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66295 Brno, Czech Republic

Correspondence should be addressed to I. Kiguradze, kig@rmi.acnet.ge

Received 8 September 2007; Accepted 23 January 2008

Recommended by Donal O’Regan

For higher-order functional differential equations and, particularly, for nonautonomous differential
equations with deviated arguments, new sufficient conditions for the existence and uniqueness of a
periodic solution are established.

Copyright q 2008 I. Kiguradze et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Statement of the main results

1.1. Statement of the problem

Let n ≥ 2 be a natural number, ω > 0, Lω the space of ω-periodic and Lebesgue integrable on
[0, ω] functions u : R → R with the norm

‖u‖Lω
=
∫ω

0

∣∣u(s)∣∣ds. (1.1)

Let Cω and Cn−1
ω be, respectively, the spaces of continuous and (n − 1)-times continuously dif-

ferentiable ω-periodic functions with the norms

‖u‖Cω
= max

{∣∣u(t)∣∣ : t ∈ R
}
, ‖u‖Cn−1

ω
=

n∑
k=1

∥∥u(k−1)∥∥
Cω
, (1.2)

and let C̃n−1
ω be the space of functions u ∈ Cn−1

ω for which u(n−1) is absolutely continuous.
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2 Boundary Value Problems

We consider the functional differential equation

u(n)(t) = f(u)(t), (1.3)

whose important particular case is the differential equation with deviated arguments

u(n)(t) = g
(
t, u

(
τ1(t)

)
, . . . , u(n−1)(τn(t))). (1.4)

Throughout the paper, it is assumed that f : Cn−1
ω → Lω is a continuous operator satisfying the

condition

f∗
r (·) = sup

{∣∣f(u)(·)∣∣ : ‖u‖ ≤ r
} ∈ Lω for any r > 0, (1.5)

and g : R × R
n → R is a function from the Carathéodory class, satisfying the equality

g
(
t +ω, x1, . . . , xn

)
= g

(
t, x1, . . . , xn

)
(1.6)

for almost all t ∈ R and all (x1, . . . , xn) ∈ R
n. As for the functions τk : R → R (k = 1, . . . , n), they

are measurable on each finite interval and
(
τk(t +ω) − τk(t)

)
ω

is an integer
(
k = 1, . . . , n

)
(1.7)

for almost all t ∈ R.
A function u ∈ C̃n−1

ω is said to be an ω-periodic solution of (1.3) or (1.4) if it satisfies this
equation almost everywhere on R.

For the case τk(t) ≡ t(k = 1, . . . , n), the problem on the existence and uniqueness of an
ω-periodic solution of (1.4) has been investigated in detail (see, e.g., [1–18] and the references
therein). For (1.3) and (1.4), where τk(t)/≡ t (k = 1, . . . , n), the mentioned problem is studied
mainly in the cases n ∈ {1, 2} (see [19–31]), and for the case n > 2, the problem remains so far
unstudied. The present paper is devoted exactly to this case.

Everywhere below the following notation will be used:

νk =
ω

2

(
ω

2π

)n−k−2 (
k = 0, . . . , n − 2

)
, νn−1 = 1, (1.8)

[x]− =
(|x| − x

)
/2 for x ∈ R, (1.9)

μ(u) = min
{∣∣u(t)∣∣ : 0 ≤ t ≤ ω} for u ∈ Cω. (1.10)

1.2. Existence theorems

The existence of an ω-periodic solution of (1.3) is proved in the cases where the operator f in
the space Cn−1

ω satisfies the conditions

(∫ω

0
f(u)(s)ds

)
sgn

(
σu(0)

) ≥ h
(
μ(u)

) − n−1∑
k=1

�1k
∥∥u(k)

∥∥
Cω

− c for μ(u) > 0, (1.11)

∣∣∣∣
∫x

t

f(u)(s)ds
∣∣∣∣ ≤ �h

(
μ(u)

)
+

n−1∑
k=1

�2k
∥∥u(k)

∥∥
Cω

+ c for 0 ≤ t ≤ x ≤ ω, (1.12)
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or the conditions
(∫ω

0
f(u)(s)ds

)
sgn

(
σu(0)

) ≥ 0 for μ(u) > c0, (1.13)

∣∣∣∣
∫x

t

f(u)(s)ds
∣∣∣∣ ≤ c0 +

n−1∑
k=0

�k
∥∥u(k)∥∥

Cω
for 0 ≤ t ≤ x ≤ ω. (1.14)

Theorem 1.1. Let there exist an increasing function h : [0,+∞[→ [0,+∞[ and constants c ≥ 0,
�ik ≥ 0 (i = 1, 2; k = 1, . . . , n − 1), � ≥ 1, and σ ∈ {−1, 1} such that h(x) → +∞ as x → +∞,

n−1∑
k=1

(
��1k + �2k

)
νk < 1, (1.15)

and inequalities (1.11) and (1.12) are satisfied in the space Cn−1
ω . Then (1.3) has at least one ω-periodic

solution.

