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1. Introduction

In recent years, there are several papers concerned with the existence of positive solutions of
BVPs for differential equations with nonhomogeneous BCs. Kwong and Wong in [1] studied
the following BVP:

y′′(t) = −f(t, y(t)), 0 < t < 1,

sin θy(0) − cos θy′(0) = 0,

y(1) −
m−2∑

i=1

αiy
(
ξi
)
= b ≥ 0,

(1.1)

where ξi ∈ (0, 1), αi ≥ 0, θ ∈ [0, 3π/4], f is a nonnegative and continuous function. Under
some assumptions, it was proved that there exists a constant b∗ > 0 such that

(i) BVP(1.1) has at least two positive solutions if b ∈ (0, b∗);

(ii) BVP(1.1) has at least one solution if b = 0 or b = b∗;

(iii) BVP(1.1) has no positive solution if b > b∗.
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Sun et al. in [2] studied the existence of positive solutions for the following three-point
boundary value problem:

u′′(t) + a(t)f
(
u(t)
)
= 0, 0 ≤ t ≤ 1,

u′(0) = 0,

u(1) −
m−2∑

i=1

αiu
(
ξi
)
= b ≥ 0,

(1.2)

where ξi ∈ (0, 1), αi ≥ 0 are given. It was proved that there exists b∗ > 0 such that BVP(1.2)
has at least one positive solution if b ∈ (0, b∗) and no positive solution if b > b∗. To study
the existence of positive solutions of above BVPs, the Green’s functions of the corresponding
problems are established and play an important role in the proofs of the main results.

For the following multipoint boundary value problems

x′′(t) + f
(
t, x(t), x′(t)

)
= 0, t ∈ (0, 1),

x′(0) −
m∑

i=1

αix
′(ξi
)
= λ1,

x(1) −
m∑

i=1

βix
(
ξi
)
= λ2,

x′′(t) + f
(
t, x(t), x′(t)

)
= 0, t ∈ (0, 1),

x(0) −
m∑

i=1

αix
(
ξi
)
= λ1,

x(1) −
m∑

i=1

βix
(
ξi
)
= λ2,

(1.3)

in papers [3–5], sufficient conditions are found for the existence of solutions of BVP(1.3)
based on the existence of lower and upper solutions with certain relations. Using the obtained
results, under some other assumptions, the explicit ranges of values of λ1 and λ2 are presented
with which BVP has a solution, has a positive solution, and has no solution, respectively.
Furthermore, it is proved that the whole plane for λ1 and λ2 can be divided into two disjoint
connected regions ∧E and ∧N such that BVP has a solution for (λ1, λ2) ∈ ∧E and has no
solution for (λ1, λ2) ∈ ∧N.

In a recent paper [6], Liu, by using the Schauder fixed point theorem and imposing
growth conditions on f , obtained at least one positive solution of the following BVPs:

[
φ
(
x′(t)

)]′ + f
(
t, x(t), x′(t)

)
= 0, t ∈ (0, 1),

x′(0) =
m∑

i=1

αix
′(ξi
)
+A,

x(1) =
m∑

i=1

βix
(
ξi
)
+ B,

[φ
(
x′(t)

)
]′ + f

(
t, x(t), x′(t)

)
= 0, t ∈ (0, 1),

x(0) =
m∑

i=1

αix
(
ξi
)
+A,

x′(1) =
m∑

i=1

βix
′(ξi
)
+ B.

(1.4)



Xingyuan Liu 3

Motivated by the results obtained in the papers, this paper is concerned with the
following BVPs for differential equation with p-Laplacian coupled with nonhomogeneous
multipoint BCs, that is, the BVPs

[
φ
(
x′(t)

)]′ + q(t)f
(
t, x(t), x′(t)

)
= 0, t ∈ (0, 1),

x(0) =
m∑

i=1

αix
(
ξi
)
+A,

x′(1) =
m∑

i=1

βix
′(ξi
)
,

(1.5)

where 0 < ξ1 < · · · < ξm < 1, A ∈ R, αi ≥ 0, βi ≥ 0 for all i = 1, . . . , m, f : [0, 1] × R2 → R

is continuous and nonnegative, q : (0, 1) → [0,+∞) is continuous with
∫1
0 q(u)du < +∞, φ is

called p-Laplacian, φ(x) = |x|p−2x with p > 1, its inverse function is denoted by φ−1(x).
Suppose
(H1) f : [0, 1] × [0,+∞) × [0,+∞) → [0,+∞) is continuous with f(t, c + h, 0)/≡ 0 on

each subinterval of [0, 1] for all c ≥ 0, where h = A/1 −∑m
i=1αi;

