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1. Introduction

In this paper, we study the existence, nonexistence, andmultiplicity of positive radial solutions
for the following p-Laplacian problem:

div
(|∇u|p−2∇u

)
+K(|x|)uq = 0 in Ω, (P)

u|∂Ω = 0, u −→ μ > 0 as |x| −→ ∞, (D1)

u|∂Ω = μ > 0, u −→ 0 as |x| −→ ∞, (D2)

whereΩ = {x ∈ R
N : |x| > r0 > 0}, N > p > 1, μ is a positive real parameter,K ∈ C((r0,∞),R+)

with R
+ = (0,∞).
The present work is motivated by Deng and Li [1] who consider a semilinear problem

of the form

Δu +K(x)uq = 0 in Ω,

u > 0 in Ω, u ∈ H1
loc(Ω) ∩ C

(
Ω
)
,

u|∂Ω = 0, u −→ μ > 0 as |x| −→ ∞,

(DL)
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2 Boundary Value Problems

where Ω = R
N \ ω is an exterior domain in R

N, ω ⊂ R
N is a bounded domain with smooth

boundary, andN > 2, q > 1. Among other results, they prove under the assumption that

(K1) K ∈ Cα
loc(Ω), K ≥ 0, K /≡ 0, and there exist C, ε,M > 0 such that |K(x)| ≤ C|x|−l for

|x| ≥ M with l ≥ 2 + ε

that there exists μ∗ > 0 such that (DL) has at least one solution for μ ∈ (0, μ∗) and no solution
for μ ∈ (μ∗,∞). Furthermore, if K ∈ L1(Ω), then the solution at μ = μ∗ exists and is unique.

We expect that problem (DL) may have certain bifurcation phenomenon of solutions
with respect to μ so that there should be at least one more solution for μ ∈ (0, μ∗). This is our
goal for this paper and our first result comes out as follows. Assume q > p − 1 and

(K) there exists β > p − 1 such that
∫∞
r0
rβK(r)dr < ∞.

Then, there exist μ0 ≥ μ∗ > 0 such that (P) + (Di), i = 1, 2, has at least two positive radial
solutions for μ ∈ (0, μ∗), at least one positive radial solution for μ ∈ [μ∗, μ0] and no positive
radial solution for μ ∈ (μ0,∞).

We notice that this result is partial since the existence of multiple solutions on interval
[μ∗, μ0] is not obvious. This is mainly caused by coarse topological structure of solution space.
If indefinite weightK(|x|) is of the form |x|−l with l > p, then we can prove μ∗ = μ0 in the above
conclusion for problem (P) + (D1), that is, there exists μ∗ > 0 such that (P) + (D1) has at least
two, one, or no positive solutions according to μ ∈ (0, μ∗), μ = μ∗, or μ ∈ (μ∗,∞), respectively.
This is our second result for this paper. For proofs, we employ global continuation theorem
and fixed point index theory based on a weighted space as the solution space.

It is interesting to see whether the exponent l = p is critical or not in the sense of existence
of positive radial solutions. We end by answering this question that if l ≤ p, then problem (P)
+ (D1) does not have a positive radial solution.

Questions for global results or critical sense of exponent for existence of problem (P) +
(D2) are not answered in this work, so we leave them to the readers. A partial answer to the
question for the nonexistence results to problem (P) + (D2) is known in [2, 3].

This paper is organized as follows. In Section 2, we introduce well-known theorems
such as the global continuation theorem, the generalized Picone identity, and a fixed point
index theorem for the index computation. In Section 3, we introduce several transformations
to obtain equivalent one-dimensional p-Laplacian problems and also prove the existence
of unbounded continuum of positive solutions using the global continuation theorem. In
Section 4, figuring the shape of the unbounded continuum in Section 3, we get the existence,
nonexistence, and multiplicity of solutions introduced as the partial result. In Section 5,
introducing weighted spaces, we improve the result in Section 4 to a global one. In Section 6,
we prove a nonexistence result which gives, in some sense, a critical exponent of existence and
nonexistence.

2. Preliminaries

In this section, we give some known theorems which will be used in the following sections.

Theorem 2.1 (see [4, the global continuation theorem]). Let X be a Banach space and K an order
cone in X. Consider

x = H(μ, x), (2.1)
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where μ ∈ R+ and x ∈ K. IfH : R+ ×K → K is completely continuous andH(0, x) = 0 for all x ∈ K.
Then C+(K), the component of the solution set of (2.1) containing (0, 0), is unbounded.

Theorem 2.2 (see [5, the generalized Picone identity]). Define

lp[y] =
(
ϕp

(
y′))′ + b1(t)ϕp(y),

Lp[z] =
(
ϕp

(
z′
))′ + b2(t)ϕp(z).

(2.2)

If y and z are any functions such that y, z, b1ϕp(y′), b2ϕp(z′) are differentiable on I and z(t)/= 0 for
t ∈ I, the generalized Picone identity can be written as

d

dt

{ |y|pϕp

(
z′
)

ϕp(z)
− yϕp

(
y′)
}

=
(
b1 − b2

)|y|p −
[
|y′|p + (p − 1)

∣∣∣∣
yz′

z

∣∣∣∣

p

− pϕp(y)y′ϕp

(
z′

z

)]
− ylp(y) +

|y|p
ϕp(z)

Lp(z).

(2.3)

Remark 2.3. By Young’s inequality, we get

|y′|p + (p − 1)
∣∣∣
∣
yz′

z

∣
∣
∣
∣

p

− pϕp(y)ϕp

(
z′

z

)
≥ 0, (2.4)

and the equality holds if and only if sgny′ = sgn z′ and |y′/y|p = |z′/z|p.