Theorem 1.2. Let there exist constants c0 ≥ 0, �k ≥ 0 (k = 0, . . . , n − 1), and σ ∈ {−1, 1} such that
n−1∑
k=0

�kνk < 1, (1.16)

and inequalities (1.13) and (1.14) are satisfied in the space Cn−1
ω . Then (1.3) has at least one ω-periodic

solution.

Theorems 1.1 and 1.2 imply the following propositions.

Corollary 1.3. Let there exist constants λ > 0, σ ∈ {−1, 1}, and functions pik ∈ Lω (i, k = 1, . . . , n),
q ∈ Lω such that the inequalities

g
(
t, x1, . . . , xn

)
sgn

(
σx1

) ≥ p11(t)
∣∣x1

∣∣λ − n∑
k=2

p1k(t)
∣∣xk

∣∣ − q(t),

∣∣g(t, x1, . . . , xn

)∣∣ ≤ p21(t)
∣∣x1

∣∣λ + n∑
k=2

p2k(t)
∣∣xk

∣∣ + q(t)
(1.17)

hold on the set R × R
n. Let, moreover,

∫ω

0
p11(t)dt > 0, (1.18)

and either λ < 1 and
n∑

k=2

νk−1

∫ω

0

(
�p1k(s) + p2k(s)

)
ds < 1, (1.19)

or λ = 1 and

ν0

∫ω

0

(
�
[
p11(s)

]
− + p21(s)

)
ds +

n∑
k=2

νk−1

∫ω

0

(
�p1k(s) + p2k(s)

)
ds < 1, (1.20)

where � =
∫ω
0 p21(t)dt/

∫ω
0 p11(t)dt. Then (1.4) has at least one ω-periodic solution.
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Corollary 1.4. Let there exist constants c0 ≥ 0, σ ∈ {−1, 1}, and functions g0 ∈ Lω, pk ∈ Lω (k =
1, . . . , n), q ∈ Lω such that

∫ω

0
g0(s)ds = 0 (1.21)

and the inequalities
(
g
(
t, x1, . . . , xn

) − g0(t)
)
sgn

(
σx1

) ≥ 0 for
∣∣x1

∣∣ > c0,

∣∣g(t, x1, . . . , xn

)∣∣ ≤ n∑
k=1

pk(t)
∣∣xk

∣∣ + q(t)
(1.22)

hold on the set R × R
n. If, moreover,

n∑
k=1

νk−1

∫ω

0
pk(s)ds < 1, (1.23)

then (1.4) has at least one ω-periodic solution.

1.3. Uniqueness theorems

The unique solvability of a periodic problem for (1.3) is proved in the cases where the operator
f , for any u and v ∈ Cn−1

ω , satisfies the conditions:

(∫ω

0

(
f(u + v)(s) − f(v)(s)

)
ds

)
sgn

(
σu(0)

) ≥ �10μ(u) −
n−1∑
k=1

�1k
∥∥u(k)∥∥

Cω
for μ(u) > 0,

(1.24)∣∣∣∣
∫x

t

(
f(u + v)(s) − f(v)(s)

)
ds

∣∣∣∣ ≤ �20μ(u) +
n−1∑
k=1

�2k
∥∥u(k)∥∥

Cω
for 0 ≤ t ≤ x ≤ ω, (1.25)

or the conditions
(∫ω

0

(
f(u + v)(s) − f(v)(s)

)
ds

)
sgn

(
σu(0)

)
> 0 for μ(u) > 0, (1.26)

∣∣∣∣
∫x

t

(
f(u + v)(s) − f(v)(s)

)
ds

∣∣∣∣ ≤ �0‖u‖Cω
for 0 ≤ t ≤ x ≤ ω. (1.27)

Theorem 1.5. Let there exist constants �20 ≥ �10 > 0, �ik ≥ 0 (i = 1, 2; k = 1, . . . , n − 1), and
σ ∈ {−1, 1} such that for arbitrary u, v ∈ Cn−1

ω the operator f satisfies inequalities (1.24) and (1.25).
If, moreover, inequality (1.15) holds, where � = �20/�10, then (1.3) has one and only one ω-periodic
solution.

Theorem 1.6. Let there exist constants �0 > 0 and σ ∈ {−1, 1} such that for arbitrary u, v ∈ Cn−1
ω an

operator f satisfies conditions (1.26) and (1.27). If, moreover,
∫ω

0
f(0)(s)ds = 0 , �0ν0 < 1, (1.28)

then (1.3) has one and only one ω-periodic solution.



I. Kiguradze et al. 5

From Theorem 1.5, the following corollary holds.

Corollary 1.7. Let there exist a constant σ ∈ {−1, 1} and functions pik ∈ Lω (i = 1, 2; k = 1, . . . , n)
such that for almost all t ∈ R and all (x1, . . . , xn) and (y1, . . . , yn) ∈ R

n the conditions

(
g
(
t, x1, . . . , xn

) − g
(
t, y1, . . . , yn

))
sgn

(
σ
(
x1 − y1

)) ≥ p11(t)
∣∣x1 − y1

∣∣ − n∑
k=2

p1k(t)
∣∣xk − yk

∣∣,
∣∣g(t, x1, . . . , xn

) − g
(
t, y1, . . . , yn

)∣∣ ≤ n∑
k=1

p2k(t)
∣∣xk − yk

∣∣
(1.29)

are satisfied. If, moreover, inequalities (1.18) and (1.20) hold, where � =
∫ω
0 p21(s)ds/

∫ω
0 p11(s)ds, then

(1.4) has one and only one ω-periodic solution.

