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1. Introduction

We study the long-time behavior of a uniform flow past and infinitely long cylindrical obstacle.
We will assume that the flow is uniform in the direction x of the axis of the cylindrical obstacle
and the flow approachesU∞ex farther away from the obstacle. In this respect, we can consider
a two-dimensional flow and assume that the obstacles are a disk with radius r (more general
obstacle can be treated in exactly the sameway). A further simplification is to observe that since
the flow is uniform at infinity, wemay assume that the flow is in an infinitely long channel with
width 2L (L � r) and the obstacle is located at the center, while the flow at the boundary of
the channel is almost the uniform flow at infinity. More precisely, we assume that the flow is
governed by the following Navier-Stokes equations in Ω = R

1 × (−L, L) \ Br(0)(L� r):

∂u

∂t
− νΔu + (u·∇)u +∇p = f,

divu = 0,
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2 Boundary Value Problems

u = ϕ on ∂Ω1 = {y = ±L},
u = 0 on ∂Ω2 = ∂Br,

u = U∞ex if x −→ ±∞,

(1.1)

where f ∈ L2
loc((0, T);L

2(Ω)) is translation compact and ϕ −U∞ex ∈ C1
b
(R+;H2(R1 × {±L})) is

called asymptotically almost periodic, that is, for any ε ≥ 0, there is a number l = l(ε) such that
for each interval (α, α + l), α ∈ R+, there exists a point τ ∈ (α, α + l) such that

μ
(
ϕ(s + τ), ϕ(s)

) ≤ ε, ∀s ≥ l (1.2)

(the number τ is called the ε-period of the function ϕ) (see [1]), where μ is the metric in
C1
b
(R+;H2(R1 × {±L})).

The basic idea of our construction is motivated by the works of [2]where an attractorA
in space L2(Ω) to which all solutions approach as t → ∞ was shown. In this paper, we verify
the existence of uniform attractors in spaceH1 by using a noncompactness measure method.

We assume that the following Poincaré inequality holds:

there exists λ1 > 0 such that λ1

∫

Ω
φ2 dx ≤

∫

Ω
|∇φ|2dx, ∀φ ∈ H1

0(Ω). (1.3)

Throughout this paper, we introduce the spaces

ν = {u ∈ (D(Ω))2; ∇ · u = 0 in Ω, u · n = 0 on ∂Ω},
H = closure of ν in L2(Ω),

V = closure of ν in H1
0(Ω),

| · |, the L2(Ω) norm,

‖ · ‖, the norm in V,

(·, ·) the inner product inH or the dual product between V and V ′,

((·, ·)) the inner product in V.
Here V ′ is the dual of V = V1. The constants C(c) are considered in a generic sense, which is
independent of the physical parameters in the equations and may be different from line to line
and even in the same line.

2. Setting of the problem

The first simplification is to introduce the new variables

ũ = u −U∞ex, ϕ̃ = ϕ −U∞ex. (2.1)

Then ũ satisfies the equations

∂ũ

∂t
− νΔũ + (ũ · ∇) ũ +U∞ ∂x ũ +∇p = f,

div ũ = 0,

ũ = ϕ̃ on ∂Ω1 = {y = ±L},
ũ = −U∞ ex on ∂Ω2 = ∂Br,

ũ = 0 if x −→ ±∞.

(2.2)
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We observe that ϕ̃ ∈ C1
b
(R+;H2(R1 × {±L})) and is asymptotically almost periodic. Note that ũ

and ϕ̃ decay nicely near infinity. However, the boundary condition is not homogeneous, and
thus we apply a modified Hopf’s technique (see [2–5]) to homogenize the boundary condition.
More specifically, we choose

