) = 0, then x0 is a simple zero of u if u′(x0)/= 0.
For any integer k ≥ 1 and any ν ∈ {±}, define sets Sν

k
, Tν

k
⊂ C2[0, 1] consisting of functions

u ∈ C2[0, 1] satisfying the following conditions:
Sν
k
:

(i) u(0) = 0, νu′(0) > 0;

(ii) u has only simple zeros in [0, 1] and has exactly k − 1 zeros in (0, 1);

Tν
k
:

(i) u(0) = 0, νu′(0) > 0, and u′(1)/= 0;

(ii) u′ has only simple zeros in (0, 1) and has exactly k zeros in (0, 1);

(iii) u has a zero strictly between each two consecutive zeros of u′.

Remark 2.1. Obviously, if u ∈ Tν
k
, then u ∈ Sν

k
or u ∈ Sν

k+1. The sets T
ν
k
are open in E and disjoint.

Remark 2.2. The nodal properties of solutions of nonlinear Sturm-Liouville problems with sep-
arated boundary conditions are usually described in terms of sets similar to Sν

k
, see [1, 2, 5, 9–

11]. However, Rynne [4] stated that Tν
k
are more appropriate than Sν

k
when the multipoint

boundary condition (1.9) is considered.

Next, we consider the eigenvalues of the linear problem

Lu = λu, u ∈ E. (2.5)

We call the set of eigenvalues of (2.5) the spectrum of L, and denote it by σ(L). The following
lemmas can be found in [3, 4, 12].

Lemma 2.3. Let (H0) hold. The spectrum σ(L) consists of a strictly increasing positive sequence of
eigenvalues λk, k = 1, 2, . . . , with corresponding eigenfunctions ϕk(x) = sin(

√
λkx). In addition,

(i) limk→∞λk = ∞;

(ii) ϕk ∈ T+
k
, for each k ≥ 1, and ϕ1 is strictly positive on (0, 1).

We can regard the inverse operator L−1 : Y → E as an operator L−1 : Y → Y . In this
setting, each λk, k = 1, 2, . . . , is a characteristic value of L−1, with algebraic multiplicity defined
to be dim

⋃∞
j=1N((I − λkL

−1)j), whereN denotes null-space and I is the identity on Y .

Lemma 2.4. Let (H0) hold. For each k ≥ 1, the algebraic multiplicity of the characteristic value λk,
k = 1, 2, . . . , of L−1 : Y → Y is equal to 1.
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3. Global bifurcation

Let g ∈ C1(R,R) and satisfy

g(0) = g ′(0) = 0. (3.1)

Consider the following bifurcation problem:

Lu = μu + g(u), (μ, u) ∈ R ×X. (3.2)

Obviously, u ≡ 0 is a trivial solution of (3.2) for any μ ∈ R. About nontrivial solutions of (3.2),
we have the following.

Lemma 3.1 (see [4, Proposition 4.1]). Let (H0) hold. If (μ, u) ∈ E is a nontrivial solution of (3.2),
then u ∈ Tν

k
for some k, ν.

Remark 3.2. From Lemmas 2.3 and 3.1, we can see that Tν
k
are more effectual than the set Sν

k

when the multipoint boundary condition (1.9) is considered. In fact, eigenfunctions ϕk(x) =
sin(

√
λkx), k = 1, 2, . . . , of (2.5) do not necessarily belong to S+

k
. In [3, 4], there were some

special examples to show this problem.

Also, in [4], Rynne obtained the following Rabinowitz-type global bifurcation result for
(3.2).

Lemma 3.3 (see [4, Theorem 4.2]). Let (H0) hold. For each k ≥ 1 and ν, there exists a continuum
Cν
k
⊂ E of solution of (3.2) with the following properties:

(1o) (λk, 0) ∈ Cν
k
;

(2o) Cν
k
\ {(λk, 0)} ⊂ R × Tν

k
;

(3o) Cν
k
is unbounded in E.

