Research Article

Existence of Four Solutions of Some Nonlinear Hamiltonian System

Tacksun Jung ${ }^{\mathbf{1}}$ and Q-Heung Choi ${ }^{\mathbf{2}}$
${ }^{1}$ Department of Mathematics, Kunsan National University, Kunsan 573-701, South Korea
${ }^{2}$ Department of Mathematics Education, Inha University, Incheon 402-751, South Korea
Correspondence should be addressed to Q-Heung Choi, qheung@inha.ac.kr

Received 25 August 2007; Accepted 3 December 2007
Recommended by Kanishka Perera
We show the existence of four 2π-periodic solutions of the nonlinear Hamiltonian system with some conditions. We prove this problem by investigating the geometry of the sublevels of the functional and two pairs of sphere-torus variational linking inequalities of the functional and applying the critical point theory induced from the limit relative category.

Copyright © 2008 T. Jung and Q.-H. Choi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction and statements of main results

Let $H(t, z)$ be a C^{2} function defined on $R^{1} \times R^{2 n}$ which is 2π-periodic with respect to the first variable t.In this paper, we investigate the number of 2π-periodic nontrivial solutions of the following nonlinear Hamiltonian system

$$
\begin{equation*}
\dot{z}=J\left(H_{z}(t, z(t))\right), \tag{1.1}
\end{equation*}
$$

where $z: R \rightarrow R^{2 n}, \dot{z}=d z / d t$,

$$
J=\left(\begin{array}{cc}
0 & -I_{n} \tag{1.2}\\
I_{n} & 0
\end{array}\right)
$$

I_{n} is the identity matrix on $R^{n}, H: R^{1} \times R^{2 n} \rightarrow R$, and H_{z} is the gradient of H. Let $z=(p, q)$, $p=\left(z_{1}, \ldots, z_{n}\right), q=\left(z_{n+1}, \ldots, z_{2 n}\right) \in R^{n}$. Then (1.1) can be rewritten as

$$
\begin{align*}
& \dot{p}=-H_{q}(t, p, q) \tag{1.3}\\
& \dot{q}=H_{p}(t, p, q)
\end{align*}
$$

We assume that $H \in C^{2}\left(R^{1} \times R^{2 n}, R^{1}\right)$ satisfies the following conditions.
(H1) There exist constants $\alpha<\beta$ such that

$$
\begin{equation*}
\alpha I \leq d_{z}^{2} H(t, z) \leq \beta I \quad \forall(t, z) \in R^{1} \times R^{2 n} . \tag{1.4}
\end{equation*}
$$

(H2) Let $j_{1}, j_{2}=j_{1}+1$ and $j_{3}=j_{2}+1$ be integers and α, β be any numbers (without loss of generality, we may assume $\alpha, \beta \notin Z$) such that $j_{1}-1<\alpha<j_{1}<j_{2}<\beta<j_{2}+1=j_{3}$. Suppose that there exist $\gamma>0$ and $\tau>0$ such that $j_{2}<\gamma<\beta$ and

$$
\begin{equation*}
H(t, z) \geq \frac{1}{2} \gamma\|z\|_{L^{2}}^{2}-\tau \quad \forall(t, z) \in R^{1} \times R^{2 n} . \tag{1.5}
\end{equation*}
$$

(H3) $H(t, 0)=0, H_{z}(t, 0)=0$, and $j \in\left[j_{1}, j_{2}\right) \cap Z$ such that

$$
\begin{equation*}
j I<d_{z}^{2} H(t, 0)<(j+1) I \quad \forall t \in R^{1} . \tag{1.6}
\end{equation*}
$$

(H4) H is 2π-periodic with respect to t.
We are looking for the weak solutions of (1.1). Let $E=W^{1 / 2,2}\left((0,2 \pi), R^{2 n}\right)$. The 2π periodic weak solution $z=(p, q) \in E$ of (1.3) satisfies

$$
\begin{equation*}
\int_{0}^{2 \pi}\left[\left(\dot{p}+H_{q}(t, z(t))\right) \cdot \psi-\left(\dot{q}-H_{p}(t, z(t))\right) \cdot \phi\right] d t=0 \quad \forall \zeta=(\phi, \psi) \in E \tag{1.7}
\end{equation*}
$$

and coincides with the critical points of the induced functional

$$
\begin{equation*}
I(z)=\int_{0}^{2 \pi} p \dot{q} d t-\int_{0}^{2 \pi} H(t, z(t)) d t=A(z)-\int_{0}^{2 \pi} H(t, z(t)) d t \tag{1.8}
\end{equation*}
$$

where $A(z)=(1 / 2) \int_{0}^{2 \pi} \dot{z} \cdot J z d t$.
Our main results are the following.
Theorem 1.1. Assume that H satisfies conditions (H1)-(H4). Then there exists a number $\delta>0$ such that for any α and β with $j_{1}-1<\alpha<j_{1}<j_{2}<\beta<j_{2}+\delta<j_{2}+1=j_{3}, \alpha>0$, system (1.1) has at least four nontrivial 2π-periodic solutions.

Theorem 1.2. Assume that H satisfies conditions (H1)-(H4). Then there exists a number $\delta>0$ such that for any α and β, and $j_{1}-1<\alpha<j_{1}<j_{2}<\beta<j_{2}+\delta<j_{2}+1=j_{3}, \beta<0$,system (1.1) has at least four nontrivial 2π-periodic solutions.

Chang proved in [1] that, under conditions (H1)-(H4), system (1.1) has at least two nontrivial 2π-periodic solutions. He proved this result by using the finite dimensional variational reduction method. He first investigate the critical points of the functional on the finite dimensional subspace and the (P.S.) condition of the reduced functional and find one critical point of the mountain pass type. He also found another critical point by the shape of graph of the reduced functional.

For the proofs of Theorems 1.1 and 1.2, we first separate the whole space E into the four mutually disjoint four subspaces $X_{0}, X_{1}, X_{2}, X_{3}$ which are introduced in Section 3 and then we $\underset{\sim}{i n v e s t i g a t e ~ t w o ~ p a i r s ~ o f ~ s p h e r e-t o r u s ~ v a r i a t i o n a l ~ l i n k i n g ~ i n e q u a l i t i e s ~ o f ~ t h e ~ r e d u c e d ~ f u n c t i o n a l ~}$ \tilde{I} and \tilde{I} of I on the submanifold with boundary \tilde{C} and \check{C}, respectively, and translate these two pairs of sphere-torus variational links of \tilde{I} and \check{I} into the two pairs of torus-sphere variational links of $-\widetilde{I}$ and $-\check{I}$, where \widetilde{I} and \check{I} are the restricted functionals of I to the manifold with boundary \tilde{C} and \check{C}, respectively. Since \tilde{I} and \check{I} are strongly indefinite functinals, we use the notion of the $(P . S .)_{c}^{*}$ condition and the limit relative category instead of the notion of (P.S. $)_{c}$ condition and the relative category, which are the useful tools for the proofs of the main theorems. We also investigate the limit relative category of torus in (torus, boundary of torus) on \tilde{C} and \check{C}, respectively. By the critical point theory induced from the limit relative category theory we obtain two nontrivial 2π-periodic solutions in each subspace X_{1} and X_{2}, so we obtain at least four nontrivial 2π-periodic solutions of (1.1).

In Section 2, we introduce some notations and some notions of (P.S. ${ }_{c}^{*}$ condition and the limit relative category and recall the critical point theory on the manifold with boundary. We also prove some propositions. In Section 3, we prove Theorem 1.1 and in Section 4, we prove Theorem 1.2.

2. Recall of the critical point theory induced from the limit relative category

Let $E=W^{1 / 2,2}\left((0,2 \pi), R^{2 n}\right)$. The scalar product in L^{2} naturally extends as the duality pairing between E and $E^{\prime}=W^{-1 / 2,2}\left([0,2 \pi], R^{2 n}\right)$. It is known that if $z \in C^{\infty}\left(R, R^{2 n}\right)$ is 2π-periodic, then it has a Fourier expansion $z(t)=\sum_{k=-\infty}^{k=+\infty} a_{k} e^{i k n}$ with $a_{k} \in C^{2 n}$ and $a_{-k}=\overline{a_{k}}$: E is the closure of such functions with respect to the norm

$$
\begin{equation*}
\|z\|=\left(\sum_{k \in Z}(1+|k|)\left|a_{k}\right|^{2}\right)^{1 / 2} \tag{2.1}
\end{equation*}
$$

Let us set the functional

$$
\begin{equation*}
A(z)=\frac{1}{2} \int_{0}^{2 \pi} \dot{z} \cdot J z d t=\int_{0}^{2 \pi} p \dot{q} d t, \quad z=(p, q) \in E, p, q \in R^{n} \tag{2.2}
\end{equation*}
$$

so that

$$
\begin{equation*}
I(z)=A(z)-\int_{0}^{2 \pi} H(t, z(t)) d t \tag{2.3}
\end{equation*}
$$

Let $e_{1}, \ldots, e_{2 n}$ denote the usual bases in $R^{2 n}$ and set

$$
\begin{align*}
& E^{0}=\operatorname{span}\left\{e_{1}, \ldots, e_{2 n}\right\}, \\
& E^{+}=\operatorname{span}\left\{(\sin j t) e_{k}-(\cos j t) e_{k+n},(\cos j t) e_{k}+(\sin j t) e_{k+n} \mid j \in N, 1 \leq k \leq n\right\}, \tag{2.4}\\
& E^{-}=\operatorname{span}\left\{(\sin j t) e_{k}+(\cos j t) e_{k+n},(\cos j t) e_{k}-(\sin j t) e_{k+n} \mid j \in N, 1 \leq k \leq n\right\}
\end{align*}
$$