ηi ∈ C∞([0, 1]
)
, supp ηi ⊂

[
0,

1
2

]
,

∫1

0
η1(s)ds = 0, η1(0) = 1,

η2(0) = 1, η′2(0) = 0, η′′2(0) = 0,

∣∣sη2(s)
∣∣ ≤ ν

r ′U∞
,

∣∣sη′2(s)
∣∣ ≤ ν

r ′U∞
,

∣∣sη′′2(s)
∣∣ ≤ ν

r ′U∞
,

(2.3)

and we define, for ε < 1,

ϑ1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−ϕ̃1(x, L; t)
∫L−y

0
η1

(
s

Lε

)
ds, for

L

2
< y < L,

ϕ̃1(x,−L; t)
∫L+y

0
η1

(
s

Lε

)
ds, for − L < y < −L

2
,

0, otherwise,

ϑ2 =

⎧
⎪⎪⎨

⎪⎪⎩

−U∞ η2

(√
x2 + y2

r
− 1

)

y, for r <
√
x2 + y2 < 2r,

0, otherwise.

(2.4)

we then define

ψi = curl ϑi =
(
∂yϑ

i,−∂xϑi
)
, i = 1, 2. (2.5)

Observe that ψ1 = ϕ̃ at y = ±L and ψ2 = −U∞ex at ∂Br. If we set

v = ũ − ψ, where ψ = ψ1 + ψ2, (2.6)

then v satisfies

∂v

∂t
− νΔv + (v · ∇)v + (v · ∇)ψ + (ψ · ∇)v +U∞∂xv +∇p

=
∂ψ1

∂t
+ νΔψ − (ψ · ∇)ψ −U∞∂xψ + f

= G
(
ε, ν,U∞, r, L, t

)
+ f = F,

div v = 0,

v = 0 on ∂Ω,

v(τ) = vτ .

(2.7)

It is easy to check that for fixed ε, ν, U∞, r, and L, the right-hand side of (2.7) G ∈ Cb(R+;
L2(Ω)) (see [2]) is asymptotically almost periodic.
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3. Abstract results

Let E be a Banach space, and let a two-parameter family of mappings {U(t, τ)} = {U(t, τ) | t ≥
τ, τ ∈ R} act on E:

U(t, τ) : E −→ E, t ≥ τ, τ ∈ R. (3.1)

Definition 3.1. A two-parameter family of mappings {U(t, τ)} is said to be a process in E if

U(t, s)U(s, τ) = U(t, τ), ∀t ≥ s ≥ τ, τ ∈ R,

U(τ, τ) = Id, τ ∈ R.
(3.2)

A family of processes {Uσ(t, τ)}, σ ∈ Σ, acting in E is said to be (E × Σ, E)-continous, if
for all fixed t and τ, t ≥ τ, τ ∈ R, the mapping (u, σ) → Uσ(t, τ)u is continuous from E×Σ into
E.

A curve u(s), s ∈ R, is said to be a complete trajectory of the process {U(t, τ)} if

U(t, τ)u(τ) = u(t), ∀t ≥ τ, τ ∈ R. (3.3)

The kernel K of the process {U(t, τ)} consists of all bounded complete trajectories of the
process {U(t, τ)}:

K =
{
u(·) | u(·) satisfies (3.3) and

∥∥u(s)
∥∥
E ≤Mu for s ∈ R

}
. (3.4)

The set

K(s) =
{
u(s) | u(·) ∈ K} ⊆ E (3.5)

is said to be the kernel section at time t = s, s ∈ R.
We consider the two projectorsΠ1 and Π2 from E × Σ onto E and Σ, respectively,

Π1(u, σ) = u, Π2(u, σ) = σ. (3.6)

Now we recall the basic results in [1].

