
Hindawi Publishing Corporation
Boundary Value Problems
Volume 2008, Article ID 847145, 15 pages
doi:10.1155/2008/847145

Research Article
Blowup for a Non-Newtonian Polytropic Filtration
System Coupled via Nonlinear Boundary Flux

Zhongping Li,1 Chunlai Mu,2 and Yuhuan Li3

1Department of Mathematics, China West Normal University, Nanchong 637002, China
2 College of Mathematics and Physics, Chongqing University, Chongqing 400044, China
3Department of Mathematics, Sichuan Normal University, Chengdu 610066, China

Correspondence should be addressed to Chunlai Mu, chunlaimu@yahoo.com.cn

Received 18 November 2007; Accepted 1 March 2008

Recommended by Emmanuele DiBenedetto

We study the global existence and the global nonexistence of a non-Newtonian polytropic filtration
system coupled via nonlinear boundary flux. We first establish a weak comparison principle, then
discuss the large time behavior of solutions by using modified upper and lower solution methods
and constructing various upper and lower solutions. Necessary and sufficient conditions on the
global existence of all positive (weak) solutions are obtained.

Copyright q 2008 Zhongping Li et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

In this paper,we consider the following Neumann problem:

(
uk1

)
t = Δmu,

(
vk2

)
t = Δnv, x ∈ Ω, t > 0, (1.1)

∇mu·ν = uαvp, ∇nv·ν = uqvβ, x ∈ ∂Ω, t > 0, (1.2)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (1.3)

where Δku = div(|∇u|k−1∇u) =
∑N

i=1(|∇u|k−1uxi)xi , ∇ku = (|∇u|k−1ux1 , . . . , |∇u|k−1uxN), Ω ⊂
R
N is a bounded domain with smooth boundary ∂Ω, ν is the outward normal vector on the

boundary ∂Ω, k1, k2, m, n > 0, α, β ≥ 0, p, q > 0, and u0(x), v0(x) ∈ C1(Ω) are positive and
satisfy the compatibility conditions.

Parabolic equations like (1.1) appear in population dynamics, chemical reactions, heat
transfer, and so on. In particular, (1.1) may be used to describe the nonstationary flows in a
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porous medium of fluids with a power dependence of the tangential stress on the velocity
of displacement under polytropic conditions. In this case, (1.1) are called the non-Newtonian
polytropic filtration equations (see [1–6] and the references therein). For the Neuman problem
(1.1)–(1.3), the local existence of solutions in time has been established, see survey in [4].

Recall the single quasilinear parabolic equation with nonlinear boundary condition
(
uk

)
t = Δu, x ∈ Ω, t > 0,

∂u

∂ν
= uα, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(1.4)

with k > 0, α ≥ 0.It is known that the solutions of (1.4) exist globally if and only if α ≤ k for
0 < k ≤ 1; they exist globally if and only if α ≤ (k + 1)/2 when k > 1 (see [7–10]).

In [11, 12], M. Wang and S. Wang studied the following nonlinear diffusion system with
nonlinear boundary conditions

(
uk1

)
t = Δu,

(
vk2

)
t = Δv, x ∈ Ω, t > 0,

∂u

∂ν
= uαvp,

∂v

∂ν
= uqvβ, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.5)

with k1, k2 > 0, α, β ≥ 0, p, q > 0. In [11], they obtained the necessary and sufficient conditions
to the global existence of solutions for 0 < k1, k2 ≤ 1. In [12], they considered the case of
k1 > 1 or k2 > 1 and obtained the necessary and sufficient blowup conditions for the special
case Ω = BR(0) (the ball centered at the origin in R

N with radius R). However, for the general
domainΩ, they only gave some sufficient conditions to the global existence and the blowup of
solutions.

In [2], Wang considered the following system with nonlinear boundary conditions:
(
uk1

)
t =

(|ux|m−1ux
)
x,

(
vk2

)
t =

(|vx|n−1vx
)
x, x ∈ (0, 1), t > 0,

ux(0, t) = 0, ux(1, t) = λuαvp(1, t), t > 0,

vx(0, t) = 0, vx(1, t) = λuqvβ(1, t), t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ [0, 1],

(1.6)

with λ > 0. They obtained the necessary and sufficient conditions on the global existence of all
positive (weak) solutions.

Sun andWang in [13] studied the nonlinear equationwith nonlinear boundary condition
(
uk

)
t = Δmu, x ∈ Ω, t > 0,

∇mu·ν = uα, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

(1.7)
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They proved that all positive (weak) solutions of (1.7) exist globally if and only if α ≤ k
when k ≤ m; they exist globally if and only if α ≤ m(k + 1)/(m + 1) when k > m.

The main purpose of this paper is to study the influence of nonlinear power exponents
on the existence and nonexistence of global solutions of (1.1)–(1.3). By using upper- and lower-
solution methods, we obtain the necessary and sufficient conditions on the existence of global
(weak) solutions to (1.1)–(1.3). Our main results are stated as follows.

Theorem 1.1. If k1 ≥ m, k2 ≥ n, then all positive (weak) solutions of (1.1)–(1.3) exist globally if and
only if α ≤ m(k1 + 1)/(m + 1), β ≤ n(k2 + 1)/(n + 1) and pq ≤ (m(k1 + 1)/(m + 1) − α)(n(k2 +
1)/(n + 1) − β).

Theorem 1.2. If k1 < m, k2 ≥ n, then all positive (weak) solutions of (1.1)–(1.3) exist globally if and
only if α ≤ k1, β ≤ n(k2 + 1)/(n + 1) and pq ≤ (k1 − α)(n(k2 + 1)/(n + 1) − β).

