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1. Introduction

Hermitian Clifford analysis deals with the simultaneous null solutions of the orthogonal Dirac
operators ∂x and its twisted counterpart ∂x|, introduced below. For a thorough treatment of this
higher-dimensional function theory, we refer the reader to, for example, [1–5].

Let (e1, . . . , e2n) be an orthonormal basis of the Euclidean space R
2n. Consider the com-

plex Clifford algebra C2n constructed over R
2n. The noncommutative multiplication in C2n is

governed by

e2j = −1, j = 1, . . . , 2n,

ejek + ekej = 0, 1 ≤ j /= k ≤ 2n.
(1.1)

A basis for C2n is obtained by considering for a set A = {j1, . . . , jk} ⊂ {1, . . . , 2n} the element
eA = ej1 . . . ejk , with j1 < · · · < jk. For the empty set ∅, we put e∅ = 1, the latter being the
identity element.

Any Clifford number a ∈ C2n may thus be written as

a =
∑

A

aAeA, aA ∈ C, (1.2)
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and its Hermitian conjugate a is defined by

a =
∑

A

aAeA, eA = (−1)k(k+1)/2eA, |A| = k. (1.3)

The Euclidean space R
2n is embedded in the Clifford algebra C2n by identifying (x1,

. . . , x2n)with the real Clifford vector x given by

x =
n∑

j=1

(
e2j−1x2j−1 + e2jx2j

)
. (1.4)

The product of two vectors splits up into a scalar part and a so-called bivector part:

xy = −〈x, y〉 + x ∧ y, (1.5)

where

〈x, y〉 =
2n∑

j=1

xjyj ,

x ∧ y =
2n∑

j=1

2n∑

k=j+1

ejek
(
xjyk − xkyj

)
.

(1.6)

We also introduce for each real Clifford vector x its twisted counterpart

x| =
n∑

j=1

(
e2j−1x2j − e2jx2j−1

)
. (1.7)

Note that x2 = −〈x, x〉 = −|x|2 = −|x||2 = x|2. Also observe that the Clifford vectors x and
x| are orthogonal with respect to the standard Euclidean scalar product, which implies that
xx| = −x|x.

The Fischer dual of the vector x is the first-order differential operator

∂x =
n∑

j=1

(
e2j−1∂x2j−1 + e2j∂x2j

)
(1.8)

called Dirac operator. Null solutions of this operator are called monogenic functions, which
may be regarded as a natural generalization to a higher-dimensional setting of the holomorphic
functions of one complex variable (see [6, 7]). A function f continuously differentiable in an
open set Ω of R

2n and taking value in C2n is said to be (left) monogenic in Ω if and only if
∂xf = 0 in Ω. In a similar way, a notion of monogenicity can be associated to the Fischer dual
of the vector x| given by

∂x| =
n∑

j=1

(
e2j−1∂x2j − e2j∂x2j−1

)
. (1.9)

We notice that the Dirac operators ∂x and ∂x| anticommute and factorize the Laplacian, that
is, −∂2x = Δ = −∂2x|. Thus, monogenicity with respect to ∂x (resp., ∂x|) can be regarded as a
refinement of harmonicity.
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Further, a continuously differentiable function f in an open set Ω of R
2n with values in

C2n is called a (left) Hermitian monogenic (or h-monogenic) function in Ω if and only if it
satisfies in Ω the system

∂xf = 0 = ∂x|f. (1.10)

Throughout the paperΩ+ will stand for an open-bounded set in R
2n with a boundary compact

topological hypersurface Γ of finite (2n−1)-dimensional Hausdorffmeasure, andΩ− = R
2n\Ω+.

We assume that both open setsΩ± are connected. Finally, suppose that f belongs to the Hölder
space C0,α(Γ), 0 < α < 1.

The aim of this paper is to the study the following jump problem for h-monogenic func-
tions. Under which conditions can we decompose a given f on Γ as

f = f+ − f−, (1.11)

where f± ∈ C0,α(Γ) are extendable to h-monogenic functions F± in Ω± with F−(∞) = 0?
First, it should be noticed that if this jump problem has a solution, then it is unique.

This assertion can be easily proved using the Painlevé and Liouville theorems in the Clifford
analysis setting (see [6, 8]).

This work is motivated by the results obtained in [9, 10] where a similar problem was
studied for two-sided monogenic functions. For the case of harmonic vector fields, we refer the
reader to [11].

In order to solve problem (1.11), we propose two different approaches. The first one uses
an integral criterion for h-monogenicity (Section 2); and for the second approach, we establish
a conservation law for h-monogenic functions (Section 3).