Theorem 3.2. Let a family of processes {Uσ(t, τ)}, σ ∈ Σ, acting in the space E be uniformly
(w.r.t. σ ∈ Σ) asymptotically compact and (E × Σ, E)-continuous. Also let Σ be a compact-metric
space and let {T(t)} be a continuous-invariant (T(t)Σ = Σ) semigroup on Σ satisfying the translation
identity

Uσ(t + s, τ + s) = UT(s)σ(t, τ), ∀ σ ∈ Σ, t ≥ τ, τ ∈ R, s ≥ 0. (3.7)

Then the semigroup {S(t)} corresponding to the family of processes {Uσ(t, τ)}, σ ∈ Σ, and acting on
E × Σ,

S(t)(u, σ) =
(
Uσ(t, 0)u, T(t)σ

)
, t ≥ 0, (u, σ) ∈ E × Σ, (3.8)

possesses the compact attractor A which is strictly invariant with respect to {S(t)} : S(t)A = A for
all t ≥ 0. Moreover,
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(i) Π1A = A1 = AΣ is the uniform (w.r.t. σ ∈ Σ) attractor of the family of processes
{Uσ(t, τ)}, σ ∈ Σ;

(ii) Π2A = A2 = Σ;

(iii) the global attractor satisfies

A =
⋃

σ∈Σ
Kσ(0) × {σ}; (3.9)

(iv) the uniform attractor satisfies

AΣ = A1 =
⋃

σ∈Σ
Kσ(0). (3.10)

HereKσ(0) is the section at t = 0 of the kernelKσ of the process {Uσ(t, τ)} with symbol σ ∈ Σ.

For convenience, let Bt =
⋃
σ∈Σ
⋃
s≥t Uσ(s, t)B, the closure B of the set B and Rτ = {t ∈ R |

t ≥ τ}. Define the uniform (w.r.t. σ ∈ Σ) ω-limit set ωτ,Σ (B) of B by ωτ,Σ (B) =
⋂
t≥τ Bt which

can be characterized with, analogously to that for semigroups, the following:

y ∈ ωτ,Σ(B) ⇐⇒ there are sequences {xn} ⊂ B, {σn} ⊂ Σ, {tn} ⊂ Rτ

such that tn −→ +∞ , Uσn(tn, τ)xn −→ y (n −→ ∞).
(3.11)

We will characterize the existence of the uniform attractor for a family of processes sat-
isfying (3.7) in terms of the concept of measure of noncompactness that was put forward first
by Kuratowski.

Let B ∈ B(E). The Kuratowski measure of noncompactness κ(B) is defined by

κ(B) = inf
{
δ > 0 | B admits a finite covering by sets of diameter ≤ δ}. (3.12)

Definition 3.3. A family of processes {Uσ(t, τ)}, σ ∈ Σ, is said to be uniformly (w.r.t. σ ∈ Σ)ω-
limit compact if for any τ ∈ R and B ∈ B(E) the set Bt is bounded for every t and limt→∞κ(Bt)
= 0.

We present now a method to verify the uniform (w.r.t. σ ∈ Σ)ω-limit compactness (see
[6, 7]).

Definition 3.4. A family of processes {Uσ(t, τ)}, σ ∈ Σ, is said to satisfy uniformly (w.r.t. σ ∈ Σ)
condition (C) if for any fixed τ ∈ R, B ∈ B(E), and ε > 0, there exist t0 = t(τ, B, ε) ≥ τ and a
finite-dimensional subspace E1 of E such that

(i) P(
⋃
σ∈Σ
⋃
t≥t0Uσ(t, τ)B) is bounded;

(ii) ‖(I − P)(⋃σ∈Σ
⋃
t≥t0Uσ(t, τ)x)‖ ≤ ε, ∀x ∈ B,

where P : E → E1 is a bounded projector.
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Therefore we have the following results.

Theorem 3.5. Let Σ be a compact metric space and let {T(t)} be a continuous invariant semigroup
T(t)Σ = Σ on Σ satisfying the translation identity (3.7). A family of processes {Uσ(t, τ)}, σ ∈ Σ,
acting in E is (E×Σ, E) (weakly) continuous and possesses the compact uniform (w.r.t. σ ∈ Σ) attractor
AΣ satisfying

AΣ = ω0,Σ
(
B0
)
= ωτ,Σ

(
B0
)
=
⋃

σ∈Σ
Kσ(0), ∀τ ∈ R, (3.13)

if it

(i) has a bounded uniformly (w.r.t. σ ∈ Σ) absorbing set B0;

(ii) satisfies uniformly (w.r.t. σ ∈ Σ) condition (C).