(H2) A ≥ 0;
(H3) αi ≥ 0, βi ≥ 0 satisfy

∑m
i=1αi < 1,

∑m
i=1βi < 1 and there exists a constant σ > 0 such

that φ−1(1 + (1/σ))
∑m

i=1βi < 1.
The purpose is to establish sufficient conditions for the existence of at least three

solutions of BVP(1.5). It is proved that BVP(1.5) has three monotone solutions under the
growth conditions imposed on f for all A ∈ R. These solutions may not be positive. The
proofs of the main results are proved by using fixed point theorem in cones in Banach spaces,
Green’s functions and the existence of upper and lower solutions are not used in this paper.

The remainder of this paper is organized as follows. The main results are given in
Section 2 and an example to show the main results is given in Section 3.

2. Main Results

In this section, we first present some background definitions in Banach spaces and state an
important three fixed point theorem. Then the main results are given and proved.

Definition 2.1. LetX be a semi-ordered real Banach space. The nonempty convex closed subset
P of X is called a cone in X if ax ∈ P for all x ∈ P and a ≥ 0 and x ∈ X and −x ∈ X imply
x = 0.

Definition 2.2. A map ψ : P → [0,+∞) is a nonnegative continuous concave or convex
functional map provided ψ is nonnegative and continuous and satisfies

ψ
(
tx + (1 − t)y) ≥ tψ(x) + (1 − t)ψ(y), (2.1)

or

ψ
(
tx + (1 − t)y) ≤ tψ(x) + (1 − t)ψ(y), (2.2)

for all x, y ∈ P and t ∈ [0, 1].
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Definition 2.3. An operator T ; X → X is completely continuous if it is continuous and maps
bounded sets into relative compact sets.

Definition 2.4. Let a1, a2, a3, a4, a5 > 0 be positive constants, α1, α2 be two nonnegative
continuous concave functionals on cone P , β1, β2, β3 be three nonnegative continuous
convex functionals on cone P . Define the convex sets as follows:

Pc =
{
x ∈ P : ||x|| < a5

}
,

P
(
β1, α1;a2, a5

)
=
{
x ∈ P : α1(x) ≥ a2, β1(x) ≤ a5

}
,

P
(
β1, β3, α1;a2, a3, a5

)
=
{
x ∈ P : α1(x) ≥ a2, β3(x) ≤ a3, β1(x) ≤ a5

}
,

Q
(
β1, β2;a1, a5

)
=
{
x ∈ P : β2(x) ≤ a1, β1(x) ≤ a5

}
,

Q
(
β1, β2, α2;a4, a1, a5

)
=
{
x ∈ P : α2(x) ≥ a4, β2(x) ≤ a1, β1(x) ≤ a5

}
.

(2.3)

Lemma 2.5 (see [7]). Let X be a semi-ordered real Banach space with the norm ||·||, let P be a cone
in X, let α1, α2 be two nonnegative continuous concave functionals on cone P , let β1, β2, β3 be three
nonnegative continuous convex functionals on cone P . There exists constantM > 0 such that

α1(x) ≤ β2(x), ||x|| ≤Mβ1(x) ∀x ∈ P. (2.4)

Furthermore, suppose that a1, a2, a3, a4, a5 > 0 are constants with a1 < a2. Let T : Pa5 → Pa5 be a
completely continuous operator. If

(C1) {y ∈ P(β1, β3, α1;a2, a3, a5) | α1(x) > a2}/=∅ and

α1(Tx) > a2 for every x ∈ P(β1, β3, α1;a2, a3, a5
)
; (2.5)

(C2) {y ∈ Q(β1, β3, α2;a4, a1, a5) | β2(x) < a1}/=∅ and

β2(Tx) < a1 for every x ∈ Q(β1, β3, α2;a4, a1, a5
)
; (2.6)