Theorem 2.4 (see [6]). Let X be a Banach space,K a cone in X, and O bounded open in X. Let 0 ∈ O
and A : K ∩ O → K be condensing. Suppose that Ax/= νx for all x ∈ K ∩ ∂O and all ν ≥ 1. Then,
i(A,K ∩ O, K) = 1.

3. The existence of unbounded continuum

In this section, we introduce several transformations to obtain one-dimensional p-Laplacian
problems which we will mainly analyze and then we prove the existence of unbounded
continuum of positive solutions of the problem using the global continuation theorem. By
consecutive changes of variables, r = |x|, u(r) = u(|x|), and t = (r/r0)

−(N−p)/(p−1), z(t) = u(r),
problem (P) + (D1) is equivalently written as

ϕp(z′)
′ + h(t)zq = 0, t ∈ (0, 1),

z(0) = μ > 0, z(1) = 0,
(3.1)

where ϕp(s) = |s|p−2s, p > 1, and h is given by

h(t) =
(

p − 1
N − p

)p

r
p

0 t
−p(N−1)/(N−p)K

(
r0t

−(p−1)/(N−p)). (3.2)
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We notice that h is singular at t = 0 and by condition (K), h satisfies

(H1)
∫1
0 s

γh(s)ds < ∞, for some γ < p − 1.

For more general consideration, we assume that the coefficient function h may be singular at
t = 0 and/or 1 which satisfies

(H)
∫1/2
0 ϕ−1

p (
∫1/2
s h(τ)dτ)ds +

∫1
1/2ϕ

−1
p (
∫s
1/2h(τ)dτ)ds < ∞.

Obviously, we see that condition (H1) implies condition (H). Introducing u(t) = z(t)/μ, we
can rewrite problem (3.1) as

ϕp(u′)′ + λh(t)uq = 0, t ∈ (0, 1),

u(0) = 1, u(1) = 0,
(3.3)

where λ = μq−p+1. Problems (3.1) and (3.3) share the same bifurcation phenomena with respect
to μ and λ, respectively.

Similarly, if we use transformation t = 1 − (r/r0)
−(N−p)/(p−1), then problem (P) + (D2) is

also written as (3.1) with h given by

h(t) =
(

p − 1
N − p

)p

r
p

0 (1 − t)−p(N−1)/(N−p)K
(
r0(1 − t)−(p−1)/(N−p)). (3.4)

Notice that h is singular at t = 1 and by the condition (K), h satisfies

(H2)
∫1
0 (1 − s)γh(s)ds < ∞, for some γ < p − 1.

We see that condition (H2) implies condition (H), and thus, for radial problem (P) + (D2),
it is also enough to consider problem (3.3) with h satisfying (H). Since both problems (P)
+ (Di), i = 1, 2, can be transformed to the form (3.3), we will mainly consider problem (Pλ)
given as follows for more general arguments:

ϕp

(
u′(t)

)′ + λh(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = a > 0, u(1) = 0,
(Pλ)

where λ is a positive real parameter and f ∈ C(R+,R+) with R+ = [0,∞). h ∈ C((0, 1),R+) may
be singular at t = 0 and/or t = 1. Let us assume the following condition:

(F1) f(u) > 0, for all u > 0.

To fulfill conditions in the global continuation theorem, we need to consider problems with
Dirichlet boundary condition. For this, we substitute v(t) = u(t) − a(1 − t) to get the following
equivalent problem:

ϕp

(
v′(t) − a

)′ + λh(t)f(v(t) + a(1 − t)) = 0, t ∈ (0, 1),

v(0) = 0 = v(1).
(P̂λ)
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Denote K = {u ∈ C0[0, 1] : u is concave}. Then, it is easy to see that K is an order cone. Let us
define operatorH : R+ ×K → C[0, 1] as follows:

H(λ, v)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ t

0
ϕ−1
p

(∫Aλ,v

s

λh(τ)f(v(τ) + a(1 − τ))dτ − ϕp(a)

)

ds + at, if 0 ≤ t ≤ Aλ,v,

∫1

t

ϕ−1
p

(∫s

Aλ,v

λh(τ)f(v(τ) + a(1 − τ))dτ + ϕp(a)

)

ds − a(1 − t), if Aλ,v ≤ t ≤ 1,

(3.5)

where
∫Aλ,v

0
ϕ−1
p

(∫Aλ,v

s

λh(τ)f(v(τ) + a(1 − τ))dτ − ϕp(a)

)

ds + aAλ,v

=
∫1

Aλ,v

ϕ−1
p

(∫s

Aλ,v

λh(τ)f(v(τ) + a(1 − τ))dτ + ϕp(a)

)

ds − a(1 −Aλ,v).

(3.6)

Then by condition (H) and the definition of Aλ,v, we can easily see that H is well defined and
H(R+ × K) ⊂ K. Furthermore, u is a positive solution of (P̂λ) if and only if u = H(λ, u) on K.
We can easily see that H is completely continuous on R+ × K. The proof basically follows on
the lines of Lemmas 2 and 3 in [7]. Since H(0, u) = 0 for all u ∈ K and H(λ, 0)/= 0 for λ > 0, as
an application of Theorem 2.1, we have unbounded continuum of solutions as follows.

Theorem 3.1. Assume that (H) and (F1) hold. Then, there exists an unbounded continuum Ĉ
bifurcating from (0, 0) in the closure of the set of positive solutions of (P̂λ) in R+ ×K.

Corollary 3.2. Assume that (H) and (F1) hold. Then, there exists an unbounded continuum C
bifurcating from (0, u0), where u0(t) = a(1 − t), in the closure of the set of positive solutions of (Pλ) in
R+ ×K.