Moreover, if E is a uniformly convex Banach space then the converse is true.

4. The attractor of the nonhomogeneous Navier-Stokes equations

We say that v is a weak solution of (2.7) if

vτ ∈ H, v ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), (4.1)
d

dt
(v,w) + a(v,w) + b(v, ψ,w) + b(ψ, v,w) + b(v, v,w) + b

(
U∞ ex, v,w

)
= (F,w) in V ′,

for t > 0, ∀ w ∈ V,
v(τ) = vτ

(4.2)

in the distributional sense, where a(v,w) = (Av,w)V ′, V . The well-posedness of (4.2) can be de-
rived using a standard Faedo-Galerkin approach. It can be viewed as a family of semiprocesses
onH with the symbol space Σ defined as

Σ = Σ1 × Σ2 =
{
ψ(· + τ)}τ≥0 ×

{
F(· + τ)}τ≥0, (4.3)

endowed with the product norm of the supremum norm on Cb(R+;H2(Ω)) (for ψ) and the
supremum norm of Cb(R+;L2(Ω)) (forG) or the norm of L2

loc((0, T);L
2(Ω)) (for f). The symbol

space Σ is a compact space by our assumptions on ϕ and f, and the explicit construction of ψ
and F. For each vτ ∈ H and σ = (σ1, σ2) ∈ Σ, t ≥ τ, Uσ(t, τ)vτ is the solution in V ′ to

dv

dt
+ νAv + B(v, v) + B

(
v, σ1) + B

(
σ1, v
)
+ B
(
U∞ ex, v

)
= Pσ2, t > τ,

v(τ) = vτ ,
(4.4)

where A : V → V ′ is the Stokes operator defined by

(Av,w) = (∇v,∇w), ∀v,w ∈ V. (4.5)
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B(u, v) is a bilinear operatorH1
0 ×H1

0 → V ′ defined by
(
B(u, v), w

)
= b(u, v,w), ∀u, v ∈ H1

0 , ∀w ∈ V, (4.6)

and P is the Leray-Hopf projection from L2(Ω) ontoH.
We can also define on Σ the semigroup {T(s)}s≥0 given by T(s)σ(t) = (T(s)σ)(t) = σ(t +

s), ∀t ≥ 0, ∀s ≥ 0, ∀σ ∈ Σ. Since the symbol space Σ is compact, the semigroup {T(s)}s≥0 is
continuous and compact and in particular asymptotically compact. It is then obvious that this
family of semiprocesses satisfies the translation invariance property.

Now recall the following facts that can be found in [6].

Lemma 4.1. Assume that f(s) ∈ L2
c(R;E) is translation compact, then for any ε > 0, there exists

η > 0 such that

sup
t∈R

∫ t+η

t

∥∥f(s)
∥∥2
Eds ≤ ε. (4.7)

SinceA−1 is a continuous-compact operator inH, by the classical spectral theorem, there
exists a sequence {λj}∞j=1,

0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · , λj −→ +∞, as j −→ ∞. (4.8)

Now we will write (4.4) in the operator form

∂tv = Aσ(t)(v), v|t=τ = vτ , (4.9)

where σ(s) ∈ Σ is the symbol of (4.9). Thus, if vτ ∈ H, then problem (4.9) has a unique solution
v(t) ∈ C([0, T];H)∩L2([0, T];V ). This implies that the process {Uσ(t, τ)} given by the formula
Uσ(t, τ)vτ = v(t) is defined inH.

Let

Kσ =
{
vσ(x, t) for t ∈ R | vσ(x, t) is the solution of (4.9) satisfying

∥∥vσ(·, t)
∥∥
H ≤Mσ ∀t ∈ R

}

(4.10)

be the so-called kernel of the process {Uσ(t, τ)}.