Then $E=E^{0} \oplus E^{+} \oplus E^{-}$and E^{0}, E^{+}, E^{-}are the subspaces of E on which A is null, positive definite and negative definite, and these spaces are orthogonal with respect to the bilinear form

$$
\begin{equation*}
B[z, \zeta] \equiv \int_{0}^{2 \pi} p \cdot \dot{\psi}+\phi \cdot \dot{q} d t \tag{2.5}
\end{equation*}
$$

associated with A. Here, $z=(p, q)$ and $\zeta=(\phi, \psi)$. If $z \in E^{+}$and $\zeta \in E^{-}$, then the bilinear form is zero and $A(z+\zeta)=A(z)+A(\zeta)$. We also note that E^{0}, E^{+}, and E^{-}are mutually orthogonal in $L^{2}\left((0,2 \pi), R^{2 n}\right)$. Let P^{+}be the projection from E onto E^{+}and P^{-}the one from E onto E^{-}. Then the norm in E is given by

$$
\begin{equation*}
\|z\|^{2}=\left|z^{0}\right|^{2}+A\left(z^{+}\right)-A\left(z^{-}\right)=\left|z^{0}\right|^{2}+\left\|P^{+} z\right\|^{2}+\left\|P^{-} z\right\|^{2} \tag{2.6}
\end{equation*}
$$

which is equivalent to the usual one. The space E with this norm is a Hilbert space.
We need the following facts which are proved in [2].
Proposition 2.1. For each $s \in[1, \infty), E$ is compactly embedded in $L^{s}\left((0,2 \pi), R^{2 n}\right)$. In particular, there is an $\alpha_{s}>0$ such that

$$
\begin{equation*}
\|z\|_{L^{s}} \leq \alpha_{s}\|z\| \tag{2.7}
\end{equation*}
$$

for all $z \in E$.
Proposition 2.2. Assume that $H(t, z) \in C^{2}\left(R^{1} \times R^{2 n}, R\right)$. Then $I(z)$ is C^{1}, that is, $I(z)$ is continuous and Fréchet differentiable in E with Fréchet derivative

$$
\begin{equation*}
D I(z) \omega=\int_{0}^{2 \pi}\left(\dot{z}-J\left(H_{z}(t, z)\right)\right) \cdot J \omega=\int_{0}^{2 \pi}\left[\left(\dot{p}+H_{q}(t, z)\right) \cdot \psi-\left(\dot{q}-H_{p}(t, z)\right) \cdot \phi\right] d t \tag{2.8}
\end{equation*}
$$

where $z=(p, q)$ and $\omega=(\phi, \psi) \in E$. Moreover, the functional $z \mapsto \int_{0}^{2 \pi} H(t, z) d t$ is C^{1}.
Proof. For $z, w \in E$,

$$
\begin{align*}
& |I(z+w)-I(z)-D I(z) w| \\
& =\left|\frac{1}{2} \int_{0}^{2 \pi}(\dot{z}+\dot{w}) \cdot J(z+w)-\int_{0}^{2 \pi} H(t, z+w)-\frac{1}{2} \int_{0}^{2 \pi} \dot{z} \cdot J z+\int_{0}^{2 \pi} H(t, z)-\int_{0}^{2 \pi}\left(\dot{z}-J\left(H_{z}(t, z)\right)\right) \cdot J w\right| \\
& =\left|\frac{1}{2} \int_{0}^{2 \pi}[\dot{z} \cdot J w+\dot{w} \cdot J z+\dot{w} \cdot J w]-\int_{0}^{2 \pi}[H(t, z+w)-H(t, z)]-\int_{0}^{2 \pi}\left[\dot{z}-J\left(H_{z}(t, z)\right) \cdot J w\right]\right| . \tag{2.9}
\end{align*}
$$

We have

$$
\begin{equation*}
\left|\int_{0}^{2 \pi}[H(t, z+w)-H(t, z)]\right| \leq\left|\int_{0}^{2 \pi}\left[H_{z}(t, z) \cdot w+o(|w|)\right] d t\right|=O(|w|) \tag{2.10}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
|I(z+w)-I(z)-D I(z) w|=O\left(|w|^{2}\right) \tag{2.11}
\end{equation*}
$$

Next, we prove that $I(z)$ is continuous. For $z, w \in E$,

$$
\begin{align*}
|I(z+w)-I(z)| & =\left|\frac{1}{2} \int_{0}^{2 \pi}(\dot{z}+\dot{w}) \cdot J(z+w)-\int_{0}^{2 \pi} H(t, z+w)-\frac{1}{2} \int_{0}^{2 \pi} \dot{z} \cdot J z+\int_{0}^{2 \pi} H(t, z)\right| \\
& =\left|\frac{1}{2} \int_{0}^{2 \pi}[\dot{z} \cdot J w+\dot{w} \cdot J z+\dot{w} \cdot J w]-\int_{0}^{2 \pi}[H(t, z+w)-H(t, z)]\right| \\
& =O(|w|) . \tag{2.12}
\end{align*}
$$

Similarly, it is easily checked that I is C^{1}.
Now, we consider the critical point theory on the manifold with boundary induced from the limit relative category. Let E be a Hilbert space and X be the closure of an open subset of E such that X can be endowed with the structure of C^{2} manifold with boundary. Let $f: W \rightarrow R$ be a $C^{1,1}$ functional, where W is an open set containing X. The (P.S. $)_{c}^{*}$ condition and the limit relative category (see [3]) are useful tools for the proof of the main theorem.

Let $\left(E_{n}\right)_{n}$ be a sequence of a closed finite dimensional subspace of E with the following assumptions: $E_{n}=E_{n}^{-} \oplus E_{n}^{+}$where $E_{n}^{+} \subset E^{+}, E_{n}^{-} \subset E^{-}$for all $n\left(E_{n}^{+}\right.$and E_{n}^{-}are subspaces of E), $\operatorname{dim} E_{n}<+\infty, E_{n} \subset E_{n+1}, \bigcup_{n \in N} E_{n}$ are dense in E. Let $X_{n}=X \cap E_{n}$, for any n, be the closure of an open subset of E_{n} and has the structure of a C^{2} manifold with boundary in E_{n}. We assume that for any n there exists a retraction $r_{n}: X \rightarrow X_{n}$. For a given $B \subset E$, we will write $B_{n}=B \cap E_{n}$. Let Y be a closed subspace of X.

Definition 2.3. Let B be a closed subset of X with $Y \subset B$. Let $\operatorname{cat}_{(X, Y)}(B)$ be the relative category of B in (X, Y). We define the limit relative category of B in (X, Y), with respect to $\left(X_{n}\right)_{n}$, by

$$
\begin{equation*}
\operatorname{cat}_{(X, Y)}^{*}(B)=\lim \sup _{n \rightarrow \infty} \operatorname{cat}_{\left(X_{n}, Y_{n}\right)}\left(B_{n}\right) \tag{2.13}
\end{equation*}
$$

We set

$$
\begin{gather*}
\mathcal{B}_{i}=\left\{B \subset X \mid \operatorname{cat}_{(X, Y)}^{*}(B) \geq i\right\}, \\
c_{i}=\inf _{B \in \mathcal{B}_{i}} \sup _{x \in B} f(x) . \tag{2.14}
\end{gather*}
$$

We have the following multiplicity theorem (for the proof, see [4]).
Theorem 2.4. Let $i \in N$ and assume that
(1) $c_{i}<+\infty$,
(2) $\sup _{x \in Y} f(x)<c_{i}$,
(3) the (P.S. $)_{c_{i}}^{*}$ condition with respect to $\left(X_{n}\right)_{n}$ holds.

Then there exists a lower critical point x such that $f(x)=c_{i}$. If

$$
\begin{equation*}
c_{i}=c_{i+1}=\cdots=c_{i+k-1}=c \tag{2.15}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{cat}_{X}\left(\left\{x \in X \mid f(x)=c, \operatorname{grad}_{X}^{-} f(x)=0\right\}\right) \geq k \tag{2.16}
\end{equation*}
$$

Now, we state the following multiplicity result (for the proof, see [4, Theorem 4.6]) which will be used in the proofs of our main theorems.

Theorem 2.5. Let H be a Hilbert space and let $H=X_{1} \oplus X_{2} \oplus X_{3}$, where X_{1}, X_{2}, X_{3} are three closed subspaces of H with X_{1}, X_{2} of finite dimension. For a given subspace X of H, let P_{X} be the orthogonal projection from H onto X. Set

$$
\begin{equation*}
C=\left\{x \in H \mid\left\|P_{X_{2}} x\right\| \geq 1\right\} \tag{2.17}
\end{equation*}
$$

and let $f: W \rightarrow R$ be a $C^{1,1}$ function defined on a neighborhood W of C. Let $1<\rho<R, R_{1}>0$. One defines

$$
\begin{align*}
\Delta= & \left\{x_{1}+x_{2} \mid x_{1} \in X_{1}, x_{2} \in X_{2},\left\|x_{1}\right\| \leq R_{1}, 1 \leq\left\|x_{2}\right\| \leq R\right\} \\
\Sigma= & \left\{x_{1}+x_{2} \mid x_{1} \in X_{1}, x_{2} \in X_{2},\left\|x_{1}\right\| \leq R_{1},\left\|x_{2}\right\|=1\right\} \\
& \cup\left\{x_{1}+x_{2} \mid x_{1} \in X_{1}, x_{2} \in X_{2},\left\|x_{1}\right\| \leq R_{1},\left\|x_{2}\right\|=R\right\} \tag{2.18}\\
& \cup\left\{x_{1}+x_{2} \mid x_{1} \in X_{1}, x_{2} \in X_{2},\left\|x_{1}\right\|=R_{1}, 1 \leq\left\|x_{2}\right\| \leq R\right\} \\
S= & \left\{x \in X_{2} \oplus X_{3} \mid\|x\|=\rho\right\} \\
B= & \left\{x \in X_{2} \oplus X_{3} \mid\|x\| \leq \rho\right\} .
\end{align*}
$$

Assume that

$$
\begin{equation*}
\sup f(\Sigma)<\inf f(S) \tag{2.19}
\end{equation*}
$$

and that the $(P . S .)_{c}$ condition holds for f on C, with respect to the sequrnce $\left(C_{n}\right)_{n}$, for all $c \in[a, b]$, where

$$
\begin{equation*}
a=\inf f(S), \quad b=\sup f(\Delta) \tag{2.20}
\end{equation*}
$$

Moreover, one assumes $b<+\infty$ and $\left.f\right|_{X_{1} \oplus X_{3}}$ has no critical points z in $X_{1} \oplus X_{3}$ with $a \leq f(z) \leq b$. Then there exist two lower critical points z_{1}, z_{2} for f on C such that $a \leq f\left(z_{i}\right) \leq b, i=1.2$.