Note that the functions p1k (k = 2, . . . , n) and p2k (k = 1, . . . , n) in this corollary as in
Corollary 1.3 are nonnegative, and p11 may change its sign.

Consider now the equation

u(n)(t) = g
(
t, u

(
τ(t)

))
, (1.30)

which is derived from (1.4) in the case where g(t, x1, . . . , xn) ≡ g(t, x1) and τ1(t) ≡ τ(t). As
above, we will assume that the function g : R × R → R belongs to the Carathéodory class and

g(t +ω, x) = g(t, x) (1.31)

for almost all t ∈ R and all x ∈ R. As for the function τ : R → R, it is measurable on each finite
interval and

(
τ(t +ω) − τ(t)

)
ω

is an integer (1.32)

for almost all t ∈ R.
Theorem 1.6 yields the following corollary.

Corollary 1.8. Let there exist a constant σ ∈ {−1, 1} and a function p ∈ Lω such that the condition

0 <
(
g(t, x) − g(t, y)

)
sgn

(
σ(x − y)

) ≤ p(t)|x − y| (1.33)

holds for almost all t ∈ R and all x /=y. If, moreover,

∫ω

0
g(s, 0)ds = 0, ν0

∫ω

0
p(s)ds < 1, (1.34)

then (1.30) has one and only one ω-periodic solution.
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2. Auxiliary propositions

2.1. Lemmas on a priori estimates

Everywhere in this section, we will assume that νk (k = 0, . . . , n − 1) are numbers given by
(1.13).

Lemma 2.1. If u ∈ Cn−1
ω , then

‖u‖Cω
≤ μ(u) + ν0

∥∥u(n−1)∥∥
Cω
, (2.1)∥∥u(k)

∥∥
Cω

≤ νk
∥∥u(n−1)∥∥

Cω

(
k = 1, . . . , n − 1

)
. (2.2)

Proof. We choose t0 ∈ [0, ω] so that

u
(
t0
)
= μ(u), (2.3)

and suppose

v(t) = u(t) − u
(
t0
)
. (2.4)

Then v(t0) = v(t0 +ω) = 0. Thus

∣∣v(t)∣∣ =
∣∣∣∣
∫ t

t0

v′(s)ds
∣∣∣∣ ≤

∫ t

t0

∣∣v′(s)
∣∣ds, ∣∣v(t)∣∣ =

∣∣∣∣
∫ t0+ω

t

v′(s)ds
∣∣∣∣ ≤

∫ t0+ω

t

∣∣v′(s)
∣∣ds for 0 ≤ t ≤ ω.

(2.5)

If we sum up these two inequalities, we obtain

2
∣∣v(t)∣∣ ≤

∫ t0+ω

t0

∣∣v′(s)
∣∣ds for 0 ≤ t ≤ ω. (2.6)

Consequently,

‖v‖Cω
≤ 1
2

∫ t0+ω

t0

∣∣v′(s)
∣∣ds. (2.7)

However,

‖u‖Cω
≤ μ(u) + ‖v‖Cω

,

∫ t0+ω

t0

∣∣v′(s)
∣∣ds =

∫ω

0

∣∣u′(s)
∣∣ds, (2.8)

which together with the previous inequality yields

‖u‖Cω
≤ μ(u) +

1
2

∫ω

0

∣∣u′(s)
∣∣ds ≤ μ(u) +

1
2
ω1/2

(∫ω

0

∣∣u′(s)
∣∣2ds

)1/2

. (2.9)

On the other hand, by the Wirtinger inequality (see [32, Theorem 258] and [13, Lemma 1.1]),
we have

∫ω

0

∣∣u′(s)
∣∣2ds ≤

(
ω

2π

)2n−4∫ω

0

∣∣u(n−1)(s)
∣∣2ds ≤ ω

(
ω

2π

)2n−4∥∥u(n−1)∥∥2
Cω
. (2.10)

Consequently, estimate (2.1) is valid.
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If now we take into account that u(k) ∈ Cn−1−k
ω and μ(u(k)) = 0 (k = 1, . . . , m), then the

validity of estimates (2.2) becomes evident.