Proposition 4.2. The process {Uσ(t, τ)} : V → V associated with (4.9) possesses absorbing sets

B =
{
v ∈ V | ‖v‖ ≤ ρ} (4.11)

which absorb all bounded sets of V in the norm of V .

Proof. Multiplying (4.4) by Av,we have
(
dv

dt
,Av

)
+
(
νAv, Av

)
+
(
B(v, v), Av

)

+
(
B
(
v, ψ1 + ψ2), Av

)
+
(
B
(
ψ1 + ψ2, v

)
, Av
)
+
(
B
(
U∞ex, v

)
, Av
)

=
(
∂ψ1

∂t
,Av

)
+ ν
(
Δ
(
ψ1 + ψ2), Av

)

− (B(ψ1 + ψ2, ψ1 + ψ2), Av
) − (B(U∞ex, ψ1 + ψ2), Av

)
+ (f,Av)

= (F,Av),

(4.12)
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that is,

1
2
d

dt
‖v‖2 + ν|Av|2 + (B(v, v), Av)

+
(
B
(
v, ψ1 + ψ2), Av

)
+
(
B
(
ψ1 + ψ2, v

)
, Av
)
+
(
B
(
U∞ex, v

)
, Av
)

= (F,Av),

(4.13)

thus,

1
2
d

dt
‖v‖2 + ν|Av|2 ≤ ∣∣(B(v, v), Av)∣∣ + ∣∣(B(v, ψ1 + ψ2), Av

)∣∣

+
∣∣(B
(
ψ1 + ψ2, v

)
, Av
)∣∣ +
∣∣B
(
U∞ex, v

)
, Av
)∣∣ +
∣∣(F,Av)

∣∣.
(4.14)

We have to estimate each term in the right-hand side of (4.14).
First, we recall some inequalities [8]

∣∣B(u, v)
∣∣ � C

⎧
⎨

⎩

|u|1/2‖u‖1/2‖v‖1/2|Av|1/2, ∀u ∈ V, v ∈ D(A),

|u|1/2|Au|1/2‖v‖, ∀u ∈ D(A), v ∈ V.
(4.15)

By using Young’s inequality, we have

∣∣(B(v, v), Av
)∣∣ � C|v|1/2‖v‖|Av|3/2 � ν

10
|Av|2 + C

ν3
|v|2‖v‖4. (4.16)

By (2.3)–(2.5) and Cauchy’s inequality, we have

∣∣(B
(
v, ψ1), Av

)∣∣ ≤
∫

Ω
|v|∣∣∇ψ1∣∣|Av| ≤

(∥∥∥
v

L − y
∥∥∥
L2(1−ε<y/L<1)

+
∥∥∥

v

L + y

∥∥∥
L2(−1<y/L<−1+ε)

)

·
(∥∥(L − y)∇ψ1∥∥

L∞(1−ε<y/L<1) +
∥∥(L + y)∇ψ1∥∥

L∞(−1<y/L<−1+ε)
)
|Av|

(
since the support of ψ1 is in

{
1 − ε < y

L
< 1
}
∪
{
− 1 <

y

L
< −1 + ε

})

≤ k|∇v|((Lε)2(∥∥ϕ1x
∥∥
L∞(R1×{±L}) +

∥∥ϕ1xx
∥∥
L∞(R1×{±L})

)
+ Lε
∥∥ϕ1 −U∞

∥∥
L∞(R1×{±L})

)∣∣Av
∣∣.

(4.17)

Thanks to Hardy’s inequality and (2.3)–(2.5), we have

∣∣(B
(
v, ψ2), Av

)∣∣ ≤
∫

Ω
|v|∣∣∇ψ2∣∣|Av|

≤ r

∥∥∥∥∥
∥∥

v
√
x2 + y2 − r

∥∥∥∥∥
∥∥
L2(B2r\Br)

∥∥∥∥∥
∥∥

⎛

⎜
⎝

√
x2 + y2

r
− 1

⎞

⎟
⎠∇ψ2

∥∥∥∥∥
∥∥
L∞(B2r\Br)

|Av|

≤ 4r|∇v|∣∣U∞
∣
∣(
∣
∣sη1(s)

∣
∣
L∞ + 4

∣
∣s
(
η′1(s) + η

′′
1(s)
)∣∣
L∞
)|Av|.