4. The shape of continuum

In this section, we will figure the shape of unbounded subcontinuum C of positive solutions of
problem (Pλ) known to exist by Corollary 3.2:

ϕp

(
u′(t)

)′ + λh(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = a > 0, u(1) = 0,
(Pλ)

where f ∈ C(R+,R+), h ∈ C((0, 1),R+). We assume an additional condition for this section:

(F2) f∞ � limu→∞ (f(u)/up−1) = ∞.

Using the generalized Picone identity and the properties of the p-sine function [8, 9], we obtain
the following lemma.

Lemma 4.1. Assume that (F1) and (F2) hold. Let u be a positive solution of (Pλ). Then, there exists
λ > 0 such that λ ≤ λ.
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Proof. Since u is concave and u(0) = a, u(t) ≥ (1/4)a, for all t ∈ (0, 3/4), then it follows from
(F1) and (F2) that there exists b > 0 such that f(u) > bup−1, for u ≥ (1/4)a. This implies

0 = ϕp

(
u′(t)

)′ + λh(t)f(u(t)) > ϕp

(
u′(t)

)
+ λbh(t)ϕp(u(t)), t ∈

(
0,

3
4

)
. (4.1)

Puttingm := mint∈[1/4,3/4] h(t) > 0, we have

ϕp

(
u′(t)

)′ + λbmϕp(u(t)) < 0, t ∈
(
1
4
,
3
4

)
. (4.2)

It is easy to check that w(t) = Sq(2πp(t − 1/4)) is a solution of

ϕp

(
w′(t)

)′ +
(
2πp

)p
ϕp(w(t)) = 0, t ∈

(
1
4
,
3
4

)
,

w

(
1
4

)
= 0 = w

(
3
4

)
,

(4.3)

where Sq is the q-sine function with 1/p + 1/q = 1 and πp = 2π(p − 1)1/p/p sin(π/p). Taking
y = w, z = u, b1 = (2πp)

p, and b2 = λbm in (2.3) and integrating from 1/4 to 3/4,we have
∫3/4

1/4

((
2πp

)p − λbm
)|w|pdt ≥ 0. (4.4)

Thus,

λ ≤ (2πp)
p

bm
:= λ. (4.5)

Lemma 4.2. Assume that (F2) holds. Let J be a compact interval in (0,∞). Then, for all λ ∈ J, there
existsMJ > 0 such that all possible positive solutions u of (Pλ) satisfy ‖u‖∞ ≤ MJ.

Proof. Suppose on the contrary that there exists a sequence (un) of positive solutions of (Pλn)
with (λn) ⊂ J � [α, β] and ‖un‖∞ → ∞ as n → ∞. It follows from the concavity of un that

un(t) ≥ 1
4
∥∥un

∥∥
∞, (4.6)

for all t ∈ (1/4, 3/4). Take M = 2((2πp)
p/αm) with m = mint∈[1/4,3/4]h(t) > 0. By (F2), there

existsK > 0 such that f(u) > Mϕp(u), for all u > K. From the assumption, we get ‖uN‖∞ > 4K
for sufficiently largeN. Therefore by (4.6), we have

f
(
uN(t)

)
> Mϕp

(
uN(t)

)
, t ∈

(
1
4
,
3
4

)
. (4.7)

Hence, we have

ϕp

(
u′
N(t)

)′ + αMmϕp

(
uN(t)

)
< 0, t ∈

(
1
4
,
3
4

)
. (4.8)

As in the proof of Lemma 4.1, for w(t) = Sq(2πp(t − 1/4)), taking y = w, z = u, b1 = (2πp)
p,

and b2 = αMm in (2.3), we obtain

M ≤
(
2πp

)p

αm
. (4.9)

This is a contradiction.
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We now state and prove the main theorem in this section.

Theorem 4.3. Assume that (H), (F1), and (F2) hold. Then, there exist 0 < λ∗ ≤ λ∗ such that (Pλ) has
two positive solutions for 0 < λ < λ∗, one positive solution for λ∗ ≤ λ ≤ λ∗, and no positive solution for
λ > λ∗.

Proof. Define λ∗ := sup{μ : problem (Pλ) has at least two positive solutions for all λ ∈ (0, μ)}.
Then by Lemmas 4.1 and 4.2, λ∗ < ∞. Suppose that there exists λ̂ ≥ λ∗ such that (Pλ̂) has a
positive solution, say û, that is,

ϕp

(
û′(t) − a

)′ + λ̂h(t)f
(
û(t) + a(1 − t)

)
= 0, t ∈ (0, 1),

û(0) = 0 = û(1).
(4.10)

For fixed λ ∈ (0, λ̂), define Tλ : C[0, 1] → C[0, 1] by

Tλ(u)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ t

0
ϕ−1
p

(∫B

s

λh(τ)f(γ(u(τ)) − a(1 − τ))dτ − ϕp(a)

)

ds + at, 0 ≤ t ≤ B,

∫1

t

ϕ−1
p

(∫ s

B

λh(τ)f(γ(u(τ)) − a(1 − τ))dτ + ϕp(a)

)

ds − a(1 − t), B ≤ t ≤ 1,

(4.11)

where γ : R → R is defined by

γ(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

û(t), if u > û(t),

u, if 0 ≤ u ≤ û(t),

0, if u < 0,

(4.12)

and B satisfies

∫B

0
ϕ−1
p

(∫B

s

λh(τ)f(γ(u(τ)) − a(1 − τ))dτ − ϕp(a)

)

ds + aB

=
∫1

B

ϕ−1
p

(∫ s

B

λh(τ)f(γ(u(τ)) − a(1 − τ))dτ + ϕp(a)

)

ds − a(1 − B).