Lemma 2.2. Let u ∈ Cn−1
ω and

∥∥u(n−1)∥∥
Cω

≤ c0 +
n−1∑
k=0

�k
∥∥u(k)∥∥

Cω
, (2.11)

where c0 and �k (k = 0, . . . , n − 1) are nonnegative constants. If, moreover,

δ =
n−1∑
k=0

�kνk < 1, (2.12)

then
∥∥u(n−1)∥∥

Cω
≤ (1 − δ)−1

(
c0 + �0μ(u)

)
, (2.13)

‖u‖Cn−1
ω

≤ μ(u) + (1 − δ)−1
(
c0 + �0μ(u)

)n−1∑
k=0

νk. (2.14)

Proof. By Lemma 2.1, the function u satisfies inequalities (2.1) and (2.2). In view of these in-
equalities from (2.11) we find

∥∥u(n−1)∥∥
Cω

≤ c0 + �0μ(u) +

(
n−1∑
k=0

�kνk

)∥∥u(n−1)∥∥
Cω
. (2.15)

Hence, by virtue of condition (2.12), we have estimate (2.13). On the other hand, according to
(2.13), inequalities (2.1) and (2.2) result in (2.14).

Lemma 2.3. Let u ∈ Cn−1
ω and

μ(u) ≤ ϕ
(∥∥u(n−1)∥∥

Cω

)
,

∥∥u(n−1)∥∥
Cω

≤ c0 +
n−1∑
k=1

�k
∥∥u(k)∥∥

Cω
, (2.16)

where ϕ : [0,+∞[→ [0,+∞[ is a nondecreasing function, c0 ≥ 0, �k ≥ 0 (k = 1, . . . , n − 1), and

δ =
n−1∑
k=1

�kνk < 1. (2.17)

Then

‖u‖Cn−1
ω

≤ r0, (2.18)

where

r0 = ϕ
(
(1 − δ)−1c0

)
+ (1 − δ)−1c0

n−1∑
k=0

νk. (2.19)

Proof. Inequalities (2.16) and (2.17) imply inequalities (2.11) and (2.12), where �0 = 0. However,
by Lemma 2.2, these inequalities guarantee the validity of the estimates

∥∥u(n−1)∥∥
Cω

≤ (1 − δ)−1c0, ‖u‖Cn−1
ω

≤ μ(u) + (1 − δ)−1c0
n−1∑
k=0

νk. (2.20)
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On the other hand, according to the first inequality in (2.16), we have

μ(u) ≤ ϕ
(
(1 − δ)−1c0

)
. (2.21)

Consequently, estimate (2.18) is valid, where r0 is a number given by equality (2.19).

Analogously, from Lemma 2.2, the following hold.

Lemma 2.4. Let u ∈ Cn−1
ω and

μ(u) ≤ c0,
∥∥u(n−1)∥∥

Cω
≤ c0 +

n−1∑
k=0

�k
∥∥u(k)∥∥

Cω
, (2.22)

where c0 ≥ 0, �k ≥ 0 (k = 0, . . . , n − 1). If, moreover, inequality (2.12) holds, then estimate (2.18) is
valid, where

r0 =

[
1 + (1 − δ)−1

(
1 + �0

)n−1∑
k=0

νk

]
c0. (2.23)

2.2. Lemma on the solvability of a periodic problem

Below, by Cn−1([0, ω]) we denote the space of (n − 1)-times continuously differentiable func-
tions u : [0, ω] → R with the norm

‖u‖Cn−1([0,ω]) =
n∑

k=1

max
{∣∣u(k−1)(t)

∣∣ : 0 ≤ t ≤ ω
}
, (2.24)

and by L([0, ω]) we denote the space of Lebesgue integrable functions u : [0, ω] → R with the
norm

‖u‖L([0,ω]) =
∫ω

0

∣∣u(t)∣∣dt. (2.25)

Consider the differential equation

u(n)(t) = f(u)(t) (2.26)

with the periodic boundary conditions

u(i−1)(0) = u(i−1)(ω) (i = 1, . . . , n), (2.27)

where f : Cn−1([0, ω]) → L([0, ω]) is a continuous operator such that

fr(·) = sup
{∣∣f(u)(·)∣∣ : ‖u‖Cn−1([0,ω]) ≤ r

} ∈ L
(
[0, ω]

)
(2.28)

for any r > 0. The following lemma is valid.
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Lemma 2.5. Let there exist a linear, bounded operator p : Cn−1([0, ω]) → L([0, ω]) and a positive
constant r0 such that the linear differential equation

u(n)(t) = p(u)(t) (2.29)

with the periodic conditions (2.27) has only a trivial solution and for an arbitrary λ ∈]0, 1[ every
solution of the differential equation

u(n)(t) = λp(u)(t) + (1 − λ)f(u)(t), (2.30)

satisfying condition (2.27), admits the estimate

‖u‖Cn−1([0,ω]) ≤ r0. (2.31)

Then problem (2.26), (2.27) has at least one solution.

For the proof of this lemma see [33, Corollary 2].

Lemma 2.6. Let f : Cn−1
ω → Lω be a continuous operator satisfying condition (1.5) for any r > 0. Let,

moreover, there exist constants a/= 0 and r0 > 0 such that for an arbitrary λ ∈]0, 1[, every ω-periodic
solution of the functional differential equation

u(n)(t) = λau(0) + (1 − λ)f(u)(t) (2.32)

admits estimate (2.18). Then (1.3) has at least one ω-periodic solution.