3. Proof of Theorem 1.1

We assume that $0<\alpha<\beta$. Let $e_{1}, \ldots, e_{2 n}$ denote the usual bases in $R^{2 n}$ and set

$$
\begin{align*}
& X_{0} \equiv \operatorname{span}\left\{(\sin j t) e_{k}-(\cos j t) e_{k+n},(\cos j t) e_{k}+(\sin j t) e_{k+n}(\sin j t) e_{k}+(\cos j t) e_{k+n},\right. \\
&\left.\quad(\cos j t) e_{k}-(\sin j t) e_{k+n}, e_{1}, e_{2}, \ldots, e_{2 n} \mid j \leq j_{1}-1, j \in N, 1 \leq k \leq n\right\}, \\
& X_{1} \equiv \operatorname{span}\left\{(\sin j t) e_{k}-(\cos j t) e_{k+n},(\cos j t) e_{k}+(\sin j t) e_{k+n} \mid j=j_{1}, 1 \leq k \leq n\right\}, \\
&\left.X_{2} \equiv \operatorname{span}\{\sin j t) e_{k}-(\cos j t) e_{k+n}(\cos j t) e_{k}+(\sin j t) e_{k+n} \mid j=j_{2}, 1 \leq k \leq n\right\}, \\
& X_{3} \equiv \operatorname{span}\left\{(\sin j t) e_{k}-(\cos j t) e_{k+n},(\cos j t) e_{k}+(\sin j t) e_{k+n} \mid j \geq j_{2}+1=j_{3}, j \in N, 1 \leq k \leq n\right\} . \tag{3.1}
\end{align*}
$$

Then E is the topological direct sum of subspaces X_{0}, X_{1}, X_{2}, and X_{3}, where X_{1} and X_{2} are finite dimensional subspaces. We also set

$$
\begin{gather*}
S_{1}(\rho)=\left\{z \in X_{1} \mid\|z\|=\rho\right\}, \\
S_{r^{(1)}}\left(X_{0} \oplus X_{1}\right)=\left\{z \in X_{0} \oplus X_{1} \mid\|z\|=r^{(1)}\right\}, \\
B_{r^{(1)}}\left(X_{0} \oplus X_{1}\right)=\left\{z \in X_{0} \oplus X_{1} \mid\|z\| \leq r^{(1)}\right\}, \\
\Sigma_{R^{(1)}}\left(S_{1}(\rho), X_{2} \oplus X_{3}\right)=\left\{z=z_{1}+z_{2}+z_{3} \in X_{1} \oplus X_{2} \oplus X_{3} \mid z_{1} \in S_{1}(\rho),\left\|z_{1}+z_{2}+z_{3}\right\|=R^{(1)}\right\}, \\
\Delta_{R^{(1)}}\left(S_{1}(\rho), X_{2} \oplus X_{3}\right)=\left\{z=z_{1}+z_{2}+z_{3} \in X_{1} \oplus X_{2} \oplus X_{3} \mid z_{1} \in S_{1}(\rho),\left\|z_{1}+z_{2}+z_{3}\right\| \leq R^{(1)}\right\}, \\
S_{2}(\rho)=\left\{z \in X_{2} \mid\|z\|=\rho\right\}, \\
S_{r^{(2)}}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)=\left\{z \in X_{0} \oplus X_{1} \oplus X_{2} \mid\|z\|=r^{(2)}\right\}, \\
B_{r^{(2)}}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)=\left\{z \in X_{0} \oplus X_{1} \oplus X_{2} \mid\|z\| \leq r^{(2)}\right\}, \\
\Sigma_{R^{(2)}}\left(S_{2}(\rho), X_{3}\right)=\left\{z=z_{2}+z_{3} \in X_{2} \oplus X_{3} \mid z_{2} \in S_{2}(\rho),\left\|z_{2}+z_{3}\right\|=R^{(2)}\right\}, \\
\Delta_{R^{(2)}}\left(S_{2}(\rho), X_{3}\right)=\left\{z=z_{2}+z_{3} \in X_{2} \oplus X_{3} \mid z_{2} \in S_{2}(\rho),\left\|z_{2}+z_{3}\right\| \leq R^{(2)}\right\} \tag{3.2}
\end{gather*}
$$

We have the following two pairs of the sphere-torus variational linking inequalities.
Lemma 3.1 (first sphere-torus variational linking). Assume that H satisfies the conditions (H1), (H3), (H4), and the condition
(H2)' suppose that there exist $\gamma>0$ and $\tau>0$ such that $j_{1}<\gamma<\beta$ and

$$
\begin{equation*}
H(t, z) \geq \frac{1}{2} \gamma\|z\|^{2}-\tau \quad \forall(t, z) \in R^{1} \times R^{2 n} \tag{3.3}
\end{equation*}
$$

Then there exist $\delta_{1}>0, \rho>0, r^{(1)}>0$, and $R^{(1)}>0$ such that $r^{(1)}<R^{(1)}$, and for any α and β with $j_{1}-1<\alpha<j_{1}<\beta<j_{2}+\delta_{1}<j_{2}+1=j_{3}$ and $\alpha>0$,

$$
\begin{array}{r}
\sup _{z \in S_{r^{(1)}\left(X_{0} \oplus X_{1}\right)}} I(z)<0<\inf _{z \in \Sigma_{R^{(1)}}\left(S_{1}(\rho), X_{2} \oplus X_{3}\right)} I(z), \\
\inf _{z \in \Delta_{R^{(1)}}\left(S_{1}(\rho), X_{2} \oplus X_{3}\right)} I(z)>-\infty, \quad \sup _{z \in B_{r^{(1)}}\left(X_{0} \oplus X_{1}\right)} I(z)<\infty . \tag{3.4}
\end{array}
$$

Proof. Let $z=z_{0}+z_{1} \in X_{0} \oplus X_{1}$. By (H2)', we have

$$
\begin{align*}
I(z) & =\frac{1}{2} \int_{0}^{2 \pi} \dot{z} \cdot J z d t-\int_{0}^{2 \pi} H(t, z(t)) d t \\
& \leq \frac{1}{2}\left\|z_{0}+z_{1}\right\|^{2}-\frac{\gamma}{2}\left\|z_{0}+z_{1}\right\|_{L^{2}}^{2}+\tau \tag{3.5}\\
& \leq \frac{1}{2}\left(j_{1}-\gamma\right)\left\|z_{0}+z_{1}\right\|_{L^{2}}^{2}+\tau
\end{align*}
$$

for some $\tau>0$. Since $j_{1}-\gamma<0$, there exists $r^{(1)}>0$ such that if $z_{0}+z_{1} \in S_{r^{(1)}}\left(X_{0} \oplus X_{1}\right)$, then $I(z)<0$. Thus, $\sup _{z \in S_{r^{(1)}}\left(X_{0} \oplus X_{1}\right)} I(z)<0$. Moreover, if $z \in B_{r^{(1)}}\left(X_{0} \oplus X_{1}\right)$, then $I(z) \leq$ $(1 / 2)\left(j_{1}-\gamma\right)\left\|z_{0}+z_{1}\right\|_{L^{2}}^{2}+\tau<\tau<\infty$, so we have $\sup _{z \in B_{r^{(1)}}\left(X_{0} \oplus X_{1}\right)} I(z)<\infty$. Next, we will show that there exist $\delta_{1}>0, \rho>0$ and $R^{(1)}>0$ such that if $j_{1}-1<\alpha<j_{1}<\beta<j_{2}+\delta_{1}<j_{2}+1=j_{3}$, then $\inf _{z \in \Sigma_{R^{(1)}}\left(S_{1}(\rho), X_{2} \oplus X_{3}\right)} I(z)>0$. Let $z=z_{1}+z_{2}+z_{3} \in X_{1} \oplus X_{2} \oplus X_{3}$ with $z_{1} \in S_{1}(\rho), z_{2} \in X_{2}$, $z_{3} \in X_{3}$, where ρ is a small number. Let $j_{1}-1<\alpha<j_{1}<\beta<j_{2}+\delta<j_{2}+1=j_{3}$ for some $\delta>0$ and $\alpha>0$. Then $X_{1} \oplus X_{2} \oplus X_{3} \subset E^{+}$and $P^{-}\left(z_{1}+z_{2}+z_{3}\right)=0$. By (H1), there exists $d>0$ such that

$$
\begin{align*}
I(z) & =\frac{1}{2} \int_{0}^{2 \pi} \dot{z} \cdot J z d t-\int_{0}^{2 \pi} H(t, z(t)) d t \\
& \geq \frac{1}{2}\left\|P^{+}\left(z_{1}+z_{2}+z_{3}\right)\right\|^{2}-\frac{\beta}{2}\left\|P^{+}\left(z_{1}+z_{2}+z_{3}\right)\right\|_{L^{2}}^{2}-d \tag{3.6}\\
& \geq \frac{1}{2}\left(j_{1}-\beta\right)\left\|P^{+} z_{1}\right\|_{L^{2}}^{2}+\frac{1}{2}\left(j_{2}-\beta\right)\left\|P^{+} z_{2}\right\|_{L^{2}}^{2}+\frac{1}{2}\left(j_{3}-\beta\right)\left\|P^{+} z_{3}\right\|_{L^{2}}^{2}-d \\
& =\frac{1}{2}\left(j_{1}-\beta\right) \rho^{2}-\frac{1}{2} \delta\left\|P^{+} z_{2}\right\|_{L^{2}}^{2}+\frac{1}{2}\left(j_{3}-\beta\right)\left\|P^{+} z_{3}\right\|_{L^{2}}^{2}-d .
\end{align*}
$$

Since $j_{1}-\beta<0, j_{2}-\beta>-\delta$, and $j_{3}-\beta>0$, there exist a small number $\delta_{1}>0$ and $R^{(1)}>0$ with $\delta_{1}<\delta$ and $R^{(1)}>r^{(1)}$ such that if $j_{1}-1<\alpha<j_{1}<\beta<j_{2}+\delta_{1}<j_{2}+1=j_{3}$ and $z \in \Sigma_{R^{(1)}}\left(S_{1}(\rho), X_{2} \oplus X_{3}\right)$, then $I(z)>0$. Thus, we have $\inf _{z \in \Sigma_{R^{(1)}}\left(S_{1}(\rho), X_{2} \oplus X_{3}\right)} I(z)>0$. Moreover, if $j_{1}-1<\alpha<j_{1}<\beta<j_{2}+\delta_{1}<j_{2}+1=j_{3}$ and $z \in \Delta_{R^{(1)}}\left(S_{1}(\rho), X_{2} \oplus X_{3}\right)$, then we have $\left.I(z)>(1 / 2)\left(j_{1}-\beta\right) \rho^{2}-(1 / 2) \delta\right) 1\left\|P^{+} z_{2}\right\|_{L^{2}}^{2}-d>-\infty$. Thus, $\inf _{\Delta_{R^{(1)}}\left(S_{1}(\rho), X_{2} \oplus X_{3}\right)} I(z)>-\infty$. Thus, we prove the lemma.