(C3) α1(Ty) > a2 for y ∈ P(β1, α1;a2, a5) with β3(Ty) > a3;
(C4) β2(Tx) < a1 for each x ∈ Q(β1, β2;a1, a5) with α2(Tx) < a4, then T has at least three

fixed points y1, y2, and y3 such that

β2
(
y1
)
< a1, α1

(
y2
)
> a2, β2

(
y3
)
> a1, α1

(
y3
)
< a2. (2.7)

Choose X = C1[0, 1]. We call x ≤ y for x, y ∈ X if x(t) ≤ y(t) for all t ∈ [0, 1], define
the norm ||x|| = max{maxt∈[0,1]|x(t)|, maxt∈[0,1]|x′(t)|} for x ∈ X. It is easy to see that X is a
semi-ordered real Banach space.

Choose k ∈ (0, 1/2). For a cone P ⊆ X of the Banach spaceX = C1[0, 1], define the functionals
on P : P → R by

β1(y) = max
t∈[0,1]

∣∣y′(t)
∣∣, y ∈ P,

β2(y) = max
t∈[0,1]

∣∣y(t)
∣∣, y ∈ P,

β3(y) = max
t∈[k, 1−k]

∣∣y(t)
∣∣, y ∈ P,

α1(y) = min
t∈[k, 1−k]

∣∣y(t)
∣∣, y ∈ P,

α2(y) = min
t∈[k, 1−k]

∣∣y(t)
∣∣, y ∈ P.

(2.8)
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It is easy to see that α1, α2 are two nonnegative continuous concave functionals on the cone
P, β1, β2, β3 are three nonnegative continuous convex functionals on cone P and α1(y) ≤ β2(y)
for all y ∈ P .

Lemma 2.6. Suppose that x ∈ X, x(t) ≥ 0 for all t ∈ [0, 1] and x′(t) is decreasing on [0, 1]. Then

x(t) ≥ min{t, 1 − t}max
t∈[0, 1]

x(t), t ∈ [0, 1]. (2.9)

Proof. Suppose that x(t0) = maxt∈[0,1]x(t). If t ∈ (0, t0), we get that there exists 0 ≤ η ≤ t ≤ ξ ≤ t0
such that

x(t) − x(0)
t − 0

− x
(
t0
) − x(0)
t0 − 0

= − t
[
x
(
t0
) − x(t)] − (t0 − t

)[
x(t) − x(0)]

tt0

= − t
(
t0 − t

)
x′(ξ) − (t0 − t

)
tx′(η)

tt0

≥ − t
(
t0 − t

)
x′(η) − (t0 − t

)
tx′(η)

tt0
= 0.

(2.10)

Then

x(t) ≥ t

t0
x
(
t0
)
+
(
1 − t

t0
x(0)

)
≥ t

t0
x
(
t0
) ≥ tx(t0

)
, t ∈ (0, t0

)
. (2.11)

Similarly we can get that

x(t) ≥ (1 − t)x(t0
)
, t ∈ (t0, 1

)
. (2.12)

It follows that x(t) ≥ min{t, 1 − t}maxt∈[0,1]x(t) for all t ∈ [0, 1]. The proof is complete.

Consider the following BVP:
[
φ
(
y′(t)

)]′ + h(t) = 0, t ∈ (0, 1),

y(0) −
m∑

i=1

αiy
(
ξi
)
= 0,

y′(1) −
m∑

i=1

βiy
′(ξi
)
= 0,

(2.13)

Lemma 2.7. Suppose that h is a nonnegative continuous function, (H2) and (H3) hold. If y is a
solution of BVP(2.13), then y is increasing and positive on (0, 1).

Proof. Suppose that y satisfies (2.13). It follows from the assumptions that y′ is decreasing on
[0, 1]. Then the BCs in (2.13) and (H2) imply that

y′(1) =
m∑

i=1

βiy
′(ξi
) ≥

m∑

i=1

βiy
′(1). (2.14)

It follows that y′(1) ≥ 0. We get that y′(t) ≥ 0 for t ∈ [0, 1]. Then

y(0) =
m∑

i=1

αiy
(
ξi
) ≥

m∑

i=1

αiy(0). (2.15)