(4.13)

It is easy to check that Tλ is completely continuous on C[0.1]. Let us consider the following
modified problem:

ϕp

(
u′(t) − a

)′ + λh(t)f(γ(u(t)) + a(1 − t)) = 0, t ∈ (0, 1),

u(0) = 0 = u(1).
(Mλ)

Then, solution u of (Mλ) is concave and nontrivial. It follows from the definition of γ and
the continuity of f that there exists R1 > 0 such that ‖Tλu‖∞ < R1 for all u ∈ C[0, 1]. Then, by
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Schauder’s fixed point theorem there exists u ∈ C[0, 1] such that Tλu = u.Hence, u is a positive
solution of (Mλ).

We claim that u(t) ≤ û(t), for all t ∈ [0, 1]. If the claim is not true, then there exists an
interval [t1, t2] ⊂ [0, 1] such that u(t1) = û(t1), u(t2) = û(t2), and u(t) > û(t), for all t ∈ (t1, t2).
Put α(t) = u(t) − û(t). Then, α(t1) = 0 = α(t2) and there exists an interval [b, c] ⊂ [t1 + δ, t2 − δ]
such that α′(b) = u′(b) − û′(b) > 0 and α′(c) = u′(c) − û′(c) < 0 for sufficiently small δ > 0.
Therefore, we have

u′(b) − a > û ′(b) − a, u′(c) − a < û ′(c) − a. (4.14)

It follows from the monotonicity of ϕp that

ϕp

(
u′(b) − a

)
> ϕp

(
û ′(b) − a

)
, ϕp

(
u′(c) − a

)
< ϕp

(
û ′(c) − a

)
. (4.15)

Since 0 < λ < λ̂, we get

0 > ϕp

(
u′(c) − a

) − ϕp

(
û ′(c) − a

) − ϕp

(
u′(b) − a

)
+ ϕp

(
û ′(b) − a

)

=
[
ϕp

(
u′(c) − a

) − ϕp

(
u′(b) − a

)] − [ϕp

(
û ′(c) − a

) − ϕp

(
û ′(b) − a

)]

=
∫ c

b

{[
ϕp

(
u′(t) − a

)]′ − [ϕp

(
û ′(t) − a

)]′}
dt

=
∫ c

b

{ − λh(t)f(γ(u(t)) + a(1 − t)) + λ̂h(t)f
(
û(t) + a(1 − t)

)}
dt

=
(
λ̂ − λ

)
∫ c

b

h(t)f
(
û(t) + a(1 − t)

)
dt > 0.

(4.16)

This contradiction implies u(t) ≤ û(t), for all t ∈ [0, 1]. Therefore, by the definition of γ, u turns
out a positive solution of (Pλ). Define λ∗ = sup{λ : (Pλ) has at least one positive solution}.
Then by Lemma 4.1, λ∗ < ∞. Furthermore by Lemma 4.2 and compactness of H, we can show
that (Pλ∗) has a positive solution in frame of standard limit argument and this completes the
proof.

Take f(u) = uq, q > p − 1, in problem (Pλ), then by the transformation arguments in
Section 3, solutions of (Pλ) correspond to those of problem (3.1)which is the radial problem of
(P) + (Di), i = 1, 2. In this case, conditions (Fi), i = 1, 2, in Theorem 4.3 are redundant and we
get the following corollary.

Corollary 4.4. Assume q > p − 1 and assume that

(K) there exists β > p − 1 such that
∫∞
r0
rβK(r)dr < ∞.

Then, there exist μ0 ≥ μ∗ > 0 such that (P) + (Di), i = 1, 2, has at least two positive radial solutions
for μ ∈ (0, μ∗), at least one positive radial solution for μ ∈ [μ∗, μ0], and no positive radial solution for
μ ∈ (μ0,∞).
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5. Global existence result

Multiplicity of solutions on [λ∗, λ∗] is not known in Theorem 4.3. Analytic difficulty on this
range is caused by lack of topological properties in solution space C[0, 1], mainly lack of
controllability of derivatives of solutions at the boundary. In this section, we overcome this
difficulty by employing a weighted space as new solution space specially for problem (P) +
(D1). For this purpose, let us consider the following p-Laplacian problem:

div
(|∇u|p−2∇u

)
+ |x|−luq = 0 in |x| > r0, (E)

u|∂Ω = 0, u −→ μ > 0 as |x| −→ ∞. (D1)

We notice that K(|x|) = |x|−l with l > p satisfies condition (K). By transformations r =
|x|, u(r) = u(|x|), and t = (r/r0)

−(N−p)/(p−1), u(r) = z(t),we obtain

ϕp

(
z′(t)

)′ +
(

p − 1
N − p

)p

r
p

0 t
(−p(N−1)+(p−1)l)/(N−p) zq(t) = 0, t ∈ (0, 1),

z(0) = μ > 0, z(1) = 0.
(5.1)

For α = (p(N − 1) − (p − 1)l)/(N − p), condition l > p corresponds to α < p. By another
transformation u(t) = z(t)/μ, the above problem can be transformed into

ϕp

(
u′(t)

)′ + λt−αuq(t) = 0, t ∈ (0, 1),

u(0) = 1 > 0, u(1) = 0,
(5.2)

where λ = μq−p+1.
As in Section 3, we consider problem (Eλ) given as follows for more general arguments:

ϕp

(
u′(t)

)′ + λt−αf(u(t)) = 0, t ∈ (0, 1),

u(0) = a > 0, u(1) = 0,
(Eλ)

where λ is a positive real parameter and f ∈ C(R+,R+). We give an additional assumption in
this section:

(F3) f is nondecreasing.

Now the aim of our work here is to investigate bifurcation phenomena of positive
solutions for problem (Eλ). Again introducing v(t) = u(t) − a(1 − t), we rewrite (Eλ) to the
following equivalent Dirichlet boundary problem:

ϕp

(
v′(t) − a

)′ + λt−αf(v(t) + a(1 − t)) = 0, t ∈ (0, 1),

v(0) = 0 = v(1).
(Êλ)

We first state the main theorem in this section.