Theorem 1.3. If k1 ≥ m, k2 < n, then all positive (weak) solutions of (1.1)–(1.3) exist globally if and
only if α ≤ m(k1 + 1)/(m + 1), β ≤ k2 and pq ≤ (m(k1 + 1)/(m + 1) − α)(k2 − β).

Theorem 1.4. If k1 < m, k2 < n, then all positive (weak) solutions of (1.1)–(1.3) exist globally if and
only if α ≤ k1, β ≤ k2 and pq ≤ (k1 − α)(k2 − β).

Remark 1.5. If m = n = 1, 0 < k1, k2 ≤ 1, the results in [11] are included in Theorem 1.4, and if
m = n = 1, k1 > 1 or k2 > 1, Theorems 1.1–1.3 improve the results of [12].

Remark 1.6. If we extend the solution to (1.6) to the interval [−1, 1] by symmetry, we get a
solution to the same problem (1.6)with the condition at x = 0, substituted by a condition at x =
−1, −ux(−1, t) = λuαvp(−1, t), −vx(−1, t) = λuqvβ(−1, t), t > 0.Conversely, symmetric solutions
to this latter problem are solutions to the original problem (1.6). The problem (1.1)–(1.3) is the
more generalN-dimensional version of the problem (1.6). Theorems 1.1–1.4 extend the results
of the problem (1.6) into multidimensional case and it seems to be a natural extension of Wang
[2].

Remark 1.7. If k1 = k2, m = n, α = β, p = q = 0, the conclusions of Theorems 1.1 and 1.4
are consistent with those of the single equation (1.7). This paper generalizes the results of the
single equation (1.7) to the system (1.1)–(1.3).

The rest of this paper is organized as follows. Some preliminaries will be given in
Section 2. Theorems 1.1–1.4 will be proved in Sections 3–5, respectively.

2. Preliminaries

As it is well known that degenerate and singular equations need not possess classical solutions,
we give a precise definition of a weak solution to (1.1)–(1.3).

Definition 2.1. Let T > 0 and QT = Ω × (0, T]. A vector function (u(x, t), v(x, t)) is called a weak
upper (or lower) solution to (1.1)–(1.3) in QT if

(i) u(x, t), v(x, t) ∈ L∞(0, T ;W1,∞(Ω)) ∩W1,2(0, T ;L2(Ω)) ∩ C(QT);

(ii) (u(x, 0), v(x, 0)) ≥ (≤)(u0(x), v0(x));
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(iii) for any positive two functions ψ1, ψ2 ∈ L1(0, T ;W1,2(Ω)) ∩ L2(QT), one has

∫∫

QT

[(
uk1

)
tψ1 +∇mu·∇ψ1

]
dx dt ≥ (≤)

∫T

0

∫

∂Ω
uαvpψ1 dsdt,

∫∫

QT

[(
vk2

)
tψ2 +∇nv·∇ψ2

]
dx dt ≥ (≤)

∫T

0

∫

∂Ω
uqvβψ2 dsdt.

(2.1)

In particular, (u(x, t), v(x, t)) is called a weak solution of (1.1)–(1.3) if it is both a weak upper
and a lower solution. For every T < ∞, if (u(x, t), v(x, t)) is a solution of (1.1)–(1.3) in QT , we
say that (u(x, t), v(x, t)) is global.

Next we give some preliminary propositions and lemmas.

Proposition 2.2 (comparison principle). Assume that u0, v0 are positiveC1(Ω) functions and (u, v)
is any weak solution of (1.1)–(1.3). Also assume that (u, v) ≥ (δ0, δ0) > 0 and (u, v) are a lower and
an upper solution of (1.1)–(1.3) inQT , respectively, with nonlinear boundary flux (λuαvp, λuqvβ) and
(λuαvp, λuqvβ), where 0 < λ < 1 < λ. Then we have (u, v) ≥ (u, v) ≥ (u, v) in QT .

Proof. For small σ > 0, letting ψσ(z) = min{1,max{z/σ, 0}}, z ∈ R, and setting ψ1 = ψσ(u − u),
according to the definition of upper and lower solutions, we have

∫ ∫

Qτ

[(
uk1 − uk1)tψσ(u − u) + (∇mu − ∇mu

)·∇ψσ(u − u)]dx dt

≤
∫ τ

0

∫

∂Ω

(
λuαvp − uαvp)ψσ(u − u)dsdt.

(2.2)

Define

χ(x) =

{
1, x ≥ 0,

0, x < 0.
(2.3)

As in [14],by letting σ→0 we get

∫∫

Qτ

(
uk1 − uk1)tχ(u − u)dx dt ≤

∫ τ

0

∫

∂Ω

(
λuαvp − uαvp)χ(u − u)dsdt, (2.4)

that is,

∫

Ω

(
uk1 − uk1)+|t=τ dx ≤

∫ τ

0

∫

∂Ω

(
λuαvp − uαvp)+dsdt, (2.5)

whereW+ = max{W, 0}. Similarly, we have

∫

Ω

(
vk2 − vk2)+|t=τ dx ≤

∫ τ

0

∫

∂Ω

(
λuqvβ − uqvβ)+dsdt. (2.6)
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Since λ < 1, u, v ≥ δ0 > 0 and u(x, 0) ≤ u0(x), v(x, 0) ≤ u0(x), it follows from the continuity of
u, v, u and v that there exists a τ > 0 sufficiently small such that λuαvp ≤ uαvp, λuqvβ ≤ uqvβ