It follows that y(0) ≥ 0. Then y(t) > y(0) ≥ 0 for t ∈ (0, 1) since y′(t) ≥ 0 for all t ∈ [0, 1]. The
proof is complete.
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Lemma 2.8. Suppose that h is a nonnegative continuous function, (H2) and (H3) hold. If y is a
solution of BVP(2.13), then

y(t) = Bh +
∫ t

0
φ−1
(
Ah +

∫1

s

h(u)du
)
ds, (2.16)

and Ah ∈ [0, σ
∫1
0 h(u)du] satisfies

φ−1(Ah

)
=

m∑

i=1

βiφ
−1
(
Ah +

∫1

ξi

h(s)ds
)
, (2.17)

and Bh satisfies

Bh =
1

1 −∑m
i=1αi

m∑

i=1

αi

∫ ξi

0
φ−1
(
Ah +

∫1

s

h(u)du
)
ds. (2.18)

Proof. It follows from (2.13) that

y(t) = y(0) +
∫ t

0
φ−1
(
φ
(
y′(1)

)
+
∫1

s

h(u)du
)
ds, (2.19)

and the BCs in (2.13) imply that

y′(1) =
m∑

i=1

βiφ
−1
(
φ
(
y′(1)

)
+
∫1

ξi

h(s)ds
)
,

y(0) =
1

1 −∑m
i=1αi

m∑

i=1

αi

∫ ξi

0
φ−1
(
φ
(
y′(1)

)
+
∫1

s

h(u)du
)
ds.

(2.20)

Let

G(c) = φ−1(c) −
m∑

i=1

βiφ
−1
(
c +
∫1

ξi

h(s)ds
)
. (2.21)

It is easy to see that G(0) ≤ 0. On the other hand, it follows from (H3) that φ−1(1 +
(1/σ))

∑m
i=1βi < 1, one sees that

G
(
σ
∫1
0h(u)du

)

φ−1(σ
∫1
0h(u)du

) = 1 −
m∑

i=1

βiφ
−1
(

1 +

∫1
ξi
h(s)ds

σ
∫1
0h(u)du

)

≥ 1 −
m∑

i=1

βiφ
−1
(
1 +

1
σ

)

≥ 0.

(2.22)

Hence G(σ
∫1
0h(u)du) ≥ 0. Since G(x) is increasing for x ∈ R, we get that there exists unique

constant Ah = φ(y(1)) ∈ [0, σ
∫1
0h(u)du] such that (2.17) holds. The proof is completed.
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Note h = A/1 −∑m
i=1αi, and let x(t) = y(t) + h. Then BVP(1.5) is transformed into the

following BVP:
[
φ
(
y′(t)

)]′ + f
(
t, y(t) + h, y′(t)

)
= 0, t ∈ (0, 1),

y(0) −
m∑

i=1

αiy
(
ξi
)
= 0,

y′(1) −
m∑

i=1

βiy
′(ξi
)
= 0.

(2.23)

Let

P =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(t) ≥ 0, ∀t ∈ [0, 1],

y′(t) ≥ 0 is decreasing on [0, 1],

y ∈ X : y(t) ≥ min{t, (1 − t)}max
t∈[0,1]

y(t), ∀t ∈ [0, 1],

y(0) −
m∑

i=1

αiy
(
ξi
)
= 0,

y′(1) −
m∑

i=1

βiy
′(ξi
)
= 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2.24)

Then P is a cone in X.
Since

∣∣y(0)
∣∣ =

∣∣∣∣∣

∑m
i=1αiy

(
ξi
) −∑m

i=1αiy(0)
1 −∑m

i=1αi

∣∣∣∣∣
≤
∑m

i=1αiξi

1 −∑m
i=1αi

max
t∈[0,1]

∣∣y′(t)
∣∣ =

∑m
i=1αiξi

1 −∑m
i=1αi

γ(y), (2.25)

we get that

max
t∈[0,1]

∣∣y(t)
∣∣ = y(1) =

∫1

0
y′(s)ds + y(0) ≤

(

1 +
∑m

i=1αiξi

1 −∑m
i=1αi

)

γ(y). (2.26)

It is easy to see that there exists a constantM > 0 such that ||y|| ≤Mγ(y) for all y ∈ P .
Define the nonlinear operator T : P → X by

(Ty)(t) = By +
∫ t

0
φ−1
(
Ay +

∫1

s

f
(
u, y(u) + h, y′(u)