Theorem 5.1. Assume that (F1), (F2), and (F3) hold. Also assume that α < p. Then, there exists λ∗ > 0
such that (Êλ) has at least two positive solutions for λ ∈ (0, λ∗), at least one positive solution for λ = λ∗,
and no positive solution for λ ∈ (λ∗,∞).
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If α < 1, then h(t) = t−α is of class L1(0, 1]. Thus, solution space is C1[0, 1] and by typical
Leray-Schauder degree argument in the frame of C1-topology, we can prove that the theorem
is true (see, [10]). Therefore, in this section, we focus on the case 1 ≤ α < p. Define

w(t) =

⎧
⎨

⎩

t(α−1)/(p−1), if 1 < α < p,

min
{
(−ln t)−1/(p−1), 1}, if α = 1.

(5.3)

We can easily know that

lim
t→ 0+

w(t) = 0, 0 < w(t) ≤ 1, t ∈ (0, 1], w−1 ∈ L1(0, 1). (5.4)

The following lemma is essential to introduce our weighted space Cw[0, 1] and very useful to
construct a bounded open set of solutions in the space for fixed point index computation.

Lemma 5.2. If u is a solution of (Êλ), then wu′ ∈ C(0, 1] and

0 < lim
t→ 0+

(wu′)(t) < ∞. (5.5)

Proof. Let u be a solution of (Êλ). Then, we have

u′(t) = ϕ−1
p

(

λ

∫A

t

τ−αf(u(τ) + a(1 − τ))dτ − ϕp(a)

)

+ a, (5.6)

where u′(A) = 0. Since w ∈ C(0, 1] and u′ ∈ C(0, 1], we only need to show

0 < lim
t→ 0+

(wu′)(t) < ∞. (5.7)

In fact, if 1 < α < p, then by L’Hospital’s rule and limt→ 0+ w(t) = 0, we have

lim
t→ 0+

(wu′)(t) = lim
t→ 0+

(

ϕ−1
p

[
λ
∫A
t τ−αf(u(τ) + a(1 − τ))dτ − ϕp(a)

t1−α

]

+ aw(t)

)

= ϕ−1
p

(
λ

1
α − 1

f(a)
)

> 0.

(5.8)

If α = 1, then similarly we may obtain

lim
t→ 0+

(
wu′)(t) = ϕ−1

p (λf(a)) > 0. (5.9)

Thus, the proof is complete.

Define Cw[0, 1] = {u ∈ C0[0, 1] ∩ C1(0, 1] : limt→ 0+ (wu′)(t) exists}. We notice that if
u ∈ Cw[0, 1], then there exists an extension wu′ ∈ C[0, 1] of wu′ such that

wu′(t) =

⎧
⎨

⎩

lim
t→ 0+

(
wu′)(t), t = 0,

(
wu′)(t), t ∈ (0, 1].

(5.10)

Define

‖u‖w = ‖u‖∞ +
∥
∥wu′∥∥

∞. (5.11)
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Proposition 5.3. (Cw[0, 1], ‖ · ‖w) is a Banach space.

Proof. It is easy to see thatCw[0, 1] is a normed linear space.We only need to check thatCw[0, 1]
is complete. In fact, let (un) be a Cauchy sequence inCw[0, 1]. That is, (un) is a Cauchy sequence
inC0[0, 1] and (wu′

n) is a Cauchy sequence inC[0, 1]. Since bothC0[0, 1] andC[0, 1] are Banach
spaces, there exist u ∈ C0[0, 1] and v ∈ C[0, 1] such that un → u in C0[0, 1] and wu′

n → v in
C[0, 1]. Since w(t) > 0, for t ∈ (0, 1], there exists v1 ∈ C(0, 1] such that v(t) = w(t)v1(t), for all
t ∈ (0, 1]. For δ > 0, we know u′

n → v1 in C[δ, 1]. This implies v1 ≡ u′ in [δ, 1]. Since δ > 0 is
arbitrary, wu′

n → wu′ pointwise in t ∈ (0, 1]. Therefore, by the uniqueness of limit, wu′ ≡ v on
(0, 1]. Since wu′

n → v in C[0, 1], we have

v(0) = lim
n→∞

wu′
n(0)

= lim
n→∞

lim
t→ 0+

wu′
n(t)

= lim
t→ 0+

lim
n→∞

wu′
n(t)

= lim
t→ 0+

wu′(t).

(5.12)

Therefore, u ∈ Cw[0, 1] and wu′ ≡ v on [0, 1]. This implies un → u in Cw[0, 1] and the proof is
complete.

LetK = {u ∈ Cw[0, 1] | u is concave on (0, 1)}. Then, it is easy to check thatK is an order
cone. DefineH : R+ ×K → Cw[0, 1] by

H(λ, u)(t) �

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ t

0
ϕ−1
p

(∫Aλ,u

s

λτ−αf(u(τ) + a(1 − τ))dτ − ϕp(a)

)

ds + at, 0 ≤ t ≤ Aλ,u,

∫1

t

ϕ−1
p

(∫s

Aλ,u

λτ−αf(u(τ) + a(1 − τ))dτ + ϕp(a)

)

ds − a(1 − t), Aλ,u ≤ t ≤ 1,

(5.13)

where

∫Aλ,u

0
ϕ−1
p

(∫Aλ,u

s

λτ−αf(u(τ) + a(1 − τ))dτ − ϕp(a)

)

ds + aAλ,u

=
∫1

Aλ,u

ϕ−1
p

(∫ s

Aλ,u

λτ−αf(u(τ) + a(1 − τ))dτ + ϕp(a)

)

ds − a
(
1 −Aλ,u

)
.

