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1. Introduction

In recent years, many authors studied the solvability of the periodic boundary value
problems (PBVPs for short) for second-order ordinary or functional differential equations
with or without impulse effects; see [1–24] and the references therein. For example, consider
the following PBVP:

x′′(t) = f
(
t, x(t)

)
, t ∈ (0, 2π),

x(0) = x(2π), x′(0) = x′(2π),
(1.1)

the well-known result is that if f satisfies the nonresonance condition

−(N + 1)2 + ε ≤ fu(t, u) ≤ −ε −N2, (1.2)

where N is a nonnegative integer and ε is a positive constant, then PBVP(1.1) has a unique
solution; see [1].
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For PBVP of the Duffing equation

x′′(t) + cx′(t) + g
(
t, x(t)

)
= e(t), t ∈ (0, 2π),

x(0) = x(2π), x′(0) = x′(2π),
(1.3)

in [16], the authors proved the following results.

Theorem 1.1. Suppose g is a L2-Caratheodory function, and there are a ≤ A, r < 0 < R such that

g(t, x) ≥ A, x ≥ R, t ∈ [0, 2π], g(t, x) ≤ a, x ≤ r, t ∈ [0, 2π], (1.4)

and further there is r ∈ L(0, 2π) with ||r||∞ < 1 + C2 such that

lim
|x|→∞

g(t, x)
x

< r(t), t ∈ (0, 2π). (1.5)

Then, PBVP(1.3) has at least one solution for each e ∈ L2(0, 2π) with a ≤ (1/2π)
∫2π
0 e(s)ds ≤ A.

In [17], Nieto and Rodrı́guez-López studied the following PBVP:

x′′(t) + ax′(t) + bx(t) + cx′([t]
)
+ dx

(
[t]
)
= σ(t), t ∈ (0, T),

x(0) = x(T), x′(0) = x′(T).
(1.6)

They gave Green’s function to express the unique solution for the correspondence second-
order functional differential equation with periodic boundary conditions and the functional
dependence given by the piecewise constant function. Using upper and lower solution
methods, they presented sufficient conditions to assure the existence of solutions of
PBVP(1.6). The authors in [3, 21] also studied the solvability of PBVP(1.6) by the similar
method.

In [2], Ding et al. studied the PBVP:

x′′(t) + f
(
t, x(t), x

(
θ(t)

))
= 0, t ∈ (0, T),

x(0) = x(T), x′(0) = x′(T).
(1.7)

Sufficient conditions for the existence of solutions of PBVP(1.7) are given by using upper and
lower solution method.

The PBVPs,

x′′(t) + ρ2x(t) = f
(
t, x(t)

)
, t ∈ (0, 2π),

x(0) = x(2π), x′(0) = x′(2π),
(1.8)

−x′′(t) + ρ2x(t) = f
(
t, x(t)

)
, t ∈ (0, 2π),

x(0) = x(2π), x′(0) = x′(2π),
(1.9)

were studied in [8, 18–20]. In [19], based upon Krasnosel′skii fixed-point theorems, Jiang
proved that PBVP(1.8) and PBVP(1.9) with singularity have at least one positive solution
provided that f(t, x) is superlinear or sublinear at x = 0 and x = +∞. In [21], Wang, who
utilized the Schauder fixed-point theorem, proved that PBVP(1.9) without singularity has at
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least one positive solution provided that f(t, x) is sublinear at x = ∞. In [18], Zhang and
Wang established multiplicity results to positive solutions of PBVP(1.8) and PBVP(1.9) with
f being a Caratheodory function.

In paper [24], Liu and Ge studied the following equation:

x′′(t) − p(t)x′(t) + q(t)x(t) = λf
(
t, x

(
t − τ(t)

))
+ r(t); (1.10)

they established sufficient conditions for the existence of positive periodic solutions of (1.10).
In [11], Peng studied the existence of periodic solutions of the functional Duffing

equation:

x′′(t) + cx′(t) + g1
(
t, x

(
t − τ1(t)

))
+ g2

(
t, x

(
t − τ2(t)

))
= p(t). (1.11)

The studies on the existence of solutions of the periodic boundary value problems of
the second-order impulsive differential equations,

x′′(t) + f
(
t, x(t)

)
= 0, t ∈ (0, T),

x(0) = x(T), x′(0) = x′(T),

Δx(i)(tk
)
= Ii, k

(
x
(
tk
))
, k = 1, . . . , p, i = 0, 1,

(1.12)

can be found in [3, 4, 12–14, 20, 22, 23] and the references therein. The methods used there
are of lower and upper solutions methods, the monotone iterative technique.