for (x, t) ∈ Qτ . It follows from (2.5) and (2.6) that (u, v) ≥ (u, v) in Qτ .
Denote τ∗ = sup{τ ∈ [0, T] : u(x, t) ≤ u(x, t), v(x, t) ≤ v(x, t) for all (x, t) ∈ Qτ}. We

claim that τ∗ = T . Otherwise, from the continuity of u, v, u and v there exists ε > 0 such that
τ∗ + ε < T and λuαvp ≤ uαvp, λuqvβ ≤ uqvβ for all (x, t) ∈ Qτ∗+ε. By (2.5) and (2.6) we obtain
that u(x, t) ≤ u(x, t), v(x, t) ≤ v(x, t) in Qτ∗+ε, which contradicts the definition of τ∗. Hence
(u, v) ≤ (u, v) for all (x, t) ∈ QT.

Obviously, δ = min{minΩu0(x),minΩv0(x)} > 0 is a lower solution of (1.1)–(1.3) in
QT . Therefore, u, v ≥ δ > 0 in QT . Using this fact, as in the above proof we can prove that
(u, v) ≥ (u, v) in QT .

For convenience, we denote 0 < λ < 1 < λ, which are fixed constants, and let δ =
min{minΩ u0(x),minΩ v0(x)} > 0.

Proposition 2.3. Assume k1 ≥ m, k2 ≥ n and that α > m(k1 + 1)/(m + 1) or β > n(k2 + 1)/(n + 1)
holds. Then the solutions of (1.1)–(1.3) blow up in finite time.

Proof. Without loss of generality, assume α > m(k1 + 1)/(m + 1). Consider the single equation

(
wk1

)
t = ∇mw, x ∈ Ω, t > 0,

∇mw·ν = δpwα, x ∈ ∂Ω, t > 0,

w(x, 0) = u0(x), x ∈ Ω.

(2.7)

We know from [13] that w blows up in finite time. Since v ≥ δ, by the comparison principle,
(w, δ) is a lower solution of (1.1)–(1.3) and (u, v) blows up in finite time if α > m(k1 + 1)/(m +
1).

The following propositions can be proved in the similar procedure.

Proposition 2.4. Assume k1 < m, k2 ≥ n and that α > k1 or β > n(k2 + 1)/(n + 1) holds. Then the
solutions of (1.1)–(1.3) blow up in finite time.

Proposition 2.5. Assume k1 ≥ m, k2 < n and that α > m(k1 + 1)/(m + 1) or β > k2 holds. Then the
solutions of (1.1)–(1.3) blow up in finite time.

Proposition 2.6. Assume k1 < m, k2 < n and that α > k1 or β > k2 holds. Then the solutions of
(1.1)–(1.3) blow up in finite time.

Let ϕk(x) (k = m,n) be the first eigenfunction of

−Δkϕ = λϕk(x) in Ω, ϕk(x) = 0 on ∂Ω (2.8)

with the first eigenvalue λk, normalized by ||ϕk(x)||∞ = 1, then λk > 0, ϕk(x) > 0 in Ω and
ϕk(x) ∈W1,k+1

0 ∩ C1(Ω) and ∂ϕk(x)/∂ν < 0 on ∂Ω (see [15–17]).
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Thus there exist some positive constants Ak, Bk, Ck, Dk such that

Ak ≤ −∂ϕk(x)
∂ν

≤ Bk,
∣
∣∇ϕk(x)

∣
∣ ≥ Ck, x ∈ ∂Ω;

∣
∣∇ϕk(x)

∣
∣ ≤ Dk, x ∈ Ω. (2.9)

We have also |∇ϕk(x)| ≥ Ek provided x ∈ {x ∈ Ω : dist(x, ∂Ω) ≤ εk} with Ek = Ck/2 and some
positive constant εk. For the fixed εk, there exists a positive constant Fk such that ϕk(x) ≥ Fk if
x ∈ {x ∈ Ω : dist(x, ∂Ω) > εk}.

At the end of this section, we describe two simple lemmas without proofs.

Lemma 2.7. Suppose that positive constants A, B, C, D satisfy AB < CD, then for any two positive
constants a, b, there exist two positive constants l1, l2 such that alC1 > l

A
2 and blD2 > lB1 .

Lemma 2.8. For any constant j ≥ 0, there exist positive constants fi(j) (i = 1, 2) which depend only
on j and ϕ(x), such that

f1(j)
(
ϕ(x) + sj

) ≤ (
ϕ(x) + s

)j ≤ f2(j)
(
ϕ(x) + sj

) ∀s ≥ 1, (2.10)

where ϕ(x) is a positive bounded function.

3. Proof of Theorem 1.1

Lemma 3.1. Suppose k1 ≥ m, k2 ≥ n, α ≤ m(k1 + 1)/(m + 1), β ≤ n(k2 + 1)/(n + 1), pq ≤
(m(k1 + 1)/(m + 1) − α)(n(k2 + 1)/(n + 1) − β). Then all positive solutions of (1.1)–(1.3) exist
globally.