Lemma 3.2. Let δ_{1} be the number introduced in Lemma 3.1. Then for any α and β with $j_{1}-1<\alpha<$ $j_{1}<\beta \leq j_{2}<j_{2}+1=j_{3}$ and $\alpha>0$, if u is a critical point for $\left.I\right|_{X_{0} \oplus\left(X_{2} \oplus X_{3}\right)}$, then $I(u)=0$.

Proof. We notice that from Lemma 3.1, for fixed $u_{0} \in X_{0}$, the functional $u_{23} \mapsto I\left(u_{0}+u_{23}\right)$ is weakly convex in $X_{2} \oplus X_{3}$, while, for fixed $u_{23} \in X_{2} \oplus X_{3}$, the functional $u_{0} \mapsto I\left(u_{0}+u_{23}\right)$ is strictly concave in X_{0}. Moreover, 0 is the critical point in $X_{0} \oplus X_{2} \oplus X_{3}$ with $I(0)=0$. So if $u=u_{0}+u_{23}$ is another critical point for $\left.I\right|_{X_{0} \oplus\left(X_{2} \oplus X_{3}\right)}$, then we have

$$
\begin{equation*}
0=I(0) \leq I\left(u_{23}\right) \leq I\left(u_{0}+u_{23}\right) \leq I\left(u_{0}\right) \leq I(0)=0 . \tag{3.7}
\end{equation*}
$$

So we have $I(u)=I(0)=0$.
Let $P_{X_{1}}$ be the orthogonal projection from E onto X_{1} and

$$
\begin{equation*}
\widetilde{C}=\left\{z \in E \mid\left\|P_{X_{1}} z\right\| \geq 1\right\} \tag{3.8}
\end{equation*}
$$

Then \tilde{C} is the smooth manifold with boundary. Let $\tilde{C}_{n}=\tilde{C} \cap E_{n}$. Let us define afunctional $\widetilde{\Psi}: E \backslash\left\{X_{0} \oplus\left(X_{2} \oplus X_{3}\right)\right\} \rightarrow E$ by

$$
\begin{equation*}
\widetilde{\Psi}(z)=z-\frac{P_{X_{1}} z}{\left\|P_{X_{1}} z\right\|}=P_{X_{0} \oplus\left(X_{2} \oplus X_{3}\right)} z+\left(1-\frac{1}{\left\|P_{X_{1}} z\right\|}\right) P_{X_{1}} z . \tag{3.9}
\end{equation*}
$$

We have

$$
\begin{equation*}
\nabla \widetilde{\Psi}(z)(w)=w-\frac{1}{\left\|P_{X_{1}} z\right\|}\left(P_{X_{1}} w-\left\langle\frac{P_{X_{1}} z}{\left\|P_{X_{1}} z\right\|}, w\right\rangle \frac{P_{X_{1}} z}{\left\|P_{X_{1}} z\right\|}\right) \tag{3.10}
\end{equation*}
$$

Let us define the functional $\tilde{I}: \widetilde{C} \rightarrow R$ by

$$
\begin{equation*}
\tilde{I}=I \circ \tilde{\Psi} \tag{3.11}
\end{equation*}
$$

Then $\tilde{I} \in C_{\text {loc }}^{1,1}$. We note that if \tilde{z} is the critical point of \tilde{I} and lies in the interior of \tilde{C}, then $z=\tilde{\Psi}(\tilde{z})$ is the critical point of I. We also note that

$$
\begin{equation*}
\left\|\operatorname{grad}_{\tilde{C}}^{-} \tilde{I}(\widetilde{z})\right\| \geq\left\|P_{X_{0} \oplus\left(X_{2} \oplus X_{3}\right)} \nabla I(\widetilde{\Psi}(\widetilde{z}))\right\| \quad \forall \tilde{z} \in \partial \widetilde{C} \tag{3.12}
\end{equation*}
$$

Let us set

$$
\begin{align*}
& \widetilde{S_{r^{(1)}}}=\widetilde{\Psi}^{-1}\left(S_{r^{(1)}}\left(X_{0} \oplus X_{1}\right)\right), \\
& \widetilde{B_{r^{(1)}}}=\widetilde{\Psi}^{-1}\left(B_{r^{(1)}}\left(X_{0} \oplus X_{1}\right)\right), \\
& \widetilde{\Sigma_{R^{(1)}}}=\widetilde{\Psi}^{-1}\left(\Sigma_{R^{(1)}}\left(S_{1}(\rho), X_{2} \oplus X_{3}\right)\right), \tag{3.13}\\
& \widetilde{\Delta_{R^{(1)}}}=\widetilde{\Psi}^{-1}\left(\Delta_{R^{(1)}}\left(S_{1}(\rho), X_{2} \oplus X_{3}\right)\right) .
\end{align*}
$$

We note that $\widetilde{S_{r^{(1)}}}, \widetilde{B_{r^{(1)}}}, \widetilde{\Sigma_{R^{(1)}}}$, and $\widetilde{\Delta_{R^{(1)}}}$ have the same topological structure as $S_{r^{(1)}}, B_{r^{(1)}}, \Sigma_{R^{(1)}}$, and $\Delta_{R^{(1)}}$, respectively.

Lemma 3.3. $-\tilde{I}$ satisfies the $(P . S .)_{\tilde{c}}^{*}$ condition with respect to $\left(\tilde{C}_{n}\right)_{n}$ for every real number \tilde{c} such that

Proof. Let $\left(k_{n}\right)_{n}$ be a sequence such that $k_{n} \rightarrow+\infty,\left(\widetilde{z_{n}}\right)_{n}$ be a sequence in C such that $\widetilde{z_{n}} \in C_{k_{n}}$, for all $n,(-\widetilde{I})\left(\widetilde{z_{n}}\right) \rightarrow \widetilde{c}$ and $\left.\operatorname{grad}_{C}^{-}(-\widetilde{I})\right|_{E_{k_{n}}}\left(\widetilde{z_{n}}\right) \rightarrow 0$. Set $z_{n}=\Psi\left(\widetilde{z_{n}}\right)$ (and hence $z_{n} \in E_{k_{n}}$) and $(-I)\left(z_{n}\right) \rightarrow \tilde{c}$. We first consider the case in which $z_{n} \notin X_{0} \oplus\left(X_{2} \oplus X_{3}\right)$, for all n. Since for n large $P_{E_{n}} \circ P_{X_{1}}=P_{X_{1}} \circ P_{E_{n}}=P_{X_{1}}$, we have

$$
\begin{equation*}
P_{E_{k_{n}}} \nabla(-\widetilde{I})\left(\widetilde{z_{n}}\right)=P_{E_{k_{n}}} \Psi^{\prime}\left(\widetilde{z_{n}}\right)\left(\nabla(-I)\left(z_{n}\right)\right)=\Psi^{\prime}\left(\widetilde{z_{n}}\right)\left(P_{E_{k_{n}}} \nabla(-I)\left(z_{n}\right)\right) \longrightarrow 0 \tag{3.15}
\end{equation*}
$$

By (3.9) and (3.10),

$$
\begin{gather*}
P_{E_{k_{n}}} \nabla(-I) z_{n} \longrightarrow 0 \quad \text { or } \tag{3.16}\\
P_{X_{0} \oplus\left(X_{2} \oplus X_{3}\right)} P_{E_{k_{n}}} \nabla(-I)\left(z_{n}\right) \longrightarrow 0, \quad P_{X_{1}} z_{n} \longrightarrow 0 .
\end{gather*}
$$

In the first case, the claim follows from the limit Palais-Smale condition for $-I$. In the second case, $P_{X_{0} \oplus\left(X_{2} \oplus X_{3}\right)} P_{E_{k_{n}}} \nabla(-I)\left(z_{n}\right) \rightarrow 0$. We claim that $\left(z_{n}\right)_{n}$ is bounded. By contradiction, we suppose that $\left\|z_{n}\right\| \rightarrow+\infty$ and set $w_{n}=z_{n} /\left\|z_{n}\right\|$. Up to a subsequence $w_{n} \rightharpoonup w_{0}$ weakly for some
$w_{0} \in X_{0} \oplus\left(X_{2} \oplus X_{3}\right)$. By the asymptotically linearity of $\nabla(-I)\left(z_{n}\right)$ we have

$$
\begin{equation*}
\left\langle\frac{\nabla(-I)\left(z_{n}\right)}{\left\|z_{n}\right\|}, w_{n}\right\rangle=\left\langle P_{X_{0} \oplus\left(X_{2} \oplus X_{3}\right)} P_{E_{k_{n}}} \frac{\nabla(-I)\left(z_{n}\right)}{\left\|z_{n}\right\|}, w_{n}\right\rangle+\left\langle\frac{\nabla(-I)\left(z_{n}\right)}{\left\|z_{n}\right\|^{2}}, P_{X_{1}} z_{n}\right\rangle \longrightarrow 0 \tag{3.17}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left\langle\frac{\nabla(-I)\left(z_{n}\right)}{\left\|z_{n}\right\|}, w_{n}\right\rangle=\frac{2(-I)\left(z_{n}\right)}{\left\|z_{n}\right\|^{2}}+\int_{0}^{2 \pi}\left[-\frac{2 H\left(t, z_{n}\right)}{\left\|z_{n}\right\|^{2}}+\frac{H_{z}\left(t, z_{n}\right) \cdot w_{n}}{\left\|z_{n}\right\|}\right] d t \tag{3.18}
\end{equation*}
$$

where $z_{n}=\left(\left(z_{n}\right)_{1}, \ldots,\left(z_{n}\right)_{2 n}\right)$. Passing to the limit, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{2 \pi}\left[\frac{2 H\left(t, z_{n}\right)}{\left\|z_{n}\right\|^{2}}-\frac{H_{z}\left(t, z_{n}\right) \cdot w_{n}}{\left\|z_{n}\right\|}\right] d t=0 \tag{3.19}
\end{equation*}
$$