(5.14)

Assume that (F1) holds. Then, by the similar argument in the proof of Lemma 5.2 and the
definition ofH,we see thatH is well defined andH(R+ ×K) ⊂ K. Furthermore, u is a positive
solution of (Êλ) if and only if u = H(λ, u) on K. The following lemma can be proved by
standard argument and we skip the proof.
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Lemma 5.4. Assume that (F1) holds. Then,H is completely continuous on R+ ×K.

Since H(0, u) = 0, for all u ∈ K and H(λ, 0)/= 0, for λ > 0, Lemma 5.4 and the global
continuation theorem imply that there exists an unbounded continuum C of positive solutions
of (Êλ) bifurcating from (0, 0).

Lemma 5.5. Assume that (F1) and (F2) hold. Let u be a positive solution of (Êλ). Then, there exists
λ > 0 such that λ ≤ λ.

Proof. Taking h(t) = t−α with α < p,we can prove this lemma by the same argument in the proof
of Lemma 4.1.

Lemma 5.6. Assume that (F2) holds and let I be a compact interval in (0,∞). Then, there exists bI > 0
such that for all possible positive solution u of (Êλ) with λ ∈ I, one has

‖u‖w ≤ bI. (5.15)

Proof. Assume on the contrary that there exists a sequence (un) of a positive solution of (Êλn)
with λn ∈ I such that ‖un‖w → ∞ as n → ∞. We claim ‖un‖∞ → ∞ as n → ∞. This
contradicts Lemma 4.2 and the proof is complete. If the claim is not true, then there exists
M1 > 0 such that ‖un‖∞ ≤ M1, for all n. Since un is a positive solution of (Êλn), we get

−ϕp

(
u′
n(t) − a

)′ = λnt
−αf
(
un(t) + a(1 − t)

) ≤ dt−α, t ∈ (0, 1), (5.16)

where d = sup I maxu∈[0,M1+a] f(u). Integrating this from t to 1, we have

∣∣ϕp

(
u′
n(1) − a

) − ϕp

(
u′
n(t) − a

)∣∣ ≤ d

∫1

t

s−αds,

∣∣ϕp

(
u′
n(t) − a

)∣∣ ≤ ∣∣ϕp

(
u′
n(1) − a

)∣∣ + d

∫1

t

s−αds.

(5.17)

Since ϕ−1
p is increasing, we obtain

∣∣u′
n(t) − a

∣∣ ≤ ϕ−1
p

[
∣∣ϕp

(
u′
n(1) − a

)∣∣ + d

∫1

t

s−αds

]

,

≤ 2(2−p)/(p−1)
[
∣∣u′

n(1)
∣∣ + a + ϕ−1

p

(

d

∫1

t

s−αds

)]

.

(5.18)

Therefore, by the similar computation in the proof of Lemma 5.4, we obtain

w(t)
∣∣u′

n(t)
∣∣ ≤ 2(2−p)/(p−1)

[
∣∣u′

n(1)
∣∣ +
(
1 + 2(p−2)/(p−1)

)
a + ϕ−1

p

(

dwp−1(t)
∫1

t

s−αds

)]

≤ 2(2−p)/(p−1)
[
∣∣Y ′(1)

∣∣ +
(
1 + 2(p−2)/(p−1)

)
a + ϕ−1

p

(

d max
t∈[0,1]

{

w(t)p−1
∫1

t

s−αds

})]

< +∞,

(5.19)
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where

Y (t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ t

0
ϕ−1
p

(

d

∫B

s

τ−αdτ − ϕp(a)

)

ds + at, 0 ≤ t ≤ B,

∫1

t

ϕ−1
p

(

d

∫ s

B

τ−αdτ + ϕp(a)

)

ds − a(1 − t), B ≤ t ≤ 1,

(5.20)

with Y (B) = ‖Y‖∞. This implies that {‖wu′
n‖∞} is bounded. This contradicts our assumption

‖un‖w → ∞ and the claim is proved.

Let us assume that problem (Êλ) has a positive solution at λ∗ > 0 so let u∗ be a positive
solution of (Êλ∗). We see that u∗ satisfies

ϕp

(
u′
∗(t) − a)′ + λ∗t−αf(u∗(t) + a(1 − t)

)
= 0, t ∈ (0, 1). (5.21)

Consider a fixed parameter λ ∈ (0, λ∗). For N > 0, let us define

ΩN =
{
u ∈ Cw[0, 1] | 0 < u(t) < u∗(t), t ∈ (0, 1), 0 < wu′(0+

)
< wu′

∗
(
0+
)
,

u′
∗
(
1−
)
< u′(1−

)
< 0 and

∥∥wu′∥∥
∞ < N

}
.

(5.22)

Then by Lemma 5.2, ΩN is bounded and open in Cw[0, 1]. Consider the following modified
problem:

ϕp

(
u′(t) − a

)′ + λt−αf(γ(u(t)) + a(1 − t)) = 0,

u(0) = 0 = u(1),
(Mλ1)

where γ : R → R+ by

γ(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u∗(t), if u > u∗(t),

u, if 0 ≤ u ≤ u∗(t),

0, if u < 0.

(5.23)

Lemma 5.7. Assume that (F1), (F2), and (F3) hold. If u is a positive solution of (Mλ1) for λ ∈ (0, λ∗),
then u ∈ ΩN ∩K, for someN > 0.