Proof. Construct

u(x, t) = el1t
(
M + λ

1/m
e−L1ϕme

(k1−m)l1t/(m+1)
(2M)(p+α)/mL−1

1

(
Amc

m−1
m

)−1/m)
,

v(x, t) = el2t
(
M + λ

1/n
e−L2ϕne

(k2−n)l2t/(n+1) (2M)(q+β)/nL−1
2

(
Anc

n−1
n

)−1/n)
,

(3.1)

where cm = Cm if m ≥ 1, cm = Dm if m < 1, and cn = Cn if n ≥ 1, cn = Dn if n < 1, ϕm,
ϕn, Am, An, Cm, Cn, Dm, Dn are defined in (2.8) and (2.9), l1, l2 are positive constants to be
determined,M = max{1, ||u0||∞, ||v0||∞} and

L1 = λ
1/m

max
{
k1−m
m + 1

2(p+α+m)/mM(p+α−m)/m(Amc
m−1
m

)−1/m
, 2(p+α)/mM(p+α−m)/m(Amc

m−1
m

)−1/m
}
,

L2 = λ
1/n

max
{
k2 − n
n + 1

2(q+β+n)/nM(q+β−n)/n(Anc
n−1
n

)−1/n
, 2(q+β)/nM(q+β−n)/n(Anc

n−1
n

)−1/n
}
.

(3.2)
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We know that −L1ϕme
(k1−m)l1t/(m+1)e−L1ϕme

(k1−m)l1t/(m+1) ≥ −e−1 since −ye−y ≥ −e−1 for any y > 0.
Thus for (x, t) ∈ Ω × R

+, a simple computation shows

(
uk1

)
t = k1l1e

k1l1t
(
M + λ

1/m
e−L1ϕme

(k1−m)l1t/(m+1)
(2M)(p+α)/mL−1

1

(
Amc

m−1
m

)−1/m)k1

+ k1ek1l1t
(
M + λ

1/m
e−L1ϕme

(k1−m)l1t/(m+1)
(2M)(p+α)/mL−1

1

(
Amc

m−1
m

)−1/m)k1−1

× λ1/m(2M)(p+α)/mL−1
1

(
Amc

m−1
m

)−1/m (k1 −m)l1
m + 1

( − L1ϕm
)
e(k1−m)l1t/(m+1)e−L1ϕme

(k1−m)l1t/(m+1)

≥ 1
2
k1l1e

k1l1t.

(3.3)

In addition, we have

Δmu ≤ λλm(2M)p+α
(
Amc

m−1
m

)−1
ϕmme

ml1tem(k1−m)l1t/me−L1mϕme
(k1−m)l1t/(m+1)

+ λL1m(2M)p+α
(
Amc

m−1
m

)−1
ek1l1te−L1mϕme

(k1−m)l1t/(m+1)∣∣∇ϕm
∣∣m+1

≤ λ(λm + L1mD
m+1
m

)
(2M)p+α

(
Amc

m−1
m

)−1
ek1l1t.

(3.4)

Similarly, we can get

(
vk2

)
t ≥

1
2
k2l2e

k2l2t, Δnv ≤ λ(λn + L2nD
n+1
n

)
(2M)q+β

(
Anc

n−1
n

)−1
ek2l2t. (3.5)

Noting ϕm = ϕn = 0 on ∂Ω, we have on the boundary that

∇mu·ν ≥ λ(2M)p+αem(k1+1)l1t/(m+1), ∇nv·ν ≥ λ(2M)q+βen(k2+1)l2t/(n+1);

uαvp ≤ (2M)p+αe(αl1+pl2)t, uqvβ ≤ (2M)q+βe(ql1+βl2)t.
(3.6)

Since pq ≤ (m(k1 + 1)/(m + 1) − α)(n(k2 + 1)/(n + 1) − β), there exist constants l1, l2 large such
that

m(k1 + 1)l1
m + 1

≥ αl1 + pl2, n(k2 + 1)l2
n + 1

≥ ql1 + βl2;

l1 ≥ 2λ
(
λm + L1mD

m+1
m

)
(2M)p+α

(
k1Amc

m−1
m

)−1
,

l2 ≥ 2λ
(
λn + L2nD

n+1
n

)
(2M)q+β

(
k2Anc

n−1
n

)−1
.

(3.7)

By (3.3)–(3.7), we know that (u, v) is a global upper solution of (1.1)–(1.3). The global existence
of solutions to (1.1)–(1.3) follows from the comparison principle.

Lemma 3.2. Suppose k1 ≥ m, k2 ≥ n, α ≤ m(k1 + 1)/(m + 1), β ≤ n(k2 + 1)/(n + 1), pq >
(m(k1 + 1)/(m + 1) − α)(n(k2 + 1)/(n + 1) − β). Then all positive solutions of (1.1)–(1.3) blow up in
finite time.
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Proof.

Case 1. k1 > m, k2 > n. Let dm = Cm ifm < 1, dm = Dm ifm ≥ 1, and dn = Cn if n < 1, dn = Dn if
n ≥ 1. In light of pq > (m(k1 + 1)/(m + 1) − α)(n(k2 + 1)/(n + 1) − β), we choose l1, l2 such that

m

m + 1
≤ pl2 −

(
m
(
k1 + 1

)

m + 1
− α

)
l1,

n

n + 1
≤ ql1 −

(
n
(
k2 + 1

)

n + 1
− β

)
l2. (3.8)

For the above l1, l2, we set u = (1/(b − ct)l1)e−aϕm(x)/(b−ct)r1 , v = (1/(b − ct)l2)e−aϕn(x)/(b−ct)r2 ,
where r1 = ((k1 −m)l1 + 1)/(m + 1), r2 = ((k2 − n)l2 + 1)/(n + 1), b = max{1, δ−1/l1 , δ−1/l2}, and

a = min
{
1, λ1/m

(
Bmd

m−1
m

)−1/m
b−(αl1+pl2)/m, λ1/n

(
Bnd

n−1
n

)−1/n
b−(ql1+βl2)/n

}
, (3.9)

c = min
{
mam+1Em+1

m

k1l1
,
nan+1En+1n

k2l2
,
λm

(
k1 −m

)
am+1Fm+1

m

k1l1
,
λn

(
k2 − n

)
an+1Fn+1n

k2l2

}
. (3.10)