Since H and $H_{z}\left(t, z_{n}\right) \cdot z_{n}$ are bounded and $\left\|z_{n}\right\| \rightarrow \infty$ in $\Omega, w_{0}=0$. On the other hand, we have

$$
\begin{equation*}
\left\langle P_{X_{0} \oplus\left(X_{2} \oplus X_{3}\right)} P_{E_{k_{n}}} \frac{\nabla(-I)\left(z_{n}\right)}{\left\|z_{n}\right\|}, w_{n}\right\rangle=\int_{0}^{2 \pi}\left[-\dot{w}_{n} \cdot J w_{n}+\left(P_{X_{0} \oplus\left(X_{2} \oplus X_{3}\right)} P_{E_{k_{n}}} \frac{H_{z}\left(t, z_{n}\right)}{\left\|z_{n}\right\|}\right) \cdot w_{n}\right] d t \tag{3.20}
\end{equation*}
$$

Moreover, we have

$$
\begin{align*}
& \left\langle P_{X_{0} \oplus\left(X_{2} \oplus X_{3}\right)} P_{E_{k_{n}}} \frac{\nabla(-I)\left(z_{n}\right)}{\left\|z_{n}\right\|}, P^{+} w_{n}-P^{-} w_{n}\right\rangle \\
& \quad=-\left\|P_{X_{2} \oplus X_{3}} P^{+} w_{n}\right\|^{2}-\left\|P_{X_{0}} P^{-} w_{n}\right\|^{2}-\int_{0}^{2 \pi} P_{X_{0} \oplus\left(X_{2} \oplus X_{3}\right)} P_{E_{k_{n}}} \frac{H_{z}\left(t, z_{n}\right)}{\left\|z_{n}\right\|} \cdot\left(P^{+} w_{n}-P^{-} w_{n}\right) d t . \tag{3.21}
\end{align*}
$$

Since w_{n} converges to 0 weakly and $H_{z}\left(t, z_{n}\right) \cdot\left(P^{+} w_{n}-P^{-} w_{n}\right)$ is bounded, $\left\|P_{X_{2} \oplus X_{3}} P^{+} w_{n}\right\|^{2}+$ $\left\|P_{X_{0}} P^{-} w_{n}\right\|^{2} \rightarrow 0$. Since $\left\|P_{X_{1}} w_{n}\right\|^{2} \rightarrow 0, w_{n}$ converges to 0 strongly, which is a contradiction. Hence, $\left(z_{n}\right)_{n}$ is bounded. Up to a subsequence, we can suppose that z_{n} converges to z_{0} for some $z_{0} \in X_{0} \oplus\left(X_{2} \oplus X_{3}\right)$. We claim that z_{n} converges to z_{0} strongly. We have

$$
\begin{align*}
& \left\langle P_{X_{0} \oplus\left(X_{2} \oplus X_{3}\right)} P_{E_{k_{n}}} \nabla(-I) z_{n}, P^{+} z_{n}-P^{-} z_{n}\right\rangle \\
& \quad=-\left\|P_{X_{2} \oplus X_{3}} P_{E_{k_{n}}} P^{+} z_{n}\right\|^{2}-\left\|P_{X_{0}} P_{E_{k_{n}}} P^{-} z_{n}\right\|^{2}+P_{X_{0} \oplus\left(X_{2} \oplus X_{3}\right)} P_{E_{k_{n}}} \int_{0}^{2 \pi} H_{z}\left(t, z_{n}\right) \cdot\left(P^{+} z_{n}-P^{-} z_{n}\right) . \tag{3.22}
\end{align*}
$$

By (H1) and the boundedness of $H_{z}\left(t, z_{n}\right)\left(P^{+} z_{n}-P^{-} z_{n}\right)$,

$$
\begin{equation*}
\left\|P_{X_{2} \oplus X_{3}} P_{E_{k_{n}}} P^{+} z_{n}\right\|^{2}+\left\|P_{X_{0}} P_{E_{k_{n}}} P^{-} z_{n}\right\|^{2} \longrightarrow P_{X_{0} \oplus\left(X_{2} \oplus X_{3}\right)} P_{E_{k_{n}}} \int_{0}^{2 \pi} H_{z}(t, z) \cdot\left(P^{+} z-P^{-} z\right) \tag{3.23}
\end{equation*}
$$

That is, $\left\|P_{\mathrm{X}_{2} \oplus X_{3}} P_{E_{k_{n}}} P^{+} z_{n}\right\|^{2}+\left\|P_{\mathrm{X}_{0}} P_{E_{k_{n}}} P^{-} z_{n}\right\|^{2}$ converges. Since $\left\|P_{\mathrm{X}_{1}} z_{n}\right\|^{2} \rightarrow 0,\left\|z_{n}\right\|^{2}$ converges, so z_{n} converges to z strongly. Therefore, we have

$$
\begin{equation*}
\operatorname{grad}_{C}^{-}(-\widetilde{I})(\widetilde{z})=\operatorname{grad}_{C}^{-}(-I)(z)=\lim _{n \rightarrow \infty} P_{E_{k_{n}}} \operatorname{grad}_{C}^{-}(-I)\left(z_{n}\right)=\lim _{n \rightarrow \infty} P_{E_{k_{n}}} \operatorname{grad}_{C}^{-}(-\widetilde{I})\left(\widetilde{z_{n}}\right)=0 \tag{3.24}
\end{equation*}
$$

So we proved the first case.
We consider the case $P_{X_{1}} z_{n}=0$, that is, $z_{n} \in X_{0} \oplus\left(X_{2} \oplus X_{3}\right)$. Then $\widetilde{z_{n}} \in \partial C$, for all n. In this case, $z_{n}=\Psi\left(\widetilde{z_{n}}\right) \in X_{0} \oplus\left(X_{2} \oplus X_{3}\right)$ and $P_{X_{0} \oplus\left(X_{2} \oplus X_{3}\right)} \nabla(-I)\left(z_{n}\right) \rightarrow 0$. Thus, by the same argument as the first case, we obtain the conclusion. So we prove the lemma.

Proposition 3.4. Assume that H satisfies the conditions (H1), (H2) , (H3), (H4). Then there exists a number $\delta_{1}>0$ such that for any α and β with $j_{1}-1<\alpha<j_{1}<\beta<j_{2}+\delta_{1}<j_{2}+1=j_{3}$ and $\alpha>0$, there exist at least two nontrivial critical points $z_{i}, i=1,2$, in X_{1} for the functional I such that

$$
\begin{equation*}
\inf _{z \in \Delta_{R^{(1)}}\left(S_{1}(\rho), X_{2} \oplus X_{3}\right)} I(z) \leq I\left(z_{i}\right) \leq \sup _{z \in S_{r^{(1)}}\left(X_{0} \oplus X_{1}\right)} I(z)<0<\inf _{z \in \Sigma_{R^{(1)}}\left(S_{1}(\rho), X_{2} \oplus X_{3}\right)} I(z), \tag{3.25}
\end{equation*}
$$

where $\rho, r^{(1)}$, and $R^{(1)}$ are introduced in Lemma 3.1.
Proof. First, we will find two nontrivial critical points for $-\tilde{I}$. By Lemma 3.1, $-\tilde{I}$ satisfies the torus-sphere variational linking inequality, that is, there exist $\delta_{1}>0, \rho>0, r^{(1)}>0$, and $R^{(1)}>0$ such that $r^{(1)}<R^{(1)}$, and for any α and β with $j_{1}-1<\alpha<j_{1}<\beta<j_{2}+\delta_{1}<j_{2}+1=j_{3}$ and $\alpha>0$

$$
\begin{gather*}
\sup _{\tilde{z} \in \overline{\Sigma_{R^{(1)}}}}(-\widetilde{I})(\widetilde{z})=\sup _{z \in \Sigma_{R^{(1)}}\left(S_{1}(\rho), X_{2} \oplus X_{3}\right)}(-I)(z)<0<\inf _{z \in S_{r^{(1)}}\left(X_{0} \oplus X_{1}\right)}(-I)(z)=\inf _{\tilde{z} \in \overline{S_{r^{(1)}}}}(-\widetilde{I})(\widetilde{z}), \\
\sup _{\tilde{z} \in \widetilde{\Delta_{R^{(1)}}}}(-\widetilde{I})(\widetilde{z})=\sup _{z \in \Delta_{R^{(1)}}\left(S_{1}(\rho), X_{2} \oplus X_{3}\right)}(-I)(z)=-\inf _{z \in \Delta_{R^{(1)}}\left(S_{1}(\rho) X_{2} \oplus X_{3}\right)} I(z)<\infty, \tag{3.26}\\
\inf _{\tilde{z} \in \widetilde{B_{r^{(1)}}}}(-\widetilde{I})(\widetilde{z})=\inf _{z \in B_{r^{(1)}}\left(X_{0} \oplus X_{1}\right)}(-I)(z)=-\sup _{z \in B_{r^{(1)}}\left(X_{0} \oplus X_{1}\right)} I(z)>-\infty .
\end{gather*}
$$

By Lemma 3.3, $-\tilde{I}$ satisfies the (P.S. $)_{\tilde{c}}^{*}$ condition with respect to $\left(\widetilde{C}_{n}\right)_{n}$ for every real number \tilde{c} such that

$$
\begin{equation*}
0<\inf _{\tilde{z} \in \overline{S_{r^{(1)}}}}(-\widetilde{I})(\widetilde{z}) \leq \tilde{c} \leq \sup _{\tilde{z} \in \widetilde{\Delta_{R^{(1)}}}}(-\widetilde{I})(\widetilde{z}) \tag{3.27}
\end{equation*}
$$

Thus by Theorem 2.5 , there exist two critical points $\widetilde{z_{1}}, \widetilde{z_{2}}$ for the functional $-\widetilde{I}$ such that

$$
\begin{equation*}
\inf _{\tilde{z} \in \widetilde{S_{r^{(1)}}}}(-\widetilde{I})(\widetilde{z}) \leq(-\widetilde{I})\left(\widetilde{z}_{i}\right) \leq \sup _{\tilde{z} \in \overline{\Delta_{R^{(1)}}}}(-\widetilde{I})(\widetilde{z}), \quad i=1,2 \tag{3.28}
\end{equation*}
$$

Setting $z_{i}=\widetilde{\Psi}\left(\widetilde{z}_{i}\right), i=1,2$, we have

$$
\begin{equation*}
0<\inf _{z \in S_{r^{(1)}}}(-I)(z)=\inf _{\tilde{z} \in \widetilde{S_{r^{(1)}}}}(-\widetilde{I})(\widetilde{z}) \leq(-I)\left(z_{1}\right) \leq(-I)\left(z_{2}\right) \leq \sup _{\tilde{z} \in \widetilde{\Delta_{R^{(1)}}}}(-\widetilde{I})(\widetilde{z})=\sup _{z \in \Delta_{R^{(1)}}}(-I)(z) . \tag{3.29}
\end{equation*}
$$