In all above-mentioned papers, the results are based upon the following assumptions.
(H) f satisfies either the Lipschitzian condition, left Lipschitzian condition, right

Lipschitzian condition, or Nagumo conditions.
To the best of our knowledge, the existence of solutions of periodic boundary value

problems for impulsive Duffing functional differential equations has not been well studied
till now.

In this paper, we investigate the following periodic boundary value problem for the
impulsive functional Duffing equation:

x′′(t) + αx′(t) + βx(t) = f
(
t, x(t), x

(
α1(t)

)
, . . . , x

(
αn(t)

))
, a.e. t ∈ [0, T],

Δx
(
tk) = Ik

(
x
(
tk
)
, x′(tk

))
, k = 1, . . . , m,

Δx′(tk) = Jk
(
x
(
tk
)
, x′(tk

))
, k = 1, . . . , m,

x(i)(0) = x(i)(T), i = 0, 1,

(1.13)

where m is a positive integer, α, β ∈ R, f : [0, T] × Rn+1 →R is a impulsive Caratheodory
function, αi ∈ C1([0, T], [0, T]), whose inverse function is denoted by βi with βi ∈ C1[0, T],
Ik, Jk : R2 →R are continuous.

Our purpose here is to provide sufficient conditions for the existence of solutions of
(1.13) at nonresonance case. This will be done by applying the well-known Schaeffer’s fixed-
point theorem, and we do not rely on the existence of upper and lower solutions and the
assumption (H)mentioned above.
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The main results and examples in this paper are established in Section 2. The proofs of
the main results are presented in Section 3.

2. Main results and examples

In this section, we establish the main results and examples to illustrate the main theorems. To
define solutions of PBVP (1.13), we introduce the following Banach spaces and definitions.

Suppose u : J = [0, T]→R, and 0 = t0 < t1 < · · · < tm < tm+1 = T . For k = 0, . . . , m,
define the function uk : (tk, tk+1)→R by uk(t) = u(t). Choose

X =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u : J→R

∣
∣
∣
∣
∣
∣
∣∣
∣
∣
∣∣∣

uk ∈ C0(tk, tk+1
)
, k = 0, . . . , m, there exist the limits

lim
t→ t−

k

u(t) = u(tk),

lim
t→ t+

k

u(t),

lim
t→ 0+

u(t) = u(0),

lim
t→ T−

u(t) = u(T)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

with the norm

||u||X = ||u|| = sup
t∈[0,T]

∣∣u(t)
∣∣ (2.2)

for u ∈ X. Choose

Y = X × Rm × Rm (2.3)

with the norm

||y||Y = ||y|| = max
{

sup
t∈[0,T]

∣∣u(t)
∣∣, max

1≤k≤m
{∣∣xk

∣∣}, max
1≤k≤m

∣∣yk

∣∣
}

(2.4)

for y = {u, x1, . . . , xm, y1, . . . , ym} ∈ Y . Then, X and Y are real Banach spaces.
A function F : [0, 1] × Rn+1 →R is called an impulsive Caratheodory function if

(i) F(•, u0, u1, . . . , un) ∈ X for each u = (u0, . . . , un) ∈ Rn+1;

(ii) F(t, •, . . . , •) is continuous for t /= tk (k = 1, . . . , m).

By a solution of PBVP (1.13), wemean a function x : [0, T]→R satisfying the following
conditions:

(i) x ∈ X is differentiable in (tk, tk+1) (k = 0, 1, . . . , m), there exist the limits
limt→ t+

k
x′(t), limt→ t−

k
x′(t) = x′(tk) (k = 0, 1, . . . , m), limt→ 0+ x

′(t) = x′(0) and
limt→ T− x′(t) = x′(T);

(ii) x′ ∈ X is differentiable in (tk, tk+1) (k = 0, 1, . . . , m), there exist the limits
limt→ t+

k
x′′(t), limt→ t−

k
x′′(t) = x′′(tk) (k = 0, 1, . . . , m), limt→ 0+ x

′′(t) = x′′(0), and
limt→ T− x′′(t) = x′′(T);

(iii) x′′ ∈ X;

(iv) the equations in (1.13) are satisfied.
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Consider the following homogenous PBVP:

x′′(t) + αx′(t) + βx(t) = 0, t ∈ [0, T],

Δx
(
tk
)
= 0, k = 1, . . . , m,

Δx′(tk
)
= 0, k = 1, . . . , m,

x(0) = x(T), x′(0) = x′(T).