By a direct computation, for x ∈ Ω, 0 < t < c/b, we obtain that

(
uk1

)
t ≤ k1l1ce−ak1ϕm(x)/(b−ct)

r1 (b − ct)−(k1l1+1), (3.11)

Δmu =
λma

mϕmme
−amϕm(x)/(b−ct)r1

(b − ct)m(l1+r1)
+
mam+1e−amϕm(x)/(b−ct)

r1 ∣∣∇ϕm
∣∣m+1

(b − ct)m(l1+r1)+r1
. (3.12)

If x ∈ Ω1 = {x ∈ Ω : dist(x, ∂Ω) > εm}, we have ϕm ≥ Fm, and thus

Δmu ≥ λma
mFmme

−amϕm(x)/(b−ct)r1

(b − ct)m(l1+r1)
. (3.13)

On the other hand, since −ye−y ≥ −e−1 for any y > 0, we have

(
uk1

)
t ≤ k1l1ce−ak1ϕm(x)/(b−ct)r1 (b − ct)−(k1l1+1) = k1l1ce

−amϕm(x)/(b−ct)r1

a
(
k1 −m

)
Fme(b − ct)m(l1+r1)

. (3.14)

We have by (3.10), (3.13), and (3.14) that (uk1)t ≤ Δmu for (x, t) ∈ Ω1 × (0, b/c).
If x ∈ Ω2 = {x ∈ Ω : dist(x, ∂Ω) ≤ εm}, then |∇ϕm| ≥ Em, and hence

Δmu ≥ mam+1Em+1
m e−ak1ϕm(x)/(b−ct)

r1

(b − ct)m(l1+r1)+r1
=
mam+1Em+1

m e−ak1ϕm(x)/(b−ct)
r1

(b − ct)k1l1+1
. (3.15)

We follow from (3.10), (3.11), and (3.15) that (uk1)t ≤ Δmu for (x, t) ∈ Ω2 × (0, b/c).
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Similarly, we can get (vk2)t ≤ Δnv for (x, t) ∈ Ω × (0, b/c) also.
We have on the boundary that

∇mu·ν =
am

∣∣∇ϕm
∣∣m−1

e−amϕm(x)/(b−ct)
r1( − ∂ϕm/∂ν

)

(b − ct)m(l1+r1)
≤ amBmd

m−1
m

(b − ct)m(l1+r1)
,

∇nv·ν =
an

∣∣∇ϕn
∣∣n−1e−anϕn(x)/(b−ct)

r2( − ∂ϕn/∂ν
)

(b − ct)n(l2+r2)
≤ anBnd

n−1
n

(b − ct)n(l2+r2)
;

(3.16)

uαvp =
1

(b − ct)αl1+pl2
, uqvβ =

1

(b − ct)ql1+βl2
. (3.17)

Moreover, by (3.8)we have that

m
(
l1 + r1

) ≤ αl1 + pl2, n
(
l2 + r2

) ≤ ql1 + βl2. (3.18)

Equations (3.9), (3.16)–(3.18) imply that ∇mu·ν ≤ λuαvp, ∇nv·ν ≤ λuqvβ on ∂Ω. Therefore
(u, v) is a lower solution of (1.1)–(1.3).

Case 2. k1 > m, k2 = n. Set u as above with v = (1/(b − ct)l2)e−aϕn(x)/(b−ct)1/n .

Case 3. k1 = m, k2 > n. Set v as above with u = (1/(b − ct)l1)e−aϕm(x)/(b−ct)1/m.

Case 4. k1 = m, k2 = n. Set u = (1/(b − ct)l1)e−aϕm(x)/(b−ct)1/m, v = (1/(b − ct)l2)e−aϕn(x)/(b−ct)1/n .

By similar arguments, we conform that (u, v) is a lower solution of (1.1)–(1.3), which
blows up in finite time. We know by the comparison principle that the solution (u, v) blows up
in finite time.

We get the proof of Theorem 1.1 by combining Proposition 2.3 and Lemmas 3.1 and 3.2.

4. Proof of Theorems 1.2 and 1.3

Lemma 4.1. Suppose k1 < m, k2 ≥ n, α ≤ k1, β ≤ n(k2 + 1)/(n + 1) with pq ≤ (k1 − α)(n(k2 +
1)/(n + 1) − β). Then all positive solutions of (1.1)–(1.3) exist globally.

Proof. Take

u(x, t) = R1e
l1t log

((
1 − ϕm(x)

)
e(k1−m)l1t/m + R2

)
,

v(x, t) = el2t
(
M + λ

1/n
e−Lϕn(x)e

(k2−n)l2t/(n+1) (2M)(k2+1)/(n+1)L−1(Anc
n−1
n

)−1/n) (4.1)

for (x, t) ∈ Ω×R
+, where cn = Cn if n ≥ 1, cn = Dn if n < 1,R2 satisfyingR2 logR2 ≥ 2(m−k1)/m,

and constantsR1, M, L, l1, l2 are to be determined. By performing direct calculations, we have,
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for (x, t) ∈ Ω × R
+,

(
uk1

)
t ≥

k1l1
2
Rk1ek1l1t

(
log

((
1 − ϕm(x)

)
e(k1−m)l1t/m + R2

))k1 ≥ k1l1
2
Rk1ek1l1t

(
logR2

)k1 ,

Δmu =
N∑

i=1

(
Rm

1 e
k1l1t

( − ∣∣∇ϕm(x)
∣∣m−1

ϕmxi

)

((
1 − ϕm(x)

)
e(k1−m)l1t/m + R2

)m

)

xi

≤ λmR
m
1 e

k1l1t

Rm
2

.