We claim that $\tilde{z}_{i} \notin \partial \tilde{C}$, that is $z_{i} \notin X_{0} \oplus\left(X_{2} \oplus X_{3}\right)$, which implies that z_{i} are the critical points for $-I$ in X_{1}, so z_{i} are the critical points for I in X_{1}. For this we assume by contradiction that $z_{i} \in X_{0} \oplus\left(X_{2} \oplus X_{3}\right)$. From (3.12), $P_{X_{0} \oplus\left(X_{2} \oplus X_{3}\right)} \nabla(-I)\left(z_{i}\right)=0$, namely, $z_{i}, i=1,2$, are the critical points for $\left.(-I)\right|_{X_{0} \oplus\left(X_{2} \oplus X_{3}\right)}$. By Lemma 3.2, $-I\left(z_{i}\right)=0$, which is a contradiction for the fact that

$$
\begin{equation*}
0<\inf _{z \in S_{r^{(1)}\left(X_{0} \oplus X_{1}\right)}}(-I)(z) \leq(-I)\left(z_{i}\right) \leq \sup _{z \in \Delta_{R^{(1)}}\left(S_{1}(\rho), X_{2} \oplus X_{3}\right)}(-I)(z) \tag{3.30}
\end{equation*}
$$

Lemma 3.2 implies that there is no critical point $z \in X_{0} \oplus\left(X_{2} \oplus X_{3}\right)$ such that

$$
\begin{equation*}
0<\inf _{z \in S_{r^{11}}\left(X_{0} \oplus X_{1}\right)}(-I)(z) \leq(-I)(z) \leq \sup _{z \in \Delta_{R^{(1)}}\left(S_{1}(\rho), X_{2} \oplus X_{3}\right)}(-I)(z) \tag{3.31}
\end{equation*}
$$

Hence, $z_{i} \notin X_{0} \oplus\left(X_{2} \oplus X_{3}\right), i=1,2$. This proves Proposition 3.4.
Lemma 3.5 (second sphere-torus variational linking). Assume that H satisfies the conditions (H1), (H3), (H4), and the condition
(H2)" suppose that there exist $\gamma>0$ and $\tau>0$ such that $j_{2}<\gamma<\beta$ and

$$
\begin{equation*}
H(t, z) \geq \frac{1}{2} \gamma\|z\|^{2}-\tau \quad \forall(t, z) \in R^{1} \times R^{2 n} \tag{3.32}
\end{equation*}
$$

Then there exist $\delta_{2}>0, \rho>0, r^{(2)}>0$, and $R^{(2)}>0$ such that $r^{(2)}<R^{(2)}$, and for any α and β with $j_{1}-1<\alpha<j_{1}<j_{2}<\beta<j_{2}+\delta_{2}<j_{2}+1=j_{3}$ and $\alpha>0$,

$$
\begin{align*}
\sup _{z \in S_{r^{(2)}}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)} I(z)<0< & \inf _{\Sigma_{R^{(2)}}\left(S_{2}(\rho), X_{3}\right)} I(z), \\
\inf _{z \in \Delta_{R^{(2)}}\left(S_{2}(\rho), X_{3}\right)} I(z)>-\infty, & \sup _{z \in B_{r^{(2)}}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)} I(z)<\infty . \tag{3.33}
\end{align*}
$$

Proof. Let $z=\left(z_{0}+z_{1}\right)+z_{2} \in\left(X_{0} \oplus X_{1}\right) \oplus X_{2}$. By $(H 2)^{\prime \prime}$, we have

$$
\begin{equation*}
I(z)=\frac{1}{2} \int_{0}^{2 \pi} \dot{z} \cdot J z d t-\int_{0}^{2 \pi} H(t, z(t)) d t \leq \frac{1}{2}\|z\|^{2}-\frac{\gamma}{2}\|z\|_{L^{2}}^{2}+\tau \leq \frac{1}{2}\left(j_{2}-\gamma\right)\|z\|_{L^{2}}^{2}+\tau \tag{3.34}
\end{equation*}
$$

for some τ. Since $j_{2}-\gamma<0$, there exists $r^{(2)}>0$ such that if $z \in S_{r^{(2)}}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)$, then $I(z)<0$. Thus we have $\sup _{z \in S_{r^{(2)}}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)} I(z)<0$. Moreover, if $z \in B_{r^{(2)}}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)$, then $I(z)<\tau<\infty$, so we have sup $z_{z \in B_{r^{(2)}}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)} I(z)<\infty$. Next, let $z=z_{2}+z_{3} \in X_{2} \oplus X_{3}$ with $z_{2} \in S_{2}(\rho)$, where ρ is a small number. We also let $j_{1}-1<\alpha<j_{1}<j_{2}<\beta<j_{2}+\delta<j_{2}+1=j_{3}$ and $\alpha>0$. Then $X_{2} \oplus X_{3} \subset E^{+}$and $P^{-}\left(z_{2}+z_{3}\right)=0$. By (H1), there exists $\tau^{\prime}>0$ such that

$$
\begin{align*}
I(z) & =\frac{1}{2} \int_{0}^{2 \pi} \dot{z} \cdot J z d t-\int_{0}^{2 \pi} H(t, z(t)) d t \\
& \geq \frac{1}{2}\left\|P^{+}\left(z_{2}+z_{3}\right)\right\|^{2}-\frac{\beta}{2}\left\|P^{+}\left(z_{2}+z_{3}\right)\right\|_{L^{2}}^{2}-\tau^{\prime} \tag{3.35}\\
& =\frac{1}{2}\left\|P^{+} z_{2}\right\|^{2}+\frac{1}{2}\left\|P^{+} z_{3}\right\|^{2}-\frac{\beta}{2}\left\|P^{+} z_{2}\right\|_{L^{2}}^{2}-\frac{\beta}{2}\left\|P^{+} z_{3}\right\|_{L^{2}}^{2}-\tau^{\prime} \\
& \geq \frac{1}{2}\left(1-\frac{\beta}{j_{2}}\right) \rho^{2}+\frac{1}{2}\left(j_{3}-\beta\right)\left\|P^{+} z_{3}\right\|_{L^{2}}^{2}-\tau^{\prime} .
\end{align*}
$$

Since $1-\beta / j_{2}<0$ and $j_{3}-\beta>0$, there exist a small number $\delta_{2}>0$ and $R^{(2)}>0$ with $\delta_{2}<\delta$ and $R^{(2)}>r^{(2)}$ such that if $j_{1}-1<\alpha<j_{1}<j_{2}<\beta<j_{2}+\delta_{2}<j_{2}+1=j_{3}$ and $z=z_{2}+z_{3} \in \Sigma_{R^{(2)}}\left(S_{2}(\rho), X_{3}\right)$, then $I(z)>0$. Thus we have $\inf _{z \in \Sigma_{R^{(2)}}\left(S_{2}(\rho), X_{3}\right)} I(z)>0$.

Moreover, if $z \in \Delta_{R^{(2)}}\left(S_{2}(\rho), X_{3}\right)$, then $I(z) \geq(1 / 2)\left(1-\beta / j_{2}\right) \rho^{2}-\tau^{\prime}>-\infty$. Thus we have $\inf _{\Delta_{R^{(2)}}\left(S_{2}(\rho), X_{3}\right)} I(z)>-\infty$. Thus we prove the lemma.

Lemma 3.6. For any $\Lambda \in] j_{2}, j_{3}$ [there exists a constant $\tau>0$ such that for any α and β with $j_{1}-1<$ $\alpha<j_{1}<j_{2} \leq \beta \leq \Lambda<j_{2}+1=j_{3}$ and $\alpha>0$, if z is a critical point for $\left.I\right|_{\left(X_{0} \oplus X_{1}\right) \oplus X_{3}}$ with $0 \leq I(z) \leq \tau$, then $z=0$.

Proof. By contradiction, we can suppose that there exist $\Lambda>0$, a sequence $\left(\alpha_{n}\right)_{n},\left(\beta_{n}\right)_{n}$ such that $\alpha_{n} \rightarrow \alpha, \beta_{n} \rightarrow \beta$ with $\left.\alpha \in\right] j_{1}-1, j_{1}\left[, \beta \in\left[j_{2} \cdot \Lambda\right]\right.$, and a sequence $\left(z_{n}\right)_{n}$ in $\left(X_{0} \oplus X_{1}\right) \oplus X_{3}$ such that $I\left(z_{n}\right) \rightarrow 0$ and $P_{\left(X_{0} \oplus X_{1}\right) \oplus X_{3}} \nabla I\left(z_{n}\right)=0$. We claim that $\left(z_{n}\right)_{n}$ is bounded. If we do not suppose that $\left\|z_{n}\right\| \rightarrow+\infty$, let us set $w_{n}=z_{n} /\left\|z_{n}\right\|$. We have up to a subsequence, that $w_{n} \rightharpoonup w_{0}$ weakly for some $w_{0} \in\left(X_{0} \oplus X_{1}\right) \oplus X_{3}$. Furthermore,

$$
\begin{equation*}
0=\left\langle\nabla I\left(z_{n}\right), P_{\mathrm{X}_{0} \oplus \mathrm{X}_{1}} z_{n}\right\rangle=\left\|P^{+} P_{\mathrm{X}_{0} \oplus X_{1}} z_{n}\right\|^{2}-\left\|P^{-} P_{\mathrm{X}_{0} \oplus X_{1}} z_{n}\right\|^{2}-\left\langle H_{z}\left(t, z_{n}\right), P_{\mathrm{X}_{0} \oplus X_{1}} z_{n}\right\rangle \tag{3.36}
\end{equation*}
$$

so we have

$$
\begin{equation*}
\left\|P_{X_{0} \oplus X_{1}} z_{n}\right\|^{2}=\left\langle H_{z}\left(t, z_{n}\right), P_{X_{0} \oplus X_{1}} z_{n}\right\rangle . \tag{3.37}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
0=\left\langle\nabla I\left(z_{n}\right), P_{X_{3}} z_{n}\right\rangle=\left\|P_{X_{3}} z_{n}\right\|^{2}-\left\langle H_{z}\left(t, z_{n}\right), P_{X_{3}} z_{n}\right\rangle \tag{3.38}
\end{equation*}
$$

so we have

$$
\begin{equation*}
\left\|P_{X_{3}} z_{n}\right\|^{2}=\left\langle H_{z}\left(t, z_{n}\right), P_{X_{3} z_{n}}\right\rangle . \tag{3.39}
\end{equation*}
$$