Proof. Let c1, . . . , cn be arbitrary constants. Then the problem

y(2n)(t) = 0, y(i−1)(0) = 0, y(i−1)(ω) = ci (i = 1, . . . , n) (2.33)

has a unique solution. Let us denote by y(t; c1, . . . , cn) the solution of that problem.
For any u ∈ Cn−1([0, ω]), we set

z(u)(t) = u(t) − y
(
t;u(ω) − u(0), . . . , u(n−1)(ω) − u(n−1)(0)

)
for 0 ≤ t ≤ ω, (2.34)

and extend z(u)(·) to R periodically with a period ω. Then, it is obvious that z : Cn−1([0, ω]) →
Cn−1

ω is a linear, bounded operator.
Suppose

f(u)(t) = f
(
z(u)

)
(t). (2.35)

Consider the boundary value problem (2.26), (2.27). If the function u is an ω-periodic solution
of (1.3), then its restriction to [0, ω] is a solution of problem (2.26), (2.27), and vice versa, if u
is a solution of problem (2.26), (2.27), then its periodic extension to R with a period ω is an
ω-periodic solution of (1.3). Thus to prove the lemma, it suffices to state that problem (2.26),
(2.27) has at least one solution.

By virtue of equalities (2.34), (2.35) and condition (1.5), f : Cn−1([0, ω]) → L([0, ω])
is a continuous operator, satisfying condition (2.28) for any r > 0. On the other hand, it is
evident that if p(u)(t) ≡ αu(0), then problem (2.29), (2.27) has only a trivial solution. By these
conditions and Lemma 2.5, problem (2.26), (2.27) is solvable if for any λ ∈]0, 1[ every solution
u of problem (2.30), (2.27), where p(u)(t) ≡ αu(0), admits estimate (2.31).

Let u be a solution of problem (2.30), (2.27) for some λ ∈]0, 1[. Then its periodic extension
to R with a periodω is a solution of (2.32), and according to one of the conditions of the lemma,
admits estimate (2.18). Therefore, estimate (2.31) is valid.
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3. Proof of the main results

Proof of Theorem 1.1. Without loss of generality, it can be assumed that h(0) = 0. On the other
hand, according to condition (1.15), we can choose a constant a so that σa > 0 and the numbers

�k = �1k + ��2k
(
k = 1, . . . , n − 2

)
, �n−1 = �1n−1 + ��2n−1 +ων0|a| (3.1)

satisfy inequality (2.17).
Let

h0(x) = min
{|a|ωx, h(x)

}
, (3.2)

let h−1
0 be a function, inverse to h0,

ϕ(x) = h−1
0

((
n−1∑
k=1

�1kνk

)
x + c

)
, c0 = 2c, (3.3)

and let r0 be a number given by equality (2.19). By virtue of Lemma 2.6, to prove the theorem,
it suffices to state that for any λ ∈]0, 1[ every ω-periodic solution of (2.32) admits estimate
(2.18).

Due to condition (1.12), from (2.32), we find

∥∥u(n−1)∥∥
Cω

≤ max
{∣∣∣∣

∫x

t

u(n)(s)ds
∣∣∣∣ : 0 ≤ t ≤ x ≤ ω

}

≤ λω|a|∣∣u(0)∣∣ + (1 − λ)�h
(
μ(u)

)
+

n−1∑
k=1

�2k
∥∥u(k)∥∥

Cω
+ c.

(3.4)

On the other hand, if μ(u) > 0, then by condition (1.11) we have

0 =
(∫w

0
u(n)(s)ds

)
sgn

(
σu(0)

) ≥ λω|a|∣∣u(0)∣∣ + (1 − λ)h
(
μ(u)

) − n−1∑
k=1

�1k
∥∥u(k)∥∥

Cω
− c, (3.5)

and consequently,

λω|a|∣∣u(0)∣∣ + (1 − λ)h
(
μ(u)

) ≤
n−1∑
k=1

�1k
∥∥u(k)∥∥

Cω
+ c. (3.6)

If μ(u) > 0, then by Lemma 2.1 and notations (3.1)–(3.3), from (3.4) and (3.6), inequali-
ties (2.16) hold. And if μ(u) = 0, then by Lemma 2.1,

∣∣u(0)∣∣ ≤ ν0
∥∥u(n−1)∥∥

Cω
. (3.7)

On the other hand, h(μ(u)) = h(0) = 0. Thus from (3.4) we obtain

∥∥u(n−1)∥∥
Cω

≤ ων0|a|
∥∥u(n−1)∥∥

Cω
+

n−1∑
k=1

�2k
∥∥u(k)∥∥

Cω
+ c. (3.8)
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If along with this we take into account notations (3.1) and (3.3), then it becomes evident that
inequalities (2.16) are fulfilled also in the case μ(u) = 0.

However, by Lemma 2.3, inequalities (2.16) and (2.17) guarantee the validity of estimate
(2.18).

Proof of Theorem 1.2. Due to (1.16), inequality (2.12) holds. Let r0 be a number given by equality
(2.23) and

a =

(
σ�0

)
ω

. (3.9)

By Lemma 2.6, to prove the theorem, it suffices to state that for any λ ∈]0, 1[ every ω-periodic
solution u of (2.32) admits estimate (2.18).