(4.2)

By setting cm = Cm ifm ≥ 1, cm = Dm ifm < 1, we have on the boundary that

∇mu·ν ≥ Rm
1 e

k1l1tcm−1
m Am

(
1 + R2

)m , ∇nv·ν ≥ λ(2M)n(k2+1)/(n+1)en(k2+1)l2t/(n+1);

uαvp ≤ (
R1 log

(
1 + R2

))α(2M)peαl1t+pl2t, uqvβ ≤ (
R1 log

(
1 + R2

))q(2M)βeql1t+βl2t.

(4.3)

Since pq < (m−α)(n(k2+1)/(n+1)−β), by Lemma 2.7 there exist two positive constants R1, M
such that R1 logR2 ≥ max{1, ||u0||∞},M ≥ {1, ||u0||∞}, and

Rm−α
1 ≥ λ(2M)p

(
log

(
1 + R2

))α(1 + R2
)m(

cm−1
m Am

)−1
,

(2M)n(k2+1)/(n+1)−β ≥ Rq

1

(
log

(
1 + R2

))q
.

(4.4)

Set L= λ
1/n

max{((k2−n)/(n+1))2(k2+n+2)/(n+1)M(k2−n)/(n+1)(Anc
n−1
n )−1/n, 2(k2+1)/(n+1)M(k2−n)/(n+1)

×(Anc
n−1
n )−1/n}. By arguments in Lemma 3.1,for (x, t) ∈ Ω × R

+, we have

(
vk2

)
t ≥

1
2
k2l2e

k2l2t, Δnv ≤ λ(λn + LnDn+1
n

)
(2M)n(k2+1)/(n+1)

(
Anc

n−1
n

)−1
ek2l2t. (4.5)

On the other hand, since pq ≤ (k1 − α)(n(k2 + 1)/(n + 1) − β), there exist two positive constants
l1, l2 such that

(
k1 − α

)
l1 ≥ pl2,

(
n
(
k2 + 1

)

n + 1
− β

)
l2 ≥ ql1; (4.6)

l1 ≥
2λmR

m−k1
1

k1
(
logR2

)k1Rm
2

, l2 ≥ 2λ
(
λn + LnDn+1

n

)
(2M)n(k2+1)/(n+1)

(
k2Anc

n−1
n

)−1
. (4.7)

By (4.2)–(4.7), it follows that (u;v) is an upper solution of (1.1)–(1.3). Thus the solutions of
(1.1)–(1.3) are global.

Lemma 4.2. Suppose k1 < m, k2 ≥ n, α ≤ k1, β ≤ n(k2 + 1)/(n + 1) with pq > (k1 − α)(n(k2 +
1)/(n + 1) − β). Then all positive solutions of (1.1)–(1.3) blow up in finite time.

Proof. We first prove that there exist l1 ≥ 1, l2 ≥ 1 such that

mk1l1 +m
m − k1 ≤ mαl1 + α

m − k1 + pl2,
n
(
k2 + 1

)
l2 + n

n + 1
≤ mql1 + q

m − k1 + βl2. (4.8)
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When α < k1, β < n(k2 + 1)/(n + 1), pq > (k1 − α)(n(k2 + 1)/(n + 1) − β) yields m(k1 −
α)/((m−k1)p) < mq/((m−k1)(n(k2 + 1)/(n+ 1)− β)).Hence there exist μ > 0 such thatm(k1 −
α)/((m − k1)p) < μ < mq/((m − k1)(n(k2 + 1)/(n + 1) − β)). Set l1 = max{1, 1/μ, ((m − α)/(m −
k1))/(μp−m(k1−α)/(m−k1)), (n/(n+1)−q/(m−k1))/[mq/(m−k1)−(n(k2+1)/(n+1)−β)μ]},
and l2 = μl1.

When α = k1, β ≤ n(k1 + 1)/(n + 1), take l2 = max{1, (m − α)/(m − k1)p}, l1 =
max{1, (n/(n + 1) − q/(m − k1) + (n(k2 + 1)/(n + 1) − β)l2)((m − k1)/mq)}.

When α ≤ k1, β = n(k2+1)/(n+1), take l1 = max{1, (n/(n+1)−q/(m−k1))((m−k1)/mq)},
l2 = max{1, ((m − α)/(m − k1) +m(k1 − α)l1/(m − k1))(1/p)}.

Let dn = Cn if n < 1, dn = Dn if n ≥ 1, and d = max{|x| | x ∈ Ω}, h(x) = ∑N
i=1xi +Nd + 1,

y = ah1+1/m(x) + (b − ct)−l1 .
Define u(x, t) = yθ, v = (1/(b − ct)l2) exp{−aϕn(x)/(b − ct)r},where θ = (m+1/l1)/(m−

k1), r = ((k2 − n)l2 + 1)/(n + 1), b = max{1, ((1/2)δ1/θ)−1/l1 , δ−1/l2}, and

a = min

{

b−l1(2Nd + 1)−(1+1/m), λ1/n
(
Bnd

n−1
n

)−1/n
b−(qθl1+βl2)/n,

λ1/m
(
θm

(
1 +

1
m

)m

Nm/2(2Nd + 1)2m(θ−1)
)−1/m

b(−αθl1+pl2)/m
}

,

(4.9)

c = min
{
nan+1En+1n

k2l2
,
λn

(
k2 − n

)
an+1Fn+1n

k2l2
,
amθm−1(1 + 1/m)mN(m+1)/2

k1l1

}
. (4.10)