(2.5)

If x ∈ X is a solution of problem (2.5), then

x′′(t)x(t) + αx′(t)x(t) + β
[
x(t)

]2 = 0,

x′′(t)x′(t) + α
[
x′(t)

]2 + βx(t)x′(t) = 0.
(2.6)

Integrating them from 0 to T , one sees that

−
∫T

0

[
x′(t)

]2
dt + β

∫T

0

[
x(t)

]2
dt = 0, α

∫T

0

[
x′(t)

]2
dt = 0. (2.7)

If β > 0 and α/= 0 or β < 0, we get x(t) ≡ 0, then problem (2.5) has unique solution x(t) = 0 at
the cases either β > 0 and α/= 0 or β < 0. We call PBVP (1.13) at nonresonance case. It suffices
to consider the following cases:

Case 1. α ≥ 0, β < 0,

Case 3. α > 0, β > 0,

Case 2. α < 0, β < 0,

Case 4. α < 0, β > 0.
(2.8)

We set the following assumptions which should be used in the main results.
(A1) xIk(x, y) ≥ 0 for all x, y ∈ R.
(A′

1) [Ik(x, y)]
2 + xIk(x, y) ≤ 0 for all x, y ∈ R.

(A2) xJk(x, y) + yIk(x, y) + λIk(x, y)Jk(x, y) ≥ 0 for all x, y ∈ R, λ ∈ [0, 1].
(A′

2) xJk(x, y) + yIk(x, y) + λIk(x, y)Jk(x, y) ≤ 0 for all x, y ∈ R, λ ∈ [0, 1].
(A3) There exist constants θk ≥ 0 such that |Ik(x, y)| ≤ θk|x| for all x, y ∈ R with∑m

k=1 θk < 1.

(C) There exist impulsive Caratheodory functions h : [0, T]×Rn →R, gi : [0, T]×R→R,
and function r ∈ X and such that

(i) f(t, x0, . . . , xn) = h(t, x0, . . . , xn)+
∑n

i=0 gi(t, xi)+r(t) holds for all (t, x0, . . . , xn) ∈
[0, T] × Rn+1.

(ii) There exist constants q ≥ 0 and θ > 0 such that

h(t, x0, . . . , xn)x0 ≥ θ|x0|q+1 (2.9)

holds for all (t, x0, . . . , xn) ∈ [0, T] × Rn+1.
(iii) lim|x|→+∞ supt∈[0,T] (|gi(t, x)|/|x|q) = ri ∈ [0,+∞) for i = 0, . . . , n.

(C′) There exist impulsive Caratheodory functions h : [0, T]×Rn →R, gi : [0, T]×R→R,
and function r ∈ X and such that (C)(i) and (C)(iii) hold.
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(ii) There exist constants q ≥ 0 and θ > 0 such that

h(t, x0, . . . , xn)x0 ≤ −θ|x0|q+1 (2.10)

holds for all (t, x0, . . . , xn) ∈ [0, T] × Rn+1.

Theorem 2.1. Suppose α ≥ 0 and β < 0, (A1), (A2), (A3), and (C) hold. Then, PBVP (1.13) has at
least one solution if

θ > r0 +
n∑

k=1

rk‖β′k‖
q/(q+1) (2.11)

holds.

Theorem 2.2. Suppose α < 0 and β < 0, (A′
1), (A2), (A3), and (C) hold. Then, PBVP (1.13) has at

least one solution if (2.11) holds.

Theorem 2.3. Suppose α > 0 and β > 0, (A1), (A2), (A3), and (C) hold. Then, PBVP (1.13) has at
least one solution if (2.11) holds.

Theorem 2.4. Suppose α < 0 and β > 0, (A1), (A2), (A3), and (C) hold. Then, PBVP (1.13) has at
least one solution if (2.11) holds.

To illustrate our main results, we present two boundary value problems that our
results can readily apply, whereas the known results in the current literature do not cover.