)
du

)
ds, y ∈ P, (2.27)

where Ay satisfies

φ−1(Ay

)
=

m∑

i=1

βiφ
−1
(
Ay +

∫1

ξi

f
(
s, y(s) + h, y′(s)

)
ds

)
, (2.28)

and By satisfies

By =
1

1 −∑m
i=1αi

m∑

i=1

αi

∫ ξi

0
φ−1
(
Ay +

∫1

s

f
(
u, y(u) + h, y′(u)

)
ds

)
ds. (2.29)

Then

(Ty)(t) =
∫ t

0
φ−1
(
Ay +

∫1

s

f
(
u, y(u) + h, y′(u)

)
du

)
ds

+
1

1 −∑m
i=1αi

m∑

i=1

αi

∫ ξi

0
φ−1
(
Ay +

∫1

s

f
(
u, y(u) + h, y′(u)

)
ds

)
ds, y ∈ P.

(2.30)
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Lemma 2.9. Suppose that (H1), (H2), and (H3) hold. It is easy to show that

(i) y is a solution of the BVP

[
φ
(
(Ty)′(t)

)]′ + f
(
t, y(t) + h, y′(t)

)
= 0, t ∈ (0, 1),

(Ty)(0) −
m∑

i=1

αi(Ty)
(
ξi
)
= 0,

(Ty)′(1) −
m∑

i=1

βi(Ty)
′(ξi
)
= 0;

(2.31)

(ii) Ty ∈ P for each y ∈ P ;
(iii) x is a solution of BVP(1.5) if and only if x = y + h and y is a solution of the operator

equation y = Ty in cone P ;

(iv) T : P → P is completely continuous.

Proof. The proofs are simple and are omitted.

Theorem 2.10. Suppose that (H1), (H2), and (H3) hold and there exist positive constants e1, e2, c
and Q, W , and E given by

L =
∫1

0
φ−1(σ + 1 − s)ds + 1

1 −∑m
i=1αi

m∑

i=1

αi

∫ ξi

0
φ−1(σ + 1 − s)ds;

Q = min
{
φ

(
c

L

)
,
φ(c)
σ + 1

}
;

W = φ

(
e2

σ0
∫1−k
k φ−1(1 − k − s)ds

)

;

E = φ
(
e1
L

)
.

(2.32)

such that

c ≥ e2
σ0

> e2 >
e1
σ0

> e1 > 0, Q > W. (2.33)

If
(A1) f(t, u, v) < Q for all t ∈ [0, 1], u ∈ [h, c + h], v ∈ [−c, c];
(A2) f(t, u, v) > W for all t ∈ [k, 1 − k], u ∈ [e2 + h, e2/σ0 + h], v ∈ [−c, c];
(A3) f(t, u, v) ≤ E for all t ∈ [0, 1], u ∈ [h, e1/σ0 + h], v ∈ [−c, c];
then BVP(1.5) has at least three increasing positive solutions x1, x2, x3 such that

x1(1) < e1 + h, x2(k) > e2 + h, x3(1) > e1 + h, x3(k) < e2 + h. (2.34)

Proof. To apply Lemma 2.5, we prove that all conditions in Lemma 2.5 are satisfied. By the
definitions, it is easy to see that α1, α2 are two nonnegative continuous concave functionals
on cone P , β1, β2, β3 are three nonnegative continuous convex functionals on cone P and
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α1(y) ≤ β2(y) for all y ∈ P , there exist constants M > 0 such that ||y|| ≤ Mβ1(y) for all
y ∈ P . Lemma 2.9 implies that x = x(t) is a positive solution of BVP(1.5) if and only if
x(t) = y(t) + h and y(t) is a solution of the operator equation y = Ty and T : P → P is
completely continuous.

Corresponding to Lemma 2.5,

a1 = e1, a2 = e2, a3 =
e2
σ0
, a4 = σ0e1, a5 = c. (2.35)

Now, we prove that all conditions of Lemma 2.5 hold. One sees that 0 < a1 < a2. The
remainder is divided into four steps.