Adding (3.37) and (3.39), we have

$$
\begin{equation*}
\left\|z_{n}\right\|^{2}=\left\langle H_{z}\left(t, z_{n}\right), z_{n}\right\rangle \tag{3.40}
\end{equation*}
$$

From (3.40) we have

$$
\begin{equation*}
\left\|w_{0}\right\|^{2}=\lim _{n \rightarrow \infty}\left\langle H_{z}\left(t, z_{n}\right), w_{n}\right\rangle \tag{3.41}
\end{equation*}
$$

We also have

$$
\begin{equation*}
0=\left\langle P_{\left(X_{0} \oplus X_{1}\right) \oplus X_{3}} \nabla I\left(z_{n}\right), z_{n}\right\rangle=2 I\left(z_{n}\right)+\int_{0}^{2 \pi}\left[-2 H\left(t, z_{n}\right)+H_{z}\left(t, z_{n}\right) \cdot z_{n}\right] d t \tag{3.42}
\end{equation*}
$$

Dividing by $\left\|z_{n}\right\|$ and going to the limit, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{2 \pi} H_{z}\left(t, z_{n}\right) \cdot w_{n}=0 \tag{3.43}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left\|w_{0}\right\|^{2}=0 \tag{3.44}
\end{equation*}
$$

which is a contradiction since $\left\|w_{0}\right\|=1$. So $\left(z_{n}\right)_{n}$ is bounded and we can suppose that $z_{n} \rightharpoonup z$ for $z \in\left(X_{0} \oplus X_{1}\right) \oplus X_{3}$. From (3.42), we have

$$
\begin{equation*}
\left\langle H_{z}\left(t, z_{n}\right), z_{n}\right\rangle=\int_{0}^{2 \pi} 2 H\left(t, z_{n}\right) d t \tag{3.45}
\end{equation*}
$$

From (3.40),

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}\right\|^{2}=\lim _{n \rightarrow \infty}\left\langle H_{z}\left(t, z_{n}\right), z_{n}\right\rangle=\lim _{n \rightarrow \infty} \int_{0}^{2 \pi} 2 H\left(t, z_{n}\right) d t=\int_{0}^{2 \pi} 2 H(t, z) d t \tag{3.46}
\end{equation*}
$$

Thus, z_{n} converges to z strongly. We claim that $z=0$. Assume that $z \neq 0$. By (H1) $\alpha\|z\|_{L^{2}}^{2}+c_{1}<$ $2 \int_{0}^{2 \pi} H(t, z) d t<\beta\|z\|_{L^{2}}^{2}+c_{2}$, for some c_{1} and c_{2}. If $z \in X_{0} \oplus X_{1}$ with $\left\|P_{X_{0} \oplus X_{1}} z\right\|^{2} \geq|j|\|z\|_{L^{2}}^{2}$ for $j<0$ and $|j|>\beta$,

$$
\begin{equation*}
|j|\left\|P_{X_{0} \oplus X_{1}} z\right\|_{L^{2}}^{2} \leq\left\|P_{X_{0} \oplus X_{1}} z\right\|^{2} \leq \beta\left\|P_{X_{0} \oplus X_{1}} z\right\|_{L^{2}}^{2}+c_{2} \tag{3.47}
\end{equation*}
$$

If $z \in X_{3},\left\|P_{X_{3}} z\right\|^{2} \geq j_{3}\left\|P_{X_{3}} z\right\|_{L^{2}}^{2}$, and

$$
\begin{equation*}
j_{3}\left\|P_{X_{3}} z\right\|_{L^{2}}^{2} \leq\left\|P_{X_{3}} z\right\|^{2} \leq \beta\left\|P_{X_{3}} z\right\|_{L^{2}}^{2}+c_{2} \tag{3.48}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
(|j|-\beta)\left\|P_{X_{0} \oplus X_{1}} z\right\|_{L^{2}}^{2}+\left(j_{3}-\beta\right)\left\|P_{X_{3}} z\right\|_{L^{2}}^{2}-2 c_{2} \leq 0 \tag{3.49}
\end{equation*}
$$

which is absurd because of $|j|>\beta$ and $j_{3}>\beta$. Thus $z=0$. We proved the lemma.
Let $P_{X_{2}}$ be the orthogonal projection from E onto X_{2} and

$$
\begin{equation*}
\check{C}=\left\{z \in E \mid\left\|P_{X_{2}} z\right\| \geq 1\right\} . \tag{3.50}
\end{equation*}
$$

Then C_{C} is the smooth manifold with boundary. Let $\check{C}_{n}=C \subset E_{n}$. Let us define a functional $\stackrel{\Psi}{\Psi}: E \backslash\left\{\left(X_{0} \oplus X_{1}\right) \oplus X_{3}\right\} \rightarrow E$ by

$$
\begin{equation*}
\check{\Psi}(z)=z-\frac{P_{X_{2}} z}{\left\|P_{X_{2}} z\right\|}=P_{\left(X_{0} \oplus X_{1}\right) \oplus X_{3}} z+\left(1-\frac{1}{\left\|P_{X_{2}} z\right\|}\right) P_{X_{2}} z . \tag{3.51}
\end{equation*}
$$

We have

$$
\begin{equation*}
\nabla \check{\Psi}(z)(w)=w-\frac{1}{\left\|P_{X_{2}} z\right\|}\left(P_{X_{2}} w-\left\langle\frac{P_{X_{2}} z}{\left\|P_{X_{2}} z\right\|}, w\right\rangle \frac{P_{X_{2}} z}{\left\|P_{X_{2}} z\right\|}\right) \tag{3.52}
\end{equation*}
$$

Let us define the functional $\check{I}: \check{C} \rightarrow R$ by

$$
\begin{equation*}
\check{I}=I \circ \check{\Psi} . \tag{3.53}
\end{equation*}
$$

Then $\check{I} \in C_{\text {loc }}^{1,1}$. We note that if \check{z} is the critical point of \check{I} and lies in the interior of \check{C}, then $z=\breve{\Psi}(\check{z})$ is the critical point of I. We also note that

$$
\begin{equation*}
\left\|\operatorname{grad}_{\check{C}}^{-} \check{I}(\check{z})\right\| \geq\left\|P_{\left(X_{0} \oplus X_{1}\right) \oplus X_{3}} \nabla I(\check{\Psi}(\check{z}))\right\| \quad \forall \check{z} \in \partial \check{C} . \tag{3.54}
\end{equation*}
$$

Let us set

$$
\begin{align*}
& \check{S}_{r^{(2)}}=\check{\Psi}^{-1}\left(S_{r^{(2)}}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)\right), \\
& \check{B}_{r^{(2)}}=\check{\Psi}^{-1}\left(B_{r^{(2)}}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)\right), \\
& \check{\Sigma}_{R^{(2)}}=\check{\Psi}^{-1}\left(\Sigma_{R^{(2)}}\left(S_{2}(\rho), X_{3}\right)\right), \tag{3.55}\\
& \check{\Delta}_{R^{(2)}}=\check{\Psi}^{-1}\left(\Delta_{R^{(2)}}\left(S_{2}(\rho), X_{3}\right)\right) .
\end{align*}
$$

We note that $\check{S}_{r^{(2)}}, \check{B}_{r^{(2)}}, \check{\Sigma}_{R^{(2)}}$, and $\check{\Delta}_{R^{(2)}}$ have the same topological structure as $S_{r^{(2)}}, B_{r^{(2)}}, \Sigma_{R^{(2)}}$, and $\Delta_{R^{(2)}}$, respectively.

We have the following lemma whose proof has the same arguments as that of Lemma 3.5 except the space $\left(X_{0} \oplus X_{1}\right) \oplus X_{3}, X_{0} \oplus X_{1}, X_{3}$ instead of the space $X_{0} \oplus\left(X_{2} \oplus X_{3}\right), X_{0}$, $X_{2} \oplus X_{3}$.

Lemma 3.7. -Ĭ satisfies the $(\text { P.S. })_{c}^{*}$ condition with respect to $\left(\check{C}_{n}\right)_{n}$ for every real number č such that
where $\rho, r^{(2)}$, and $R^{(2)}$ are introduced in Lemma 3.5.
Proposition 3.8. Assume that H satisfies the conditions (H1), (H2)", (H3), and (H4). Then there exists a small number $\delta_{2}>0$ such that for any α and β with $j_{1}-1<\alpha<j_{1}<j_{2}<\beta<j_{2}+\delta<j_{2}+1=j_{3}$ and $\alpha>0$, there exist at least two nontrivial critical points $w_{i}, i=1,2$, in X_{2} for the functional I such that

$$
\begin{equation*}
\inf _{z \in \Delta_{R^{(2)}}\left(S_{2}(\rho), X_{3}\right)} I(z) \leq I\left(w_{i}\right) \leq \sup _{z \in S_{r^{(2)}}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)} I(z)<0<\inf _{z \in \Sigma_{R^{(2)}}\left(S_{2}(\rho), X_{3}\right)} I(z), \tag{3.57}
\end{equation*}
$$

where $\rho, r^{(2)}$, and $R^{(2)}$ are introduced in Lemma 3.5.
Proof. It suffices to find the critical points for $-\check{I}$. By Lemma 3.5, $-\check{I}$ satisfies the torus-sphere variational linking inequality, that is, there exist $\delta_{2}>0, \rho>0, r^{(2)}>0$, and $R^{(2)}>0$ such that $r^{(2)}<R^{(2)}$, and for any α and β with $j_{1}-1<\alpha<j_{1}<j_{2}<\beta<j_{2}+\delta_{2}<j_{2}+1=j_{3}$,

$$
\begin{align*}
& \sup _{\check{z} \in \check{\Sigma}_{R}(2)}(-\widetilde{I})(\check{z})=\sup _{z \in \Sigma_{R^{(2)}}\left(S_{2}(\rho), X_{3}\right)}(-I)(z)<0<\inf _{z \in S_{r^{(2)}}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)}(-I)(z)=\inf _{\tilde{z}_{\in \check{S}_{r^{(2)}}}}(-\widetilde{I})(\check{z}) \text {, } \\
& \sup _{\check{z} \in \check{\Delta}_{R^{(2)}}}(-\widetilde{I})(\check{z})=\sup _{z \in \Delta_{R^{(2)}}\left(S_{2}(\rho), X_{3}\right)}(-I)(z)=-\inf _{z \in \Delta_{R^{(2)}}\left(S_{2}(\rho), X_{3}\right)} I(z)<\infty \text {, } \tag{3.58}\\
& \inf _{\check{z} \in \check{B}_{r^{(2)}}}(-\widetilde{I})(\check{z})=\inf _{z \in B_{r^{(2)}}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)}(-I)(z)=-\sup _{z \in B_{r^{(2)}}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)} I(z)>-\infty .
\end{align*}
$$