Proof. Let u be a positive solution of (Mλ1). We first show 0 < u(t) ≤ u∗(t), t ∈ (0, 1). If it is
not true, there exists [t1, t2] ⊂ [0, 1] such that u(t) > u∗(t) for t ∈ (t1, t2), u(t1) = u∗(t1), and
u(t2) = u∗(t2). Since u − u∗ ∈ C0[t1, t2], there exists A ∈ (t1, t2) such that

u′(A) = u′
∗(A), u(A) − u∗(A) > 0. (5.24)

Since γ(u(t)) + a(1 − t) ≤ u∗(t) + a(1 − t), λ < λ∗, and f is nondecreasing, we have

λ∗f(u∗(t) + a(1 − t)) > λf(γ(u(t)) + a(1 − t)). (5.25)
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This implies

ϕp

(
u′(t) − a

)′ + λ∗t−αf(u∗(t) + a(1 − t)) > 0, t ∈ (0, 1). (5.26)

From (5.21) and (5.26), we have

ϕp

(
u′
∗(t) − a

)′ − ϕp

(
u′(t) − a

)′
< 0, t ∈ (0, 1). (5.27)

For t ∈ (A, 1), integrating (5.27) fromA to t, we have u′
∗(t) ≤ u′(t). Again, integrating this from

A to 1, we get

u∗(A) ≥ u(A). (5.28)

This contradicts (5.24).
Second, we show u(t) < u∗(t), t ∈ (0, 1). If it is not true, then by the first argument

and (5.27), we have only one case; there exist t3 ∈ (0, 1) and δ1 > 0 such that u(t3) = u∗(t3),
u(t) < u∗(t), t ∈ (t3 − δ1, t3 + δ1) \ {t3}, and u′(t3) = u′

∗(t3). For t ∈ (t3 − δ1, t3), integrating (5.27)
from t to t3, we have

u′
∗(t) ≥ u′(t), for t ∈ (t3 − δ1, t3

)
. (5.29)

Again integrating this from t3 − δ1/2 to t3, we get

u∗

(
t3 − δ1

2

)
≤ u

(
t3 − δ1

2

)
(5.30)

and this is a contradiction.
Third, we show that 0 < limt→ 0+wu′(t) < limt→ 0+wu′

∗(t). By the second argument,
γ(u(t)) = u(t), for t ∈ (0, 1). By the similar calculation as in Lemma 5.2, we have

lim
t→ 0+

wu′(t) = ϕ−1
p (λf(a)) < ϕ−1

p (λ∗f(a)) = lim
t→ 0+

wu′
∗(t), (5.31)

if α = 1. The case 1 < α < p is similar.
Fourth, we show that 0 > u′(1) > u′

∗(1).We first claim that there exists c ∈ (0, 1) such that
u′(c) > u′

∗(c). Indeed, otherwise, u′(t) ≤ u′
∗(t), for all t ∈ (0, 1). Integrating this from t to 1, we

have

u(t) ≥ u∗(t), for t ∈ (0, 1). (5.32)

This is a contradiction by the second argument. Integrating (5.27) from c to 1, we obtain

ϕp

(
u′
∗(1) − a

) − ϕp

(
u′(1) − a

)
< ϕp

(
u′
∗(c) − a

) − ϕp

(
u′(c) − a

)
< 0 (5.33)

and thus

u′
∗(1) < u′(1). (5.34)

Since u is a positive solution of (Mλ1), obviously u′(1) < 0.



Chan-Gyun Kim et al. 15

Finally, we show ‖wu′‖∞ < N for some N > 0. Since 0 ≤ u(t) ≤ u∗(t) for all t ∈ [0, 1], by
the similar calculation in the proof of Lemma 5.6, we have

∣∣wu′(t)
∣∣ ≤ 2(2−p)/(p−1)

[
∣∣Y ′(1)

∣∣ +
(
2(p−2)/(p−1) + 1

)
a + ϕ−1

p

(

f∗ max
t∈[0,1]

{

w(t)p−1
∫1

t

s−αds

})]

� N,

(5.35)

for all t ∈ [0, 1], where f∗ = λ maxu∈[0,‖u∗‖+a] f(u) > 0, and

Y (t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ t

0
ϕ−1
p

(

f∗

∫B

s

τ−αdτ − ϕp(a)

)

ds + at, 0 ≤ t ≤ B,

∫1

t

ϕ−1
p

(

f∗

∫s

B

τ−αdτ + ϕp(a)

)

ds − a(1 − t), B ≤ t ≤ 1,

(5.36)

and B is defined by

∫B

0
ϕ−1
p

(

f∗

∫B

s

τ−αdτ − ϕp(a)

)

ds + aB =
∫1

B

ϕ−1
p

(

f∗

∫s

B

τ−αdτ + ϕp(a)

)

ds − a(1 − B),

(5.37)

and this completes the proof.

We now prove the main theorem in this section.

Proof of Theorem 5.1. Let λ∗ = sup{μ | (Êλ) have at least two positive solutions for all λ ∈ (0, μ)}.
Then, by Lemmas 5.5 and 5.6, 0 < λ∗ ≤ λ. By the choice of λ∗, (Êλ) has at least two positive
solutions for λ ∈ (0, λ∗) and at least one positive solution at λ = λ∗. We will show that (Êλ)
has no positive solution for all λ > λ∗. On the contrary, assume that there exists λ∗ > λ∗ such
that (Êλ∗) has a positive solution. We claim that (Êλ) has at least two positive solutions for λ ∈
(λ∗, λ∗). Then, this contradicts to the definition of λ∗ and the proof is done. DefineM : K → K
by

Mu(t) �

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ t

0
ϕ−1
p

(∫Au

s

λτ−αf(γ(u(τ)) + a(1 − τ))dτ − ϕp(a)

)

ds + at, 0 ≤ t ≤ Au,

∫1

t

ϕ−1
p

(∫s

Au

λτ−αf(γ(u(τ)) + a(1 − τ))dτ + ϕp(a)

)

ds − a(1 − t), Au ≤ t ≤ 1,

(5.38)

where
∫Au

0
ϕ−1
p

(∫Au

s

λτ−αf(γ(u(τ)) + a(1 − τ))dτ − ϕp(a)

)

ds + aAu

=
∫1

Au

ϕ−1
p

(∫ s

Au

λτ−αf(γ(u(τ)) + a(1 − τ))dτ + ϕp(a)

)

ds − a
(
1 −Au

)
.