Step 1. Prove that T : Pa5 → Pa5 .
For y ∈ Pa5 , we have ||y|| ≤ a5. Then 0 ≤ y(t) ≤ a5 for t ∈ [0, 1] and −a5 ≤ y′(t) ≤ a5 for

all n ∈ [0, 1]. So (A1) implies that

f
(
t, y(t) + h, y′(t)

) ≤ Q, t ∈ [0, 1]. (2.36)

It follows from Lemma 2.9 that Ty ∈ P . Then Lemma 2.9 implies that

0 ≤ (Ty)(t) ≤
∫1

0
φ−1
(
Ay +

∫1

s

f
(
u, y(u) + h, y′(u)

)
du

)
ds

+
1

1 −∑m
i=1αi

m∑

i=1

αi

∫ ξi

0
φ−1
(
Ay +

∫1

s

f
(
u, y(u) + h, y′(u)

)
du

)
ds

≤
∫1

0
φ−1
(
σ

∫1

0
f
(
u, y(u) + h, y′(u)

)
du +

∫1

s

f
(
u, y(u) + h, y′(u)

)
du

)
ds

+
1

1 −∑m
i=1αi

m∑

i=1

αi

∫ ξi

0
φ−1
(
σ

∫1

0
f
(
u, y(u) + h, y′(u)

)
du

+
∫1

s

f
(
u, y(u) + h, y′(u)

)
du

)
ds

≤
∫1

0
φ−1(σQ +Q(1 − s))ds + 1

1 −∑m
i=1αi

m∑

i=1

αi

∫ ξi

0
φ−1(σQ +Q(1 − s))ds

= φ−1(Q)

[∫1

0
φ−1(σ + 1 − s)ds + 1

1 −∑m
i=1αi

m∑

i=1

αi

∫ ξi

0
φ−1(σ + 1 − s)ds

]

≤ a5.

(2.37)

On the other hand, similarly to above discussion, we have from Lemma 2.9 that

∣∣(Ty)′(t)
∣∣ ≤ (Ty)′(0) = φ−1

(
Ay +

∫1

0
f
(
u, y(u) + h, y′(u)

)
du

)

≤ φ−1
(
σ

∫1

0
f
(
u, y(u) + h, y′(u)

)
du +

∫1

0
f
(
u, y(u) + h, y′(u)

)
du

)

≤ φ−1((σ + 1)Q
)

≤ a5.

(2.38)

It follows that ||Ty|| = max{maxt∈[0,1]|(Ty)(t)|, maxt∈[0,1]|(Ty)′(t)|} ≤ a5. Then T : Pa5 → Pa5 .
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Step 2. Prove that

{
y ∈ P(β1, β3, α1;a2, a3, a5

) | α1(y) > a2
}
=
{
y ∈ P

(
β1, β3, α1; e2,

e2
σ0
, c

)
| α1(y) > e2

}

/=∅

(2.39)

and α1(Ty) > e2 for every y ∈ P(β1, β3, α1; e2, e2/σ0, a5).
Choose y(t) = e2/2σ0 for all t ∈ [0, 1]. Then y ∈ P and

α1(y) =
e2
2σ0

> e2, β3(y) =
e2
2σ0

≤ e2
σ0
, β1(y) = 0 < a5. (2.40)

It follows that {y ∈ P(β1, β3, α1;a2, a3, a5) | α1(y) > a2}/=∅.
For y ∈ P(β1, β3, α1;a2, a3, a5), one has that

α1(y) = min
t∈[k, 1−k]

y(t) ≥ e2, β3(y) = max
t∈[k, 1−k]

y(t) ≤ e2
σ0
, β1(y) = max

t∈[0,1]

∣
∣y′(t)

∣
∣ ≤ a5.

(2.41)

Then

e2 ≤ y(t) ≤ e2
σ0
, t ∈ [k, 1 − k], ∣∣y′(t)

∣∣ ≤ a5. (2.42)

Thus (A2) implies that

f
(
t, y(t) + h, y′(t)

) ≥W, n ∈ [k, 1 − k]. (2.43)

Since

α1(Ty) = min
t∈[k, 1−k]

(Ty)(t) ≥ σ0max
t∈[0,1]

(Ty)(t), (2.44)

we get from Lemma 2.9 that

α1(Ty) ≥ σ0max
t∈[0,1]

(Ty)(t)

= σ0
[∫1

0
φ−1
(
Ay +

∫1

s

f
(
u, y(u) + h, y′(u)