By Lemma 3.7, $-\check{I}$ satisfies the $(P . S .)_{\check{c}}^{*}$ condition with respect to $\left(\check{C}_{n}\right)_{n}$ for every real number \check{c} such that

$$
\begin{equation*}
0<\inf _{\check{z} \in \check{S}_{r^{(2)}}}(-\widetilde{I})(\check{z}) \leq \check{c} \leq \sup _{\check{z} \in \check{\Delta}_{R^{(2)}}}(-\widetilde{I})(\check{z}) \tag{3.59}
\end{equation*}
$$

Then by Theorem 2.5, there exist two critical points $\check{w}_{1}, \check{w}_{2}$ for the functional $-I \check{l}$ such that

$$
\begin{equation*}
\inf _{\check{w} \in \breve{S}_{r^{(2)}}}(-\widetilde{I})(\check{w}) \leq(-\widetilde{I})\left(\check{w}_{i}\right) \leq \sup _{\check{w} \in \Delta_{R^{(2)}}}(-\widetilde{I})(\check{w}), \quad i=1,2 . \tag{3.60}
\end{equation*}
$$

Setting $w_{i}=\Psi \check{\Psi}\left(\check{w}_{i}\right), i=1,2$, we have

$$
\begin{equation*}
0<\inf _{w \in S_{r^{(2)}}}(-I)(w)=\inf _{\tilde{w}_{\tilde{w}} \check{S}_{r^{(2)}}}(-\widetilde{I})(\check{w}) \leq(-I)\left(w_{1}\right) \leq-I\left(w_{2}\right) \leq \sup _{\check{w} \in \check{\Delta}_{R^{(2)}}}(-\widetilde{I})(\check{w})=\sup _{w \in \Delta_{R^{(2)}}\left(S_{2}(\rho), X_{3}\right)}(-I)(w) \tag{3.61}
\end{equation*}
$$

We claim that $\check{w}_{i} \notin \partial \check{C}$, that is $w_{i} \notin\left(X_{0} \oplus X_{1}\right) \oplus X_{3}$, which implies that w_{i} are the critical points for $-I$, so w_{i} are the critical points for I. For this we assume by contradiction that $w_{i} \in\left(X_{0} \oplus\right.$ $\left.X_{1}\right) \oplus X_{3}$. From (3.54), $P_{\left(X_{0} \oplus X_{1}\right) \oplus X_{3}} \nabla(-I)\left(w_{i}\right)=0$, namely, $w_{i}, i=1,2$, are the critical points for $\left.(-I)\right|_{\left(X_{0} \oplus X_{1}\right) \oplus X_{3}}$. By Lemma 3.6, $-I\left(w_{i}\right)=0$, which is a contradiction for the fact that

$$
\begin{equation*}
0<\inf _{w \in S_{r^{(2)}}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)}(-I)(w) \leq(-I)\left(w_{i}\right) \leq \sup _{w \in \Delta_{R^{(2)}}\left(S_{2}(\rho), X_{3}\right)}(-I)(w) \tag{3.62}
\end{equation*}
$$

It follows from Lemma 3.6 that there is no critical point $w \in\left(X_{0} \oplus X_{1}\right) \oplus X_{3}$ such that

$$
\begin{equation*}
0<\inf _{w \in S_{r^{2}(2)}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)}(-I)(w) \leq(-I)(w) \leq \sup _{w \in \Delta_{R^{(2)}}\left(S_{2}(\rho), X_{3}\right)}(-I)(w) \tag{3.63}
\end{equation*}
$$

Hence, $w_{i} \notin\left(X_{0} \oplus X_{1}\right) \oplus X_{3}, i=1,2$. This proves Proposition 3.8.
Proof of Theorem 1.1. Assume that H satisfies conditions (H1)-(H4). By Proposition 3.4, there exist $\delta_{1}>0, \rho>0, r^{(1)}>0$, and $R^{(1)}>0$ such that for any α and β with $j_{1}-1<\alpha<j_{1}<\beta<$ $j_{2}+\delta_{1}<j_{2}+1=j_{3}$, (1.1) has at least two nontrivial solutions $z_{i}, i=1,2$, in X_{1} for the functional I such that

$$
\begin{equation*}
\inf _{z \in \Delta_{R^{(1)}}\left(S_{1}(\rho), X_{2} \oplus X_{3}\right)} I(z) \leq I\left(z_{i}\right) \leq \sup _{z \in S_{r^{(1)}}\left(X_{0} \oplus X_{1}\right)} I(z)<0<\inf _{z \in \Sigma_{R^{(1)}}\left(S_{1}(\rho), X_{2} \oplus X_{3}\right)} I(z) \tag{3.64}
\end{equation*}
$$

By Proposition 3.8, there exist $\delta_{2}>0, \rho>0, r^{(2)}>0$, and $R^{(2)}>0$ such that for any α and β with $j_{1}-1<\alpha<j_{1}<j_{2}<\beta<j_{2}+\delta_{2}<j_{2}+1=j_{3}$ and $\alpha>0$, (1.1) has at least two nontrivial solutions $w_{i}, i=1,2$, in X_{2} for the functional I such that

$$
\begin{equation*}
\inf _{z \in \Delta_{R^{(2)}}\left(S_{2}(\rho), X_{3}\right)} I(z) \leq I\left(w_{i}\right) \leq \sup _{z \in S_{r^{(2)}}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)} I(z)<0<\inf _{z \in \Sigma_{R^{(2)}}\left(S_{2}(\rho), X_{3}\right)} I(z) . \tag{3.65}
\end{equation*}
$$

Let

$$
\begin{equation*}
\delta=\min \left\{\delta_{1}, \delta_{2}\right\} \tag{3.66}
\end{equation*}
$$

Then for any α and β with $j_{1}-1<\alpha<j_{1}<j_{2}<\beta<j_{2}+\delta<j_{2}+1=j_{3}$ and $\alpha>0$, (1.1) has at least four nontrivial solutions, two of which are in X_{1} and two of which are in X_{2}.

4. Proof of Theorem 1.2

Assume that H satisfies conditions (H1)-(H4) with $\alpha<\beta<0$. Let us set
$X_{0} \equiv \operatorname{span}\left\{(\sin j t) e_{k}+(\cos j t) e_{k+n}(\cos j t) e_{k}-(\sin j t) e_{k+n} \mid j \geq-j_{1}+1, j \in N, 1 \leq k \leq n\right\}$,
$X_{1} \equiv \operatorname{span}\left\{(\sin j t) e_{k}+(\cos j t) e_{k+n},(\cos j t) e_{k}-(\sin j t) e_{k+n} \mid j \geq-j_{1}, j \in N, 1 \leq k \leq n\right\}$,
$X_{2} \equiv \operatorname{span}\left\{(\sin j t) e_{k}+(\cos j t) e_{k+n}(\cos j t) e_{k}-(\sin j t) e_{k+n} \mid j=-j_{2}, j \in N, 1 \leq k \leq n\right\}$,
$X_{3} \equiv \operatorname{span}\left\{\left\{e_{1}, e_{2}, \ldots, e_{2 n},(\sin j t) e_{k}-(\cos j t) e_{k+n}(\cos j t) e_{k}+(\sin j t) e_{k+n} \mid j>0, j \in N, 1 \leq k \leq n\right\}\right.$

$$
\begin{equation*}
\left.\cup\left\{(\sin j t) e_{k}+(\cos j t) e_{k+n}(\cos j t) e_{k}-(\sin j t) e_{k+n} \mid j \leq-j_{2}-1=-j_{3}, j \in N, 1 \leq k \leq n\right\}\right\} . \tag{4.1}
\end{equation*}
$$

Then the space E is the topological direct sum of the subspaces X_{0}, X_{1}, X_{2}, and X_{3}, where X_{1} and X_{2} are finite dimensional subspaces.

Proof of Theorem 1.2. By the same arguments as that of the proof of Theorem 1.1, there exist $\delta>0, \rho>0, r^{(1)}>0, R^{(1)}, r^{(2)}>0$, and $R^{(2)}>0$ such that for any α and β with $j_{1}-1<\alpha<j_{1}<$ $j_{2}<\beta<j_{2}+\delta,(1.1)$ has at least four nontrivial solutions, two of which are nontrivial solutions $z_{i}, i=1,2$, in X_{1} with

$$
\begin{equation*}
\inf _{z \in \Delta_{R^{(1)}}\left(S_{12}(\rho), X_{3}\right)} I(z) \leq I\left(z_{i}\right) \leq \sup _{z \in S_{r^{(1)}}\left(X_{0} \oplus X_{1}\right)} I(z)<0<\inf _{z \in \Sigma_{R^{(1)}}\left(S_{12}(\rho), X_{3}\right)} I(z), \tag{4.2}
\end{equation*}
$$

and two of which are nontrivial solutions $w_{i}, i=1,2$,in X_{2} with

$$
\begin{equation*}
\inf _{z \in \Delta_{R(2)}^{(2)}\left(S_{2}(\rho), X_{3}\right)} I(z) \leq I\left(w_{i}\right) \leq \sup _{z \in S_{r^{(2)}}\left(X_{0} \oplus X_{1} \oplus X_{2}\right)} I(z)<0<\inf _{z \in \Sigma_{R^{(2)}}\left(S_{2}(\rho), X_{3}\right)} I(z) . \tag{4.3}
\end{equation*}
$$

Acknowledgment

This research is supported in part by Inha University research grant.

References

[1] K.-C. Chang, Infinite-Dimensional Morse Theory and Multiple Solution Problems, vol. 6 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser, Boston, Mass, USA, 1993.
[2] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, vol. 65 of CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, USA, 1986.
[3] G. Fournier, D. Lupo, M. Ramos, and M. Willem, "Limit relative category and critical point theory," in Dynamics Reported, vol. 3, pp. 1-24, Springer, Berlin, Germany, 1994.
[4] A. M. Micheletti and C. Saccon, "Multiple nontrivial solutions for a floating beam equation via critical point theory," Journal of Differential Equations, vol. 170, no. 1, pp. 157-179, 2001.