Now, we consider another bifurcation problem

Lu = μu + h(u), (μ, u) ∈ R ×X, (3.3)

where we suppose that h ∈ C1(R,R) and satisfy

lim
|x|→∞

h(x)
x

= 0. (3.4)

Take Λ ⊂ R as an interval such that Λ ∩ {λj | j ∈ N} = {λk} and M as a neighborhood of
(λk,∞)whose projection on R lies in Λ and whose projection on E is bounded away from 0.

Lemma 3.4. Let (H0) and (3.4) hold. For each k ≥ 1 and ν, there exists a continuumDν
k
⊂ E of solution

of (3.3) which meets (λk,∞) and either

(1o) Dν
k
\M is bounded in E in which case Dν

k
\M meets {(λ, 0) | λ ∈ R} or

(2o) Dν
k
\M is unbounded in E.
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Moreover, if (2o) occurs and Dν
k
\M has a bounded projection on R, then Dν

k
\M meets (μ̂,∞),

where μ̂ ∈ {λj | j ∈ N} with μ̂ /=λk.
In every case, there exists a neighborhood O ⊂ M of (λk,∞) such that (μ, u) ∈ Dν

k
∩ O and

(μ, u)/= (λk,∞) implies (μ, u) ∈ R × Tν
k
.

Remark 3.5. A continuum Dν
k
⊂ E of solution of (3.3) meets (λk,∞) which means that there

exists a sequence {(λn, un)} ⊂ Dν
k
such that ‖un‖E → ∞ and λn → λk.

Proof. Obviously, (3.3) is equivalent to the problem

u = μL−1u + L−1h(u), (μ, u) ∈ R ×X. (3.5)

Note that L−1 : X → X is a compact and continuous linear operator. In addition, the mapping
u → L−1h(u) is continuous and compact, and satisfies L−1h(u) = o(‖u‖X) at u = ∞; moreover,
‖u‖2XL−1h(u/‖u‖2X) is compact (similar proofs can be found in [9]). Hence, the problem (3.3) is
of the form considered in [9], and satisfies the general hypotheses imposed in that paper. Then
by [9, Theorem 1.6 and Corollary 1.8] together with Lemmas 2.3 and 2.4 in Section 2, there
exists a continuum Dν

k
⊂ R ×X of solutions of (3.3) which meets (λk,∞) and either

(1o) Dν
k
\M is bounded in R ×X in which case Dν

k
\Mmeets {(λ, 0) | λ ∈ R} or

(2o) Dν
k
\M is unbounded in R ×X.

Moreover, if (2o) occurs and Dν
k
\ M has a bounded projection on R, then Dν

k
\ M meets

(μ̂,∞)where μ̂ ∈ {λj | j ∈ N} with μ̂ /=λk.
In every case, there exists a neighborhood O ⊂ M of (λk,∞) such that (μ, u) ∈ Dν

k
∩ O

and (μ, u)/= (λk,∞) implies (μ, u) ∈ R × Tν
k
.

On the other hand, by (3.5) and the continuity of the operator L−1 : Y → E, the setDν
k
lies

in E and the injection Dν
k
→ E is continuous. Thus, Dν

k
is also a continuum in E and the above

properties hold in E.

Now, we assume that

h(0) = 0. (3.6)

Lemma 3.6. Let (H0) and (3.6) hold. If (μ, u) ∈ E is a nontrivial solution of (3.3), then u ∈ Tν
k
for

some k, ν.

Proof. The proof of Lemma 3.6 is similar to the proof of Lemma 3.1 ([4, Proposition 4.1]); we
omit it.