2. An integral criterion for h-monogenicity

Let us denote by H2n−1 the (2n − 1)-dimensional Hausdorff measure (see [12–14]). In this sec-
tion, we require Γ to be an Ahlfors-David regular hypersurface (see [15]), that is, there exists
c > 0 such that for all x ∈ Γ and all 0 < r ≤ diamΓ,

c−1r2n−1 ≤ H2n−1(Γ ∩ {|y − x| ≤ r
}) ≤ cr2n−1. (2.1)

The fundamental solutions of the Dirac operators ∂x and ∂x| introduced in the previous section
are, respectively,

E(x) = − 1
σ2n

x

|x|2n , E|(x) = − 1
σ2n

x|
|x|2n , (2.2)

where σ2n is the surface area of the unit sphere S2n−1 in R
2n.

Let us consider the following Cauchy-type integrals CΓf , CΓ|f , and their singular ver-
sions SΓf , SΓ|f , defined as

(
CΓf

)
(x) =

∫

Γ
E(y − x)ν(y)f(y)dH2n−1(y),

(
SΓf

)
(z) = 2lim

ε→0+

∫

Γ\{|y−z|≤ε}
E(y − z)ν(y)

(
f(y) − f(z)

)
dH2n−1(y) + f(z),

(
CΓ|f

)
(x) =

∫

Γ
E
∣∣(y − x)ν

∣∣(y)f(y)dH2n−1(y),

(
SΓ|f

)
(z) = 2lim

ε→0+

∫

Γ\{|y−z|≤ε}
E
∣∣(y − z)ν

∣∣(y)
(
f(y) − f(z)

)
dH2n−1(y) + f(z),

(2.3)

for x ∈ R
2n \ Γ and z ∈ Γ.
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Here and subsequently, ν(y) =
∑ n

j=1(e2j−1ν2j−1(y) + e2jν2j(y)) stands for the unit normal
vector on Γ at the point y introduced by Federer (see [13]).

Note that CΓf (resp., CΓ|f) is monogenic in R
2n \Γwith respect to ∂x (resp., ∂x|) and that

CΓf(∞) = CΓ|f(∞) = 0.
Let us now formulate some important properties of these integral operators. For their

proofs, we refer the reader to [16, 17].

(a) SΓf, SΓ|f ∈ C0,α(Γ).

(b) Sokhotski-Plemelj formulae: for z ∈ Γ,

(
C±

Γf
)
(z) = lim

Ω±�x→z

(
CΓf

)
(x) =

1
2
((
SΓf

)
(z) ± f(z)

)
,

(
CΓ|±f

)
(z) = lim

Ω±�x→z

(
CΓ|f

)
(x) =

1
2
((
SΓ|f

)
(z) ± f(z)

)
.

(2.4)

Theorem 2.1 (integral criterion). The function f has an h-monogenic extension F± in Ω±, F−(∞) =
0, if and only if SΓf = ±f = SΓ|f .

Proof. Suppose that f has an h-monogenic extension F+ in Ω+. By Cauchy’s integral formula
for monogenic functions (see [6]), we have

(
CΓf

)
(x) = F+(x) =

(
CΓ|f

)
(x), x ∈ Ω+. (2.5)

Property (b) now implies

SΓf = f = SΓ|f. (2.6)

Conversely, assume that SΓf = f = SΓ|f . From (2.6) and using again property (b), we obtain

C+
Γf = f = CΓ|+f. (2.7)

Note that CΓf −CΓ|f is harmonic inΩ+ and C+
Γf −CΓ|+f = 0. The maximum and the minimum

principle for harmonic functions now yields CΓf = CΓ|f in Ω+, hence that CΓf is h-monogenic
in Ω+. Therefore by putting

F+(x) =

{(
CΓf

)
(x), x ∈ Ω+,

f(x), x ∈ Γ,
(2.8)

we obtain an h-monogenic extension of f in Ω+. The case Ω− is proved similarly.

We are now in the position to give a first solution to (1.11). We first claim that if f can be
decomposed as in (1.11), then SΓf = SΓ|f . Indeed, Theorem 2.1 now leads to

SΓf = SΓf
+ − SΓf

− = SΓ
∣∣f+ − SΓ

∣∣f− = SΓ
∣∣f. (2.9)

On the other hand, if SΓf = SΓ|f , then an analysis similar to that in the proof of
Theorem 2.1 shows that CΓf = CΓ|f , which implies that CΓf is h-monogenic in R

2n \ Γ. Fi-
nally, by (a) and (b), we conclude that f± = C±

Γf = CΓ|±f is a solution of the jump problem
(1.11).