Example 2.5. Consider the following PBVP:

x′′(t) + αx′(t) + βx(t) =
2q+1∑

k=0

εkx
k(t) + r(t), t ∈ [0, T], t /= tk, k = 1, . . . , m,

Δx
(
tk
)
= 0, k = 1, . . . , m,

Δx′(tk) = bk
[
x
(
tk
)]3

, k = 1, . . . , m,

x(0) = x(T), x′(0) = x′(T),

(2.12)

where q is a positive integer, εk ≥ 0, T > 0, r is a continuous function. Corresponding to PBVP
(1.13), one finds that

f
(
t, x0, x1, . . . , xn

)
=

2q+1∑

k=0

εkx
k
0 + r(t),

Ik(x, y) = 0, Jk(x, y) = bkx
3,

(2.13)

It is easy to see that

(i) (A1) holds,

(ii) since ak ≥ 0, one gets that yIk(x, y) + xJk(x, y) + λIk(x, y)Jk(x, y) = bkx
4 ≥ 0, then

(A2) holds,

(iii) (A3) holds,
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(iv) h(t, x) = ε2q+1x
2q+1 with α2q+1 > 0 and gk(t, x) = αkx

k for k = 0, 1, . . . , 2q implies that
(C) holds.

It follows from Theorem 2.1 that PBVP (2.12) has at least one solution.

Example 2.6. Consider the following PBVP:

x′′(t) + αx′(t) + βx(t) =
2q+1∑

k=0

αkx
k(t) +

n∑

k=1

βkx
2q+1

(
1

n + 1
t

)
+ r(t),

t ∈ [0, T], t /= tk, k = 1, . . . , m,
Δx

(
tk
)
= 0, k = 1, . . . , m,

Δx′(tk
)
= bk

[
x
(
tk
)]5

, k = 1, . . . , m,

x(0) = x(T), x′(0) = x′(T),

(2.14)

where α ≥ 0, β < 0, T > 0, q is a positive integer, α2q+1 > 0, m, n are positive integers,
r ∈ L1[0, T], bk ∈ R, 0 < t1 < · · · < tm < T , αk, βk ∈ R.

It is easy to see that

(i) (A′
1) holds,

(ii) It is easy to see that

xJk(x, y) + yIk(x, y) + λIk(x, y)Jk(x, y) = bkx
6 ≥ 0 (2.15)

if bk ≥ 0, then (A2) holds,

(iii) (A3) holds,

(iv) if h(t, x) = α2q+1x
2q+1 with α2q+1 > 0 and gk(t, x) = βkx

2q+1 for k = 1, . . . , n, g0(t, x) =
∑2q

k=0 αkx
k, then (C) holds.

It follows from Theorem 2.2 that PBVP (2.14) has at least one solution if

bk ≥ 0, k = 1, . . . , m,
m∑

k=1

|bk| < 1,

α2q+1 > 0,
n∑

k=1

βk + α2q+1 /= 0,
n∑

k=1

βk(n + 1)(2q+1)/(2q+2) < α2q+1.

(2.16)

3. Proofs of theorems

In this section, we prove that main theorems are presented in Section 2. We define the linear
operator L : D(L) ⊆ X→Y and the nonlinear operator N : X→Y by

Lx(t) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x′′(t) + αx′(t) + βx(t)

Δx
(
t1
)

...

Δx
(
tm
)

Δx′(t1
)

...

Δx′(tm
)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

for x ∈ D(L), (3.1)
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where

D(L) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u : [0, T] −→ R

∣
∣
∣
∣
∣
∣∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u ∈ X is differentiable in
(
tk, tk+1

)
(k = 0, 1, . . . , m),

there exist the limits lim
t→ t+

k

x′(t),

lim
t→ t−

k

x′(t) = x′(tk
)
(k = 0, 1, . . . , m),

lim
t→ 0+

x′(t) = x′(0), lim
t→ T−

x′(t) = x′(T),

x′ ∈ X there exist the limits lim
t→ t+

k

x′′(t),

lim
t→ t−

k

x′′(t) = x′′(tk
)
(k = 0, 1, . . . , m),

lim
t→ 0+

x′′(t) = x′′(0), lim
t→ T−

x′′(t) = x′′(T),

x′′ ∈ X,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

Nx(t) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

f
(
t, x(t), x

(
α1(t)

)
, . . . , x

(
αn(t)

))

I1
(
x
(
t1
)
, x′(t1

))

...

Im
(
x
(
tm
)
, x′(tm

))

J1
(
x
(
t1
)
, x′(t1

))

...

Jm
(
x
(
tm
)
, x′(tm

))

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

for x ∈ X.