)
du

)
ds

+
1

1 −∑m
i=1αi

m∑

i=1

αi

∫ ξi

0
φ−1
(
Ah +

∫1

s

f
(
u, y(u) + h, y′(u)

)
ds

)
ds

]

≥ σ0
[∫1

0
φ−1
(∫1

s

f
(
u, y(u) + h, y′(u)

)
du

)
ds

]

≥ σ0
∫1−k

k

φ−1
(∫1−k

s

f
(
u, y(u) + h, y′(u)

)
du

)
ds

≥ σ0
∫1−k

k

φ−1(W(1 − k − s))ds

= e2.

(2.45)

This completes Step 2.
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Step 3. Prove that {y ∈ Q(β1, β3, α2;a4, a1, a5) | β2(y) < a1} = {y ∈ Q(β1, β3, α2;σ0e1, e1, c) |
β2(y) < e1}/=∅ and

β2(Ty) < e1 for every y ∈ Q(β1, β3, α2;a4, a1, a5
)
= Q
(
β1, β3, α2;σ0e1, e1, a5

)
. (2.46)

Choose y(t) = σ0e1. Then y ∈ P , and

α2(y) = σ0e1 ≥ h, β2(y) = β3(y) = σ0e1 < e1 = a1, β1(y) = 0 ≤ a5. (2.47)

It follows that {y ∈ Q(β1, β3, α2;a4, a1, a5) | β2(y) < a1}/=∅.
For y ∈ Q(β1, β3, α2;a4, a1, a5), one has that

α2(y)= min
t∈[k, 1−k]

y(t) ≥ h=e1σ0, β3(y)= max
t∈[k, 1−k]

y(t) ≤ a1=e1, β1(y) = max
t∈[0,1]

∣
∣y′(t)

∣
∣ ≤ a5.
(2.48)

Hence we get that

0 ≤ y(t) ≤ e1
σ0
, t ∈ [0, 1]; −a5 ≤ y′(t) ≤ a5, t ∈ [0, 1]. (2.49)

Then (A3) implies that

f
(
t, y(t) + h, y′(t)

) ≤ E, t ∈ [0, 1]. (2.50)

So

β2(Ty) = max
t∈[0,1]

(Ty)(t)

=
∫1

0
φ−1
(
Ay +

∫1

s

f
(
u, y(u) + h, y′(u)

)
du

)
ds

+
1

1 −∑m
i=1αi

m∑

i=1

αi

∫ ξi

0
φ−1
(
Ay +

∫1

s

f
(
u, y(u) + h, y′(u)

)
du

)
ds

≤
∫1

0
φ−1
(
σ

∫1

0
f
(
u, y(u) + h, y′(u)

)
du +

∫1

s

f
(
u, y(u)+h, y′(u)

)
du

)
ds

+
1

1 −∑m
i=1αi

m∑

i=1

αi

∫ ξi

0
φ−1
(
σ

∫1

0
f
(
u, y(u) + h, y′(u)

)
du+

∫1

s

f
(
u, y(u)+h, y′(u)

)
du

)
ds

≤
∫1

0
φ−1(σE + E(1 − s))ds + 1

1 −∑m
i=1αi

m∑

i=1

αi

∫ ξi

0
φ−1(σE + E(1 − s))ds

= φ−1(E)

[∫1

0
φ−1(σ + 1 − s)ds + 1

1 −∑m
i=1αi

m∑

i=1

αi

∫ ξi

0
φ−1(σ + 1 − s)ds

]

= e1 = a1.
(2.51)

This completes Step 3.
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Step 4. Prove that α1(Ty) > a2 for y ∈ P(β1, α1;a2, a5) with β3(Ty) > a3.
For y ∈ P(β1, α1;a2, a5) = P(β1, α1; e2, a5) with β3(Ty) > a3 = e2/σ0, we have that

α1(y) = mint∈[k,1−k]y(t) ≥ e2 and β1(y) = maxt∈[0,1]|y(t)| ≤ a5 and maxt∈[k,1−k](Ty)(t) > e2/σ0.
Then

α1(Ty) = min
t∈[k, 1−k]

(Ty)(t) ≥ σ0β2(Ty) > σ0 e2
σ0

= e2 = a2. (2.52)

This completes Step 4.