By a direct computation, for (x, t) ∈ Ω × (0, b/c), we have

Δmu ≥
(
aθ

(
1 +

1
m

))m

N(m+1)/2yk1θ−1ym(θ−1)−k1θ+1 ≥ (
uk1

)
t. (4.11)

By similar arguments in Lemma 3.2, we have (vk2)t ≤ Δnv for (x, t) ∈ Ω × (0, b/c).
Moreover, for (x, t) ∈ ∂Ω × (0, b/c), we have

∇mu·ν ≤
(
aθ

(
1 +

1
m

))m

Nm/2(2Nd + 1)2m(θ−1)(b − ct)−m(θ−1)l1 ,

∇nv·ν ≤ anBnd
n−1
n

(b − ct)n(l2+r)
;

uαvp =
(
ah(x)1+1/m + (b − ct)−l1)θα(b − ct)−pl2 ≥ (b − ct)−(αθl1+pl2),

uqvβ =
(
ah(x)1+1/m + (b − ct)−l1)θq(b − ct)−βl2 ≥ (b − ct)−(qθl1+βl2).

(4.12)

By (4.8), we have

m(θ − 1)l1 ≤ αθl1 + pl2, n
(
l2 + r

) ≤ qθl1 + βl2. (4.13)

By (4.9), (4.12), and (4.13), we have that (u, v) is a lower solution of (1.1)–(1.3), which with the
comparison principle implies that the solutions of (1.1)–(1.3) blow up in finite time.

It has been shown from Proposition 2.4 and Lemmas 4.1 and 4.2 that Theorem 1.2 is true.
In a similar way to the proof of Theorem 1.2, we have Theorem 1.3.



12 Boundary Value Problems

5. Proof of Theorem 1.4

Lemma 5.1. Suppose k1 < m, k2 < n, α ≤ k1, β ≤ k2 with pq ≤ (k1 − α)(k2 − β). Then all positive
solutions of (1.1)–(1.3) exist globally.

Proof. Take u = a(1 − ϕm(x) + elt)m/(m−k1), v = b(1 − ϕn(x) + eθlt)n/(n−k2), where θ = m(n −
k2)(k1 − α)/n(m − k1)p and a, b, l are the undetermined positive constants.

Calculating directly for (x, t) ∈ Ω × R
+, we have by Lemma 2.8 that

(
uk1

)
t ≥

ak1mk1l

2
(
m − k1

)
(
1 − ϕm(x) + elt

)mk1/(m−k1)

≥ ak1mk1l

2
(
m − k1

)f1

(
mk1
m − k1

)
(
1 − ϕm(x) + emk1lt/(m−k1)),

Δmu ≤ λmϕmm
(

am

m − k1

)m

f2

(
mk1
m − k1

)
(
1 − ϕm(x) + emk1lt/(m−k1))

+
(

am

m − k1

)m mk1
m − k1D

m+1
m f2

(
mk1
m − k1

)
(
1 − ϕm(x) + emk1lt/(m−k1))

≤
(
λm +

mk1
m − k1D

m+1
m

)(
am

m − k1

)m

f2

(
mk1
m − k1

)
(
1 − ϕm(x) + emk1lt/(m−k1));

(
vk2

)
t ≥

bk2nk2θl

2
(
n − k2

)
(
1 − ϕn(x) + eθlt

)nk2/(n−k2)

≥ bk2nk2θl

2
(
n − k2

)f1

(
nk2
n − k2

)
(
1 − ϕn(x) + enk2θlt/(n−k2)

)
,

Δnv ≤
(
λn +

nk2
n − k2D

n+1
n

)(
bn

n − k2

)n

f2

(
nk2
n − k2

)
(
1 − ϕn(x) + enk2θlt/(n−k2)

)
.

(5.1)

Let cm = Cm if m ≥ 1, cm = Dm if m < 1, and cn = Cn if n ≥ 1, cn = Dn if n < 1. We have on the
boundary that

∇mu·ν ≥
(

am

m − k1

)m

cm−1
m Am

(
1 − ϕm(x) + elt

)mk1/(m−k1)

≥ am−α
(

m

m − k1

)m

cm−1
m Amf1

(
m(k1 − α)
m − k1

)
(
1 + em(k1−α)lt/(m−k1))uα,

∇nv·ν ≥ bn−β
(

n

n − k2

)n

cn−1n Anf1

(
n
(
k2 − β

)

n − k2

)
(
1 + en(k2−β)θlt/(n−k2)

)
vβ

≥ bn−β
(

n

n − k2

)n

cn−1n Anf1

(
n
(
k2 − β

)

n − k2

)
(
1 + emqlt/(m−k1))vβ;

uαvp = bp
(
1 + eθlt

)np/(n−k2)
uα ≤ bpf2

(
np

n − k2

)
(
1 + em(k1−α)lt/(m−k1))uα,

uqvβ = aq
(
1 + elt

)mq/(m−k1)
vβ ≤ aqf2

(
mq

m − k1

)
(
1 + emqlt/(m−k1))vβ.