Summarizing, we have the following.
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Theorem 2.2. The following statements are equivalent:

(i) f can be decomposed as in (1.11);

(ii) SΓf = SΓ|f ;
(iii) CΓf = CΓ|f ;
(iv) CΓf is h-monogenic in R

2n \ Γ.
Moreover, if the jump problem (1.11) is solvable, then its unique solution is given by

f± = C±
Γf =

1
2
(
SΓf ± f

)

= CΓ|±f =
1
2
(
SΓ|f ± f

)
.

(2.10)

3. A conservation law for h-monogenic functions

In the remainder of this paper, we assume Γ to be a C1-smooth hypersurface. Then for x suffi-
ciently close to Γ, we may assume that the orthogonal projection of x onto Γ is unique and it is
denoted by x⊥. Let us denote by ν =

∑ n
j=1(e2j−1ν2j−1 + e2jν2j) the unit normal vector on Γ at the

point x⊥.
In a neighborhood of Γ, we have the decomposition of ∂x in the normal and the tangential

parts (see [18])

∂x = −ν(ν∂x
)
= ν∂ν + ∂‖x, (3.1)

where

∂ν =
〈
ν, ∂x

〉
, ∂‖x = −ν(ν ∧ ∂x

)
. (3.2)

Similarly,

∂x| = −ν|(ν|∂x|) = ν|∂ν + ∂‖x|, (3.3)

with

∂‖x| = −ν|(ν| ∧ ∂x|
)
. (3.4)

The restrictions of the operators ∂‖x and ∂‖x| to Γwill be denoted by ∂ω and ∂ω|, respectively.

Let us suppose at the outset that F ∈ C1(Ω+) is a monogenic function in Ω+ with respect
to ∂x and set g = F|Γ. If F is moreover h-monogenic in Ω+, then from (3.1) and (3.3), we obtain
that in a neighbourhood of Γ intersected with Ω+

∂νF − ν∂‖xF = 0,

∂νF − ν|∂‖x|F = 0.
(3.5)

In this way, ν ∂‖xF = ν|∂‖x|F in a neighbourhood of Γ intersected withΩ+. By continuity, we get
on Γ the relation

ν|ν ∂ωg + ∂ω|g = 0. (3.6)
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On the other hand, if g satisfies (3.6), then for G = ∂x|F, we have

G = ν|∂νF + ∂‖x|F, 0 = ν ∂νF + ∂‖xF. (3.7)

Therefore in a neighbourhood of Γ intersected with Ω+, we obtain

G = ν|ν ∂‖xF + ∂‖x|F. (3.8)

It follows immediately that G|Γ = ν|ν ∂ωg + ∂ω|g = 0. As G is h-monogenic in Ω+ and hence
harmonic, we conclude that ∂x|F = G = 0 in Ω+.

Note that this analysis may be also applied to monogenic functions inΩ− with respect to
∂x vanishing at infinity.

We have thus proved the following.

Theorem 3.1 (conservation law). Let F± ∈ C1(Ω±) be a monogenic function in Ω± with respect to
∂x, F−(∞) = 0. Then, F± is an h-monogenic function in Ω± if and only if g = F±|Γ satisfies (3.6).

Let us return to the jump problem (1.11). If f can be decomposed as in (1.11), then
Theorem 3.1 now gives

ν|ν ∂ωf + ∂ω|f =
(
ν|ν ∂ωf+ + ∂ω|f+) − (

ν|ν ∂ωf− + ∂ω|f−) = 0. (3.9)

Conversely, suppose that ν|ν ∂ωf+∂ω|f = 0. Define f± = C±
Γf . Wewill prove that f± is a solution

of (1.11). To do this, take G = ∂x|CΓf . It follows that

G = ν|ν ∂‖xCΓf + ∂‖x|CΓf. (3.10)

Consequently, the limit values G± of G taken from Ω± are given by

G± = ν|ν ∂ωC±
Γf + ∂ω|C±

Γf. (3.11)

From (b)we see that G+ −G− = ν|ν ∂ωf + ∂ω|f = 0. As the function G is h-monogenic in R
2n \ Γ

and vanishes at infinity, we have G ≡ 0 in R
2n \ Γ, the last equality being a consequence of the

Painlevé and Liouville theorems.
We thus arrive to another characterization for the solvability of the jump problem (1.11).

Theorem 3.2. The jump problem (1.11) is solvable if and only if

ν|ν ∂ωf + ∂ω|f = 0. (3.12)
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