If we suppose

μ(u) > c0, (3.10)

then in view of (1.13) and (3.9) from (2.32) we find

0 =
(∫w

0
u(n)(s)ds

)
sgn

(
σu(0)

)
= λ�0

∣∣u(0)∣∣ + (1 − λ)
(∫w

0
f(u)(s)ds

)
sgn

(
σu(0)

)
> 0.

(3.11)

The contradiction obtained proves that

μ(u) ≤ c0. (3.12)

On the other hand, according to (1.14) and (3.9), we have

∥∥u(n−1)∥∥
Cω

≤ max
{∣∣∣∣

∫x

t

u(n)(s)ds
∣∣∣∣ : 0 ≤ t ≤ x ≤ ω

}

≤ λ�0
∣∣u(0)∣∣ + (1 − λ)

n−1∑
k=0

�k
∥∥u(k)∥∥

Cω
+ c0 ≤

n−1∑
k=0

�k
∥∥u(k)∥∥

Cω
+ c0.

(3.13)

Therefore, inequalities (2.22) are satisfied. However, by Lemma 2.4, inequalities (2.12) and
(2.22) guarantee the validity of estimate (2.18).

Proof of Corollary 1.3. For an arbitrary u ∈ Cn−1
ω , we set

f(u)(t) = g
(
t, u

(
τ1(t)

)
, . . . , u(n−1)(τn(t))). (3.14)

Then (1.4) takes the form (1.3). It is obvious that f : Cn−1
ω → Lω is a continuous operator, sat-

isfying condition (1.8), since g : R × R
n → R belongs to the Carathéodory class and conditions

(1.6) and (1.7) are satisfied.
Let u ∈ Cn−1

ω and μ(u) = u(t0). Then by Lemma 2.1 we have

0 ≤ ∣∣u(τ1(t))∣∣λ − μλ(u) ≤ ∣∣u(τ1(t)) − u
(
t0
)∣∣λ ≤ νλ0

∥∥u(n−1)∥∥λ

Cω
for t ∈ R. (3.15)
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If along with this we take into account inequalities (1.17), then from (3.14)we get

(∫w

0
f(u)(s)ds

)
sgn

(
σu(0)

) ≥ h
(
μ(u)

) − νλ0

∫w

0

[
p11(s)

]
−ds ×

∥∥u(n−1)∥∥λ

Cω

−
n∑

k=2

∫w

0
p1k(s)ds

∥∥u(k−1)∥∥
Cω

−
∫w

0
q(s)ds for μ(u) > 0,

∣∣∣∣
∫x

t

f(u)(s)ds
∣∣∣∣ ≤ �h

(
μ(u)

)
+ νλ0

∫w

0
p21(s)ds

∥∥u(n−1)∥∥λ

Cω

+
n∑

k=2

∫w

0
p2k(s)ds

∥∥u(k−1)∥∥
Cω

+
∫w

0
q(s)ds for 0 ≤ t ≤ x ≤ ω,

(3.16)

where

h(x) = xλ

∫w

0
p11(s)ds, (3.17)

and, in view of condition (1.18), h is increasing and h(x) → +∞ as x → +∞.
If λ < 1, then in view of (1.19) there exists ε > 0 such that

ενλ0

∫w

0

(
�
[
p11(s)

]
− + p21(s)

)
ds +

n∑
k=2

νk−1

∫w

0

(
�p1k(s) + p2k(s)

)
ds < 1. (3.18)

Set

ελ = ε, c0 =
∫w

0
q(s)ds + ε−λ/(1−λ)νλ0

(∫w

0

([
p11(s)

]
− + p21(s)

)
ds

)
for λ < 1,

ελ = 1, c0 =
∫w

0
q(s)ds for λ = 1,

�1k =
∫w

0
p1k+1(s)ds

(
k = 1, . . . , n − 2),

�1n−1 = ελν
λ
0

∫w

0

[
p11(s)

]
−ds +

∫w

0
p1n−1(s)ds,

�2k =
∫w

0
p2k+1(s)ds

(
k = 1, . . . , n − 2),

�2n−1 = ελν
λ
0

∫w

0
p21(s)ds +

∫w

0
p2n−1(s)ds.

(3.19)

Then by the Young inequality, inequalities (3.16) result in inequalities (1.11) and (1.12).
On the other hand, the numbers �ik (i = 1, 2; k = 1, . . . , n − 1) satisfy inequality (1.15) since for
λ < 1 (for λ = 1) the functions pik (i = 1, 2; k = 1, . . . , n) satisfy inequality (3.18) (inequality
(1.20)).

Therefore, all the conditions of Theorem 1.1 are fulfilled which guarantee the existence
of at least one ω-periodic solution of (1.4).
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Proof of Corollary 1.4. Without loss of generality, it can be assumed that

∫w

0
q(s)ds < c0. (3.20)

Then in view of (1.21), (1.22) from (3.14), inequalities (1.13) and (1.14) hold, where

�k =
∫w

0
pk+1(s)ds

(
k = 0, . . . , n − 1

)
. (3.21)

On the other hand, according to (1.23), the numbers �k (k = 0, . . . , n − 1) satisfy (1.16). There-
fore, all the conditions of Theorem 1.2 are fulfilled.