(3.2)

Lemma 3.1. Suppose α/= 0, β /= 0, or α = 0 and β < 0, f : [0, T] × Rn+1 →R is an impulsive
Caratheodory function, Ik, Jk : R2 →R are continuous. Then, the following results hold.

(i) KerL = {0}.
(ii) L is a Fredholm operator of index zero.

(iii) N is L-compact on Ω with Ω being open and bounded.

Lemma 3.2 ([15]). Let X and Y be Banach spaces. Suppose L : D(L) ⊂ X→Y is a Fredholm
operator of index zero with KerL = {0}, N : X→Y is L-compact on any open-bounded subset of X.
If 0 ∈ Ω ⊂ X is an open-bounded subset and Lx /=λNx for all x ∈ D(L) ∩ ∂Ω and λ ∈ [0, 1], then
there exists at least one x ∈ Ω such that Lx = Nx.

Lemma 3.3. Suppose β < 0 and α ≥ 0 and (A1), (A2), (A3), and (C) hold. Let Ω1 = {x ∈ D(L) :
Lx = λNx, ∃λ ∈ (0, 1)}. Then, Ω1 is bounded if (2.11) holds.

Proof. Suppose x ∈ Ω1, then

x′′(t) + αx′(t) + βx(t) = λf
(
t, x(t), x

(
α1(t)

)
, . . . , x

(
αn(t)

))
, a.e. t ∈ [0, T],

Δx
(
tk
)
= λIk

(
x
(
tk
)
, x′(tk

))
, k = 1, . . . , m,

Δx′(tk
)
= λJk

(
x
(
tk
)
, x′(tk

))
, k = 1, . . . , m,

x(0) = x(T), x′(0) = x′(T).

(3.3)
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Step 1. Prove that there exists a constant M1 > 0 so that
∫T
0 |x(s)|q+1ds ≤ M1 for each x ∈ Ω1.

Multiplying both sides of the first equation of (3.3) by x(t), integrating it from 0 to T ,
we get from (C) that

x′(T)x(T) − x′(0)x(0) −
m∑

k=1

[
x′(t+

k

)
x
(
t+
k

) − x′(tk
)
x
(
tk
)] −

∫T

0

[
x′(s)

]2
ds

+
α

2
[(
x(T)

)2 − (x(0))2] − α

2

m∑

k=1

[(
x
(
t+
k

))2 − (x(tk
))2] + β

∫T

0

∣
∣x(t)

∣
∣2dt

= λ

∫T

0
f
(
s, x(s), x

(
α1(s)

)
, . . . , x

(
αn(s)

))
x(s)ds

= λ

(∫T

0
h
(
s, x(s), x

(
α1(s)

)
, . . . , x

(
αn(s)

))
x(s)ds +

∫T

0
g0
(
s, x(s)

)
x(s)ds

+
n∑

i=1

∫T

0
gi
(
s, x

(
αi(s)

))
x(s)ds +

∫T

0
r(s)x(s)ds

)

.

(3.4)

It follows from (A1) that

m∑

k=1

[(
x
(
t+k
))2 − (x(tk

))2] =
m∑

k=1

(
x
(
t+k
) − x

(
tk
))(

x
(
t+k) + x

(
tk
))

=
m∑

k=1

Δx
(
tk
)(
2x
(
tk
)
+ Δx

(
t−k
))

= λ
m∑

k=1

Ik
(
x
(
tk
)
, x′(tk

))(
2x
(
tk
)
+ λIk

(
x
(
tk
)
, x′(tk

)))

≥ 2λ
m∑

k=1

Ik
(
x
(
tk
)
, x′(tk

))
x
(
tk
) ≥ 0.

(3.5)

On the other hand, (A2) implies that

m∑

k=1

(
x′(t+k

)
x
(
t+k
) − x′(tk

)
x
(
tk
))

=
m∑

k=1

[
x′(t+k

)(
x
(
t+k
) − x

(
tk
))

+
(
x′(t+k

) − x′(tk
))
x
(
tk
))]

= λ
m∑

k=1

(
x′(tk

)
Ik
(
x
(
tk
)
, x′(tk

))
+ x

(
tk
)
Jk
(
x
(
tk
)
, x′(tk

)))

+ λ2
m∑

k=1

Ik
(
x
(
tk
)
, x′(tk

))
Jk
(
x
(
tk
)
, x′(tk

))

≥ 0.

(3.6)

We get

∫T

0
h
(
s, x(s), x

(
α1(s)

)
, . . . , x

(