Remark 3.7. If (3.6) holds, Lemma 3.6 guarantees that Dν
k
in Lemma 3.4 is a component of so-

lutions of (3.3) in Tν
k
which meets (λk,∞). Otherwise, if there exist (η1, y1) ∈ Dν

k
∩ Tν

k
and

(η2, y2) ∈ Dν
k
∩ Tν

h
for some k /=h ∈ N, then by the connectivity of Dν

k
, there exists (η∗, y∗) ∈ Dν

k

such that y′
∗ has a multiple zero point in (0, 1). However, this contradicts Lemma 3.6. Hence,

if (3.6) holds and Dν
k
in Lemma 3.4 is unbounded in R × E, then Dν

k
has unbounded projection

on R.
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4. Statement of main results

We return to the problem (1.8), (1.9). Let (H̃1), (H2) hold and let ζ, ξ ∈ C1(R,R) be such that

f(u) = f0u + ζ(u), f(u) = f∞u + ξ(u). (4.1)

Clearly

ζ(0) = 0, ξ(0) = 0,

lim
|u|→0

ζ(u)
u

= ζ′(0) = 0, lim
|u|→∞

ξ(u)
u

= 0.
(4.2)

Let us consider

Lu − rf0u = rζ(u) (4.3)

as a bifurcation problem from the trivial solution u ≡ 0, and

Lu − rf∞u = rξ(u) (4.4)

as a bifurcation problem from infinity. We note that (4.3) and (4.4) are the same, and each of
them is equivalent to (1.8), (1.9).

The results of Lemma 3.3 for (4.3) can be stated as follows: for each integer k ≥ 1, ν ∈
{+, −}, there exists a continuum Cν

k,0 of solutions of (4.3) joining (λk/f0, 0) to infinity, and Cν
k,0 \

{(λk/f0, 0)} ⊂ R × Tν
k
.

The results of Lemma 3.4 for (4.4) can be stated as follows: for each integer k ≥ 1, ν ∈
{+, −}, there exists a continuum Dν

k,∞ of solutions of (4.4) meeting (λk/f∞,∞).

Theorem 4.1. Let (H0), (H̃1), and (H2) hold. Then

(i) for (r, u) ∈ C+
k,0 ∪ C−

k,0,

s2 < u(t) < s1, t ∈ [0, 1]; (4.5)

(ii) for (r, u) ∈ D+
k,∞ ∪ D−

k,∞,

max
t∈[0,1]

u(t) > s1, or min
t∈[0,1]

u(t) < s2. (4.6)

Proof of Theorem 4.1. Suppose on the contrary that there exists (r, u) ∈ C+
k,0 ∪ C−

k,0 ∪ D+
k,∞ ∪ D−

k,∞
such that either

max
{
u(t) | t ∈ [0, 1]

}
= s1 (4.7)

or

min
{
u(t) | t ∈ [0, 1]

}
= s2. (4.8)

Since u ∈ Tν
k
, by Remark 2.1, u ∈ Sν

k
or u ∈ Sν

k+1. We assume u ∈ Sν
k
. When u ∈ Sν

k+1, we
can prove all the following results with small modifications. Let

0 = τ0 < τ1 < · · · < τk−1 < 1 (4.9)

denote the zeros of u. We divide the proof into two cases.
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Case 1 (max{u(t) | t ∈ [0, 1]} = s1). In this case, there exists j ∈ {0, . . . , k − 2} such that

max
{
u(t) | t ∈ [

τj , τj+1
]}

= s1 or max{u(t) | t ∈ [τk−1, 1
]}

= s1,

0 ≤ u(t) ≤ s1, t ∈ [
τj , τj+1

]
, or t ∈ [

τk−1, 1
]
.

(4.10)

Since u(1) =
∑m−2

i=1 αiu(ηi) and (H0), we claim u(1) < s1.
Let t0 ∈ (τj , τj+1) or t0 ∈ (τk−1, 1) such that u(t0) = s1, then u′(t0) = 0. Note that

f
(
u(t0)

)
= f(s1) = 0. (4.11)

By the uniqueness of solutions of (1.8) subject to initial conditions, we see that u(t) ≡ s1 on
[0, 1]. This contradicts (1.9) and (H0).

Therefore,

max
{
u(t) | t ∈ [0, 1]

}
/= s1. (4.12)

Case 2 (min{u(t) | t ∈ [0, 1]} = s2). In this case, the proof is similar to Case 1, we omit it.