Proof of Theorem 1.5. For v(t) ≡ 0, inequalities (1.24) and (1.25) yield inequalities (1.11) and
(1.12), where

h(x) = �10x, c =
∫w

0

∣∣f(0)(s)∣∣ds. (3.22)

Consequently, all the conditions of Theorem 1.1 are satisfied which guarantee the existence of
at least one ω-periodic solution of (1.3).

It remains to prove that (1.3) has no more than one ω-periodic solution. Let u1 and u2 be
arbitrary ω-periodic solutions of (1.3) and

u(t) = u2(t) − u1(t). (3.23)

If we assume that μ(u) > 0, then from (1.24)we find

�10μ(u) ≤
n−1∑
k=1

�1k
∥∥u(k)∥∥

Cω
. (3.24)

It is obvious that this inequality is valid also for μ(u) = 0. Due to (3.24), from (1.25) it follows

∥∥u(n−1)∥∥
Cω

≤ max

{∣∣∣∣∣
∫x

t

(
f
(
u1 + u

)
(s) − f

(
u1
)
(s)

)
ds

∣∣∣∣∣ : 0 ≤ t ≤ x ≤ ω

}
≤

n−1∑
k=1

�k
∥∥u(k)∥∥

Cω
, (3.25)

where �k = ��1k + �2k (k = 1, . . . , n − 1). Moreover, in view of (1.15) the numbers �k (k =
1, . . . , n − 1) satisfy inequality (2.17). On the other hand, by Lemma 2.1 from (3.24)we have

�10μ(u) ≤
(

n−1∑
k=1

�1kνk

)∥∥u(n−1)∥∥
Cω
. (3.26)

Consequently, inequalities (2.16) are satisfied, where

ϕ(x) =

(
n−1∑
k=1

�−110 �1kνk

)
x, c0 = 0. (3.27)

If now we apply Lemma 2.3, then it becomes evident that u(t) ≡ 0, that is, u1(t) ≡ u2(t).
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Proof of Corollary 1.7. To prove the corollary, it is sufficient to state that the operator f , given by
equality (3.14), satisfies the conditions of Theorem 1.5.

Let u and v ∈ Cn−1
ω . Then by virtue of conditions (1.29), and Lemma 2.1, from (3.14), we

obtain inequalities (1.24) and (1.25), where

�1k =
∫w

0
p1k+1(s)ds

(
k = 0, . . . , n − 2

)
, �1n−1 = ν0

∫w

0

[
p11(s)

]
−ds +

∫w

0
p1n−1(s)ds,

�2k =
∫w

0
p2k+1(s)ds

(
k = 0, . . . , n − 2

)
, �2n−1 = ν0

∫w

0

[
p21(s)

]
−ds +

∫w

0
p2n−1(s)ds.

(3.28)

On the other hand, in view of (1.18) and (1.20), �10 > 0 and condition (1.15) holds, where
� = �20/�10.

Proof of Theorem 1.6. For v(t) ≡ 0, (1.26)–(1.28) yield conditions (1.13), (1.14), and (1.16), where

c0 =
∫w

0

∣∣f(0)(s)∣∣ds, �k = 0
(
k = 1, . . . , n − 1

)
. (3.29)

Consequently, all the conditions of Theorem 1.2 are satisfied which guarantee the existence of
at least one ω-periodic solution of (1.3).

Suppose now that u1 and u2 are arbitrary ω-periodic solutions of (1.3) and u(t) = u2(t)−
u1(t). If we assume that μ(u) > 0, then in view of (1.26)we obtain the contradiction

0 =
(∫w

0
u(n)(s)ds

)
sgn

(
σu(0)

)
=
(∫w

0

(
f(u1 + u)(s) − f

(
u1
)
(s)

)
ds

)
sgn

(
σu(0)

)
> 0. (3.30)

Thus, it is proved that μ(u) = 0.
On the other hand, (1.27) implies

∥∥u(n−1)∥∥
Cω

≤ �0‖u‖Cω
. (3.31)

Therefore, inequalities (2.22) are satisfied, where c0 = 0, �k = 0 (k = 1, . . . , n − 1), and �0ν0 < 1.
Hence by Lemma 2.4 it follows that u(t) ≡ 0, that is, u1(t) ≡ u2(t).

Proof of Corollary 1.8. For any u ∈ Cn−1
ω , we set

f(u)(t) = g(u)(t). (3.32)

Then conditions (1.33) and (1.34) imply conditions (1.26)–(1.28), where �0 =
∫ω
0 p(s)ds. Conse-

quently, the operator f satisfies all the conditions of Theorem 1.6.