(4.18)
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Using (2.3)–(2.5), provided we choose ε small enough (see [2]), one can obtain

∣
∣(B
(
v, ψ1), Av

)∣∣ ≤ ν

10
|Av|2,

∣∣(B
(
v, ψ2), Av

)∣∣ ≤ ν

10
|Av|2.

(4.19)

Since F ∈ L2(Ω), we have

|(F,Av)| ≤ |F|L2(Ω)|Av| ≤
ν

10
|Av|2 +

5|F|2
L2(Ω)

2ν
. (4.20)

Putting (4.16)–(4.20) together, there exists a constantM > 0 such that

d

dt
‖v‖2 + νλ1‖v‖2 � C

(
1
ν
|F|2 + c‖v‖2 + c

ν3
|v|2‖v‖4 +M

)
. (4.21)

Similarly to [9, III 2.2], applying the uniform Gronwall’s lemma, we can obtain ‖v‖2 � ρ2.

The main results in this section are as follows.

Theorem 4.3. If f ∈ L2
loc((0, T);L

2(Ω)) is translation compact, then the processes {Uσ(t, τ)} corre-
sponding to problem (4.9) possess the compact uniform (w.r.t. τ ∈ R) attractorA0 in V which coincides
with the uniform (w.r.t. σ ∈ Σ) attractor AΣ of the family of processes {Uσ(t, τ)}, σ ∈ Σ,

A0 = AΣ = ω0,Σ(B) =
⋃

σ∈Σ
Kσ(0), (4.22)

where B is a uniformly (w.r.t. σ ∈ Σ) absorbing set in V andKσ is the kernel of the process {Uσ(t, τ)}.
Furthermore, the kernelKσ is nonempty for all σ ∈ Σ.

Proof. Using Proposition 4.2, the family of processes {Uσ(t, τ)}, σ ∈ Σ, corresponding to (4.9)
possesses the uniformly (w.r.t. σ ∈ Σ) absorbing set in V .

Now we prove the existence of the compact uniform (w.r.t. σ ∈ Σ) attractor in V by
applying the method established in Section 3, that is, we prove that the family of processes
{Uσ(t, τ)}, σ ∈ Σ, corresponding to (4.9) satisfies uniformly (w.r.t. σ ∈ Σ) condition (C).

As in the previous section, for fixed N, let H1 be the subspace spanned by w1, . . . , wN,
andH2 the orthogonal complement ofH1 inH. We write

v = v1 + v2, v1 ∈ H1, v2 ∈ H2 for any v ∈ H, (4.23)

where v(t) = v1(t) + v2(t) is a solution of (4.4).
Multiplying (4.4) by Av2(t), similarly to the proof of Proposition 4.2, we have

(
dv

dt
,Av2

)
+
(
νAv,Av2

)
+
(
B(v, v), Av2

)

+
(
B
(
v, ψ1 + ψ2), Av2

)
+
(
B
(
ψ1 + ψ2, v

)
, Av2

)
+
(
B
(
U∞ex, v

)
, Av2

)

=
(
F,Av2

)
,

(4.24)
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thus,

1
2
d

dt

∥∥v2
∥∥2 + ν

∣∣Av2
∣∣2 ≤ ∣∣(B(v, v), Av2

)∣∣ +
∣∣(B
(
v, ψ1 + ψ2), Av2

)∣∣

+
∣∣(B
(
ψ1 + ψ2, v

)
, Av2

)∣∣ +
∣∣B
(
U∞ex, v

)
, Av2

)∣∣ +
∣∣(F,Av2

)∣∣.
(4.25)