Step 5. Prove that β2(Ty) < a1 for each y ∈ Q(β1, β2;a1, a5) with α2(Ty) < a4.
For y ∈ Q(β1, β2;a1, a5) with α2(Ty) < a1, we have β1(y) = maxt∈[0,1]|y(t)| ≤ a5 and

β2(y) = maxt∈[0,1]y(t) ≤ a1 = e1 and α2(Ty) = mint∈[k,1−k](Ty)(t) < a4 = e1σ0. Then

β2(Ty) = max
t∈[0,1]

(Ty)(t) ≤ 1
σ0

min
t∈[k,1−k]

(Ty)(t) <
1
σ0
e1σ0 = e1 = a1. (2.53)

This completes Step 5.

Then Lemma 2.5 implies that T has at least three fixed points y1, y2, and y3 in P such
that

β2
(
y1
)
< e1, α1(y2) > e2, β2(y3) > e1, α1(y3) < e2. (2.54)

Hence BVP(1.5) has three increasing positive solutions x1, x2, and x3 such that

max
t∈[0,1]

x1(t) < e1 + h, min
t∈[k, 1−k]

x2(t) > e2 + h,

max
t∈[0,1]

x3(t) > e1 + h, min
t∈[k, 1−k]

x3(t) < e2 + h.
(2.55)

Hence

x1(1) < e1 + h, x2(k) > e2 + h, x3(1) > e1 + h, x3(k) < e2 + h. (2.56)

The proof is complete.

3. Examples

Now, we present one example, whose three solutions cannot be obtained by theorems in
known papers, to illustrate the main results.

Example 3.1. Consider the following BVP:

x′′(t) + f
(
t, x(t), x′(t)

)
= 0, t ∈ (0, 1),

x(0) =
1
4
x

(
1
4

)
+ 6,

x′(1) =
1
4
x′
(
1
2

)
.

(3.1)
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Corresponding to BVP(1.5), one sees that φ(x) = x = φ−1(x), ξ1 = 1/4, ξ2 = 1/2, α1 =
1/4, α2 = 0, β1 = 0, β2 = 1/4, A = 6. It is easy to see that h = A/1 − αi = 8, choose σ = 1/2,
then φ−1(1 + 1/σ)

∑m
i=1βi < 1.

Choose k = 1/4, then σ0 = 1/4, choose e1 = 10, e2 = 50, c = 20000 and Q, W and E
are given by

L =
∫1

0
φ−1(σ + 1 − s)ds + 1

1 −∑m
i=1αi

m∑

i=1

αi

∫ ξi

0
φ−1(σ + 1 − s)ds = 107

96
;

Q = min
{
φ

(
c

L

)
,
φ(c)
σ + 1

}
=

40000
3

;

W = φ

(
e2

σ0
∫1−k
k φ−1(1 − k − s)ds

)

= 1600;

E = φ
(
e1
L

)
=

960
107

,

(3.2)

such that

c ≥ e2
σ0

> e2 >
e1
σ0

> e1 > 0, Q > W. (3.3)

If

f0(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

480
107

, x ∈ [8, 48],

480
107

+
8000 − (480/107)

58 − 48
× (x − 48), x ∈

[
140
3
,
146
3

]
,

8000, x ∈ [58, 20008],

(x − 20008)3 + 8000, x ≥ 20008,

(3.4)

let

f(t, u, v) = f0(u) +
1 + sin t
10000

+
u2 + v2

2 × 1012
, (3.5)

then
(A1) f(t, u, v) < 40000/3 for all t ∈ [0, 1], u ∈ [8, 20008], v ∈ [−20000, 20000];
(A2) f(t, u, v) > 1600 for all t ∈ [1/4, 3/4], u ∈ [58, 808] , v ∈ [−20000, 20000];
(A3) f(t, u, v) ≤ 960/107 for all t ∈ [0, 1], u ∈ [8, 48], v ∈ [−20000, 20000];
then Theorem 2.10 implies that BVP(3.1) has at least three decreasing and positive

solutions x1, x2, x3 such that

x1(1) <
50
3
, x2

(
1
4

)
>

146
3
, x3(1) >

50
3
, x3

(
1
4

)
<

146
3
. (3.6)
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