(5.39)
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Then,M : K → K is completely continuous and u is a solution of (Mλ1) if and only if u = Mu
onK. By simple calculation, we can easily check that there exists R1 > 0 such that ‖Mu‖w < R1,
for all u ∈ K. Taking R1 big enough satisfying BR1 ⊃ ΩN and applying Theorem 2.4, we get

i
(
M,BR1 ∩K,K

)
= 1. (5.40)

By Lemma 5.7 and the excision property, we get

i
(
M,ΩN ∩K,K

)
= i
(
M,BR1 ∩K,K

)
= 1. (5.41)

Since problem (Êλ) is equivalent to problem (Mλ1) on ΩN ∩ K, we conclude that (Êλ) has a
positive solution inΩN ∩K. Assume thatH(λ, ·) has no fixed point in ∂ΩN ∩K (otherwise, the
proof is done!). Then, i(H(λ, ·),ΩN ∩K,K) is well defined and by (5.41), we have

i
(
H(λ, ·),ΩN ∩K,K

)
= 1. (5.42)

By Lemma 5.5, we may choose λN0 > λ such that (ÊλN0
) has no solution inK. By a priori estimate

(Lemma 5.6) with I = [λ, λN0], there exists R2 > R1 such that for all possible positive solutions
u of (Êμ)with μ ∈ [λ, λN0], we have

‖u‖w < R2. (5.43)

Define h : [0, 1] × (BR2 ∩K) → K by

h(τ, u) = H
(
τλN0 + (1 − τ)λ, u

)
. (5.44)

Then, by the similar argument as Lemma 5.4, h is completely continuous on [0, 1] ×K and by
Lemma 5.6, h(τ, u)/=u, for all (τ, u) ∈ [0, 1]×(∂BR2∩K). By the property of homotopy invariance,
we have

i
(
H(λ, ·), BR2 ∩K,K

)
= i
(
H
(
λN0 , ·

)
, BR2 ∩K,K

)
= 0. (5.45)

By the additive property and (5.42), we have

i
(
H(λ, ·), (BR2 \ΩN

) ∩K,K
)
= −1. (5.46)

Therefore (Êλ) has another positive solution in (BR2 \ΩN) ∩K. This completes the claim.

Corollary 5.8. Assume that l > p and q > p − 1. Then, there exists μ∗ > 0 such that (E) + (D1) has at
least two positive radial solutions for μ ∈ (0, μ∗), at least one positive radial solution for μ = μ∗, and no
positive radial solution for μ ∈ (μ∗,∞).
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6. Nonexistence

In this section, we will prove the nonexistence result of nonnegative solution of problem (Eλ)
if α ≥ p.

Theorem 6.1. Assume that (F1) holds and also assume α ≥ p. Then, (Eλ) has no positive solution.

Proof. First, we prove the case α = p. It is obvious that problem (Eλ) does not have a trivial
solution. Suppose on the contrary that there is a positive solution u of (Eλ) when α = p. Since
u is concave, there exists unique z ∈ (0, 1) such that u(z) = a/2. Therefore, we have u(t) ≥ a/2,
for t ∈ (0, z). This implies

−ϕp(u′)′ ≥ λmt−p, (6.1)

for t ∈ (0, z), wherem = minv∈[a/2,‖u‖] f(v) > 0. For x ∈ (0, z/2), we can easily know that

x1−α − z1−α >
(
1 − 21−α

)
x1−α. (6.2)

Integrating (6.1) from x to z and by (6.2)we obtain

ϕ−1
p

[
ϕp

(
u′(x)

) − ϕp

(
u′(z)

)] ≥ Cx−1, (6.3)

where C = ϕ−1
p (λm(1/(p − 1))(1 − 21−p)). Since ϕp(u′(x)) − ϕp(u′(z)) ≥ 0,we obtain

x−1 ≤ γ1/(p−1)C−1[∣∣u′(x)
∣∣ +
∣∣u′(z)

∣∣], (6.4)

where γq = max{1, 2q−1}. It is enough to consider the following two cases: (i) there exists l ∈
(0, z/2) such that u′(x) > 0, for all x ∈ (0, l) and (ii) u′(x) < 0 for all x ∈ (0, z/2). For the first
case, let y ∈ (0, l), then integrating (6.4) from y to l, we get

u(y) ≤ u(l) +
∣∣u′(z)

∣∣(l − y) + γ−11/(p−1)C(− ln l + lny). (6.5)

Letting y → 0, we have u(y) → −∞ and this is a contradiction to u(0) = a. For the second
case, let y ∈ (0, z/2), then integrating (6.4) from y to z/2,

ln
z

2
− lny ≤ γ1/(p−1)C−1

[
− u

(
z

2

)
+ u(y) +

∣∣u′(z)
∣∣
(
z

2
− y

)]
. (6.6)

This implies

u(y) ≥ u

(
z

2

)
− ∣∣u′(z)

∣∣
(
z

2
− y

)
+ γ−11/(p−1)C

(
ln

z

2
− lny

)
. (6.7)

Letting y → 0, we obtain u(y) → ∞. Once again, this is a contradiction to u(0) = a. Similarly,
we can prove the same conclusion for the case α > p.

Remark 6.2. Instead of condition (F1), if we assume that there exists ε > 0 such that f(u) > 0 for
u ≥ ε, then the conclusion of Theorem 6.1 still remains true.

Corollary 6.3. Assume l ≤ p. Then (E) + (D1) has no positive radial solution.

One of the referee informed that Corollary 6.3 was proven under more general set up in
[2].
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