To estimate (B(v, v), Av2),we recall some inequalities [10]

|w|L∞(Ω)2 ≤ c‖w‖
(
1 + log

|Aw|
λ1‖w‖2

)1/2

(4.26)

from which we deduce that

∣∣B(u, v)
∣∣ ≤
⎧
⎨

⎩

|u|L∞(Ω)|∇v|,
|u||∇v|L∞(Ω),

(4.27)

and using (4.26)

∣∣B(u, v)
∣∣ ≤ c

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

‖u‖‖v‖
(
1 + log

|Au|2
λ1‖u‖2

)1/2

,

|u||Av|
(
1 + log

|A3/2v|2
λ1‖Av‖2

)1/2

.

(4.28)

Expanding and using Young’s inequality, together with the first one of (4.28) and the second
one of (4.15), we have

∣∣(B(v, v), Av2
)∣∣ �

∣∣(B
(
v1, v1 + v2

)
, Av2

)∣∣ +
∣∣(B
(
v2, v1 + v2

)
, Av2

)∣∣

� CD1/2∥∥v1
∥∥∣∣Av2

∣∣(∥∥v1
∥∥ +
∥∥v2
∥∥) + C

∣∣v2
∣∣1/2∣∣Av2

∣∣3/2(∥∥v1
∥∥ +
∥∥v2
∥∥)

� ν

10
∣∣Av2

∣∣2 +
C

ν
ρ4D +

C

ν3
ρ6, t � t0 + 1,

(4.29)

where we use

∣∣Av1
∣∣2 � λm

∥∥v1
∥∥2, (4.30)

and set

D =
(
1 + log

λm+1

λ1

)
. (4.31)

Next, similarly to (4.19), we have

∣∣(B
(
v, ψ1), Av2

)∣∣ ≤ ν

10
∣∣Av2

∣∣2,

∣∣(B
(
v, ψ2), Av2

)∣∣ ≤ ν

10
∣∣Av2

∣∣2.
(4.32)
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Since G ∈ Cb(R+;L2(Ω)) and f ∈ L2
loc((0, T);L

2(Ω)), one can obtain

∣∣(F,Av2
)∣∣ ≤ ∣∣(G,Av2

)∣∣ +
∣∣(f,Av2

)∣∣

≤ ν

10
∣∣Av2

∣∣2 +
5
2ν

|f |2 + c.
(4.33)

Combining with (4.29)–(4.33), there exists a constantM =M(ρ, ν,D) > 0 such that

d

dt

∥∥v2
∥∥2 + νλm+1

∥∥v2
∥∥2 � C

(
1
ν
|f |2 + M

ν

)
. (4.34)

By the uniform Gronwall’s lemma, it follows from (4.34) that

∥∥v2
∥∥2 �

∥∥v2
(
t0 + 1

)∥∥2e−νλm+1(t−(t0+1)) +
CM

ν2λm+1
+
C

ν

∫ t

t0+1
e−νλm+1(t−s)|f |2ds. (4.35)

Since f ∈ L2(Ω) is also translation compact, using [1, Lemmas 4.1 and II-1.3] by Chepyzhov
and Vishik, for any ε, we have

CM

ν2λm+1
� ε

3
,

C

ν

∫ t

t0+1
e−νλm+1(t−s)|f |2ds � ε

3
.

(4.36)

Using (4.8) and letting t1 = t0 + 1 + (2/νλm+1 ) ln(3ρ2/ε), then t ≥ t1 implies

ρ2e−νλm+1(t−(t0+1)) � ε

3
. (4.37)

Therefore, we deduce from (4.35) that

∥∥v2(t)
∥∥2 � ε, ∀t � t1, (4.38)

which indicates that {Uf(t, τ)}, f ∈ Σ satisfying uniformly (w.r.t. f ∈ Σ) condition (C) in V .
Applying Theorem 3.5, the proof is complete.
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