(5.2)
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Since pq ≤ (k1 − α)(k2 − β) < (m − α)(n − β), we know by Lemma 2.8 that there exist constants
a ≥ ||u0(x)||∞, b ≥ ||v0(x)||∞ such that

am−α
(

m

m − k1

)m

cm−1
m Amf1

(
m
(
k1 − α

)

m − k1

)
≥ λbpf2

(
np

n − k2

)
,

bn−β
(

n

n − k2

)n

cn−1n Anf1

(
n
(
k2 − β

)

n − k2

)
≥ λaqf2

(
mq

m − k1

)
.

(5.3)

For the above constants a, b, we choose a constant l so large that
(
λm +

mk1
m − k1D

m+1
m

)(
am

m − k1

)m

f2

(
mk1
m − k1

)
≤ ak1mk1l

2
(
m − k1

)f1

(
mk1
m − k1

)
,

(
λn +

nk2
n − k2D

n+1
n

)(
bn

n − k2

)n

f2

(
nk2
n − k2

)
≤ bk2nk2θl

2
(
n − k2

)f1

(
nk2
n − k2

)
.

(5.4)

By (5.1)–(5.4), we know that (u, v) is an upper solution of (1.1)–(1.3), Thus the solutions of
(1.1)–(1.3) are global.

Lemma 5.2. Suppose k1 < m, k2 < n, α ≤ k1, β ≤ k2 with pq > (k1 − α)(k2 − β). Then all positive
solutions of (1.1)–(1.3) blow up in finite time.

Proof. We first prove that there exist l1 ≥ 1, l2 ≥ 1 such that

mk1l1 +m
m − k1 ≤ mαl1 + α

m − k1 +
npl2 + p
n − k2 ,

nk2l2 + n
n − k2 ≤ mql1 + q

m − k1 +
nβl2 + β
n − k2 . (5.5)

In fact, when α < k1, β < k2, pq > (k1 − α)(k2 − β) yields (m(k1 − α)/(m − k1))((n − k2)/np) <
(mq/(m−k1))((n−k2)/n(k2 −β)). Hence there exists μ > 0 such that (m(k1 −α)/(m−k1))((n−
k2)/np) < μ < (mq/(m − k1))((n − k2)/n(k2 − β)). Set l1 = max{1, 1/μ, ((m − α)/(m − k1) −
p/(n − k2))/((np/(n − k2))μ −m(k1 − α)/(m − k1)), ((n − β)/(n − k2) − q/(m − k1))/(mq/(m −
k1) − (n(k2 − β)/(n − k2))μ)}, and l2 = μl1.

When k1 ≤ α and β = k2, take l1 = max{1, ((n−β)/(n−k2)−q/(m−k1))((m−k1)/mq)}, l2 =
max{1, ((m − α)/(m − k1) − p/(n − k2) +m(k1 − α)l1/(m − k1))((n − k2)/np)}.

When k1 = α and β ≤ k2, let l2 = max{1, ((m−α)/(m−k1)−p/(n−k2))((n−k2)/np)}, l1 =
max{1, ((n − β)/(n − k2) − q/(m − k1) + n(k2 − β)l2/(n − k2))((m − k1)/mq)}.

Take y = ah1+1/m(x) + (b − ct)−l1 , z = ah1+1/n(x) + (b − ct)−l2 , and u = yθ, v = zσ , where
θ = (m + 1/l1)/(m − k1), σ = (n + 1/l2)/(n − k2), b = max{1, ((1/2)δ1/θ)−1/l1 , ((1/2)δ1/σ)−1/l2},
and

a = min

{

b−l1(2Nd + 1)−(1+m)/m,

(

λ−1
[
(1 +m)θN1/22θ−1

m

]m
(2Nd + 1)

)−1/m
b−(αθl1+pσl2)/m,

b−l2(2Nd + 1)−(1+n)/n,

(

λ−1
[
(1 + n)σN1/22σ−1

n

]n
(2Nd + 1)

)−1/n
b−(qθl1+βσl2)/n

}

,

(5.6)

c = min
{
amθm−1(1 + 1/m)mN(m+1)/2

k1l1
,
anσn−1(1 + 1/n)nN(n+1)/2

k2l2

}
. (5.7)
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By a direct computation for (x, t) ∈ Ω × (0, b/c), we have

Δmu ≥
(
aθ

(
1 +

1
m

))m

N(m+1)/2yk1θ−1ym(θ−1)−k1θ+1 ≥ (
uk1

)
t, (5.8)

Δnv ≥
(
aσ

(
1 +

1
n

))n

N(n+1)/2yk2σ−1yn(σ−1)−k2σ+1 ≥ (
vk2

)
t. (5.9)

For (x, t) ∈ ∂Ω × (0, b/c), we have

∇mu·ν ≤
(
aθ

(
1 +

1
m

))m

Nm/2(2Nd + 1)2m(θ−1)(b − ct)−m(θ−1)l1 ,

∇nv·ν ≤
(
aσ

(
1 +

1
n

))n

Nn/2(2Nd + 1)2n(σ−1)(b − ct)−n(σ−1)l2 ;

uαvp = yαθzpσ ≥ (b − ct)−(αθl1+pσl2),

uqvβ = yqθzβσ ≥ (b − ct)−(qθl1+βσl2).

(5.10)

Moreover, (5.5) implies

m(θ − 1)l1 ≤ αθl1 + pσl2, n(σ − 1)l2 ≤ qθl1 + βσl2. (5.11)

It follows from (5.6), (5.8)–(5.11) that (u, v) is a lower solution of (1.1)–(1.3). Because (u, v)
blows up in finite time, and so does (u, v).

By Proposition 2.6 and Lemmas 5.1 and 5.2, we see that Theorem 1.4 holds.
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