4. Examples

From the main results of the present paper new (and optimal in some sense) sufficient condi-
tions for the existence of periodic solutions of linear and sublinear differential equations with
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deviated arguments and differential equations with bounded right-hand sides follow. To illus-
trate the above mentioned, let us consider the differential equations

u(n)(t) =
n∑

k=1

gk(t)
∣∣u(k−1)(τk(t))∣∣λksgn(u(k−1)(τk(t))) + g0(t), (4.1)

u(n)(t) =
n∑

k=1

gk(t)
∣∣u(k−1)(τk(t))∣∣λ0k(1 + ∣∣u(τ1(t))∣∣)−λku(τ1(t)) + g0(t), (4.2)

u(n)(t) =
n∑

k=1

gk(t)u(k−1)(τk(t)) + g0(t), (4.3)

u(n)(t) =
m∑
k=1

g0k(t)

∣∣u(τ(t))∣∣λk
1 +

∣∣u(τ(t))∣∣λk sgn u
(
τ(t)

)
+ g0(t), (4.4)

where m is a natural number, λk > 0 (k = 1, . . . , m), λ0k ≥ 0 (k = 1, . . . , n) are constants,
gk ∈ Lω (k = 0, . . . , n), g0k ∈ Lω (k = 1, . . . , m), while τk : R → R (k = 1, . . . , n) and τ : R → R

are measurable on every finite interval functions satisfying, respectively, conditions (1.7) and
(1.32).

Corollaries 1.3 and 1.4 imply the following corollaries.

Corollary 4.1. Let
∫w

0
g1(s)ds/= 0, (4.5)

and either

0 < λk < 1 (k = 1, . . . , n) (4.6)

or

0 < λ1 < 1, 0 < λk ≤ 1 (k = 2, . . . , n),
n∑

k=2

νk−1

∫w

0

∣∣g2k(s)∣∣ds < (1 + �)−1, (4.7)

where

� =

∫1
0

∣∣g1(s)∣∣ds∣∣∣∫10g1(s)ds
∣∣∣ . (4.8)

Then (4.1) has at least one ω-periodic solution.

Corollary 4.2. Let
∫w

0
g0(s)ds = 0, (4.9)

and there exists a constant σ ∈ {−1, 1} such that
σgk(t) ≥ 0 for t ∈ R (k = 1, . . . , n). (4.10)

Let, moreover, either

0 ≤ λ01 < λ1, 0 ≤ λ0k < 1, λk ≥ 1 (k = 2, . . . , n), (4.11)
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or

0 ≤ λ01 ≤ λ1, 0 ≤ λ0k ≤ 1, λk ≥ 1 (k = 2, . . . , n), (4.12)

and

n∑
k=1

νk−1

∫w

0

∣∣gk(s)∣∣ds < 1. (4.13)

Then (4.2) has at least one ω-periodic solution.

Remark 4.3. If

gk(t) ≡ 0 (k = 1, . . . , n),
∫w

0
g0(s)ds/≡ 0, (4.14)

then (4.1) has no ω-periodic solution. Consequently, conditions (1.18) and (4.5) in Corollaries
1.3 and 4.1 are essential and they cannot be omitted.

Remark 4.4. If

λ0k = 0, λk ≥ 1 (k = 1, . . . , n),
n∑

k=1

∫w

0

∣∣gk(s)∣∣ds ≤ ε, (4.15)

∣∣∣∣
∫w

0
g0(s)ds

∣∣∣∣ = ε, (4.16)

where ε > 0, then (4.2) has noω-periodic solution. Consequently, conditions (1.21) and (4.9) in
Corollaries 1.4 and 4.2 cannot be replaced by condition (4.16) no matter how small εwould be.

Corollary 1.7 yields the following.

Corollary 4.5. Let there exist a constant σ ∈ {−1, 1} such that

σ

∫w

0
g1(s)ds > 0,

ν0

∫w

0

(
�
[
σg1(s)

]
− +

∣∣g1(s)∣∣)ds + (1 + �)
n∑

k=2

νk−1

∫w

0

∣∣gk(s)∣∣ds < 1,
(4.17)

where � is a number given by equality (4.8). Then (4.3) has one and only one ω-periodic solution.

Suppose

η(λ) =
1
4λ

(λ − 1)(λ−1)/λ(λ + 1)(λ+1)/λ for λ > 1, η(λ) = 1 for λ = 1. (4.18)

Theorem 1.6 results in the following.

Corollary 4.6. Let there exist a constant σ ∈ {−1, 1} such that

σg0k(t) ≥ 0 for t ∈ R (k = 1, . . . , m). (4.19)
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If, moreover,

m∑
k=1

∫w

0

∣∣g0k(s)∣∣ds > 0, (4.20)

m∑
k=1

η
(
λk

)∫w

0

∣∣g0k(s)∣∣ds <
1
ν0

, (4.21)

and equality (4.9) holds, then (4.4) has one and only one ω-periodic solution.

Remark 4.7. If g0k(t) ≡ 0 (k = 1, . . . , m) and equality (4.9) is fulfilled, then (4.4) has an infinite set
of ω-periodic solutions. Consequently, the strict inequality (1.26) (the strict inequality (4.20))
in Theorem 1.6 (in Corollary 4.6) cannot be replaced by nonstrict one.
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