Consequently, we obtain the results (i) and (ii).

Theorem 4.2. Let (H0), (H̃1), and (H2) hold. Assume that for some k ∈ N,

λk
f∞

<
λk
f0

(

resp.,
λk
f0

<
λk
f∞

)

. (4.13)

Then

(i) if r ∈ (λk/f∞, λk/f0] (resp., r ∈ (λk/f0, λk/f∞]), then (1.8), (1.9) have at least two
solutions u±

k,∞ (resp., u±
k,0), such that u+

k,∞ ∈ T+
k
and u−

k,∞ ∈ T−
k
(resp., u+

k,0 ∈ T+
k
and u−

k,0 ∈
T−
k
),

(ii) if r ∈ (λk/f0,∞) (resp., r ∈ (λk/f∞,∞)), then (1.8), (1.9) have at least four solutions u±
k,∞

and u±
k,0, such that u

+
k,∞, u

+
k,0 ∈ T+

k
, and u−

k,∞, u
−
k,0 ∈ T−

k
.

Remark 4.3. Making a comparison between results in [3] and the above theorem, we see that
as f has two zeros s1, s2 : s2 < 0 < s1, the bifurcation structure of the nodal solutions of
(1.8), (1.9) becomes more complicated: the component of the solutions of (1.8), (1.9) from the
trivial solution at (λk/f0, 0) and the component of the solutions of (1.8), (1.9) from infinity at
(λk/f∞,∞) are disjoint; two new nodal solutions are born when r > max{λk/f0, λk/f∞}.

Proof of Theorem 4.2. Since (1.8), (1.9) have a unique solution u ≡ 0, we get

(C+
k,0 ∪ C−

k,0 ∪ D+
k,∞ ∪ D−

k,∞
) ⊂ {

(μ, z) ∈ E | μ ≥ 0
}
. (4.14)

Take Λ ⊂ R as an interval such that Λ ∩ {λj/f∞ | j ∈ N} = {λk/f∞} and M as a neigh-
borhood of (λk/f∞,∞) whose projection on R lies in Λ and whose projection on E is bounded
away from 0. Then by Lemma 3.4, Remark 3.7, and Lemma 3.6 we have that each ν ∈ {+,−},
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Dν
k,∞ \M satisfies one of the following:

(1o) Dν
k,∞ \M is bounded in E in which case Dν

k,∞ \Mmeets {(λ, 0) | λ ∈ R};
(2o) Dν

k,∞ \M is unbounded in E in which case Proj
R
(D+

k,∞ \M) is unbounded.

Obviously, Theorem 4.1(ii) implies that (1o) does not occur. So D+
k,∞ \ M is unbounded

in E. Thus

Proj
R

(D+
k,∞

) ⊃
(
λk
f∞

,+∞
)

,

Proj
R

(D−
k,∞

) ⊃
(
λk
f∞

,+∞
)

.

(4.15)

By Theorem 4.1, for any (r, u) ∈ (C+
k,0 ∪ C−

k,0),

‖u‖∞ < max
{
s1,

∣
∣s2

∣
∣
}
:= s∗. (4.16)

Equations (4.16), (1.8), and (1.9) imply that

‖u‖E < max
{
rmax

|s|≤s∗
∣
∣f(s)

∣
∣, s∗

}
, (4.17)

which means that the sets {(μ, z) ∈ C+
k,0 | μ ∈ [0, d]} and {(μ, z) ∈ C−

k,0 | μ ∈ [0, d]} are bound-
ed for any fixed d ∈ (0,∞). This, together with the fact that C+

k,0 (resp., C−
k,0) joins (λk/f0, 0) to

infinity, yields that

Proj
R

(C+
k,0

) ⊃
(
λk
f0

,+∞
)

,

Proj
R

(C−
k,0

) ⊃
(
λk
f0

,+∞
)

.

(4.18)

Combining (4.15) with (4.18), we conclude the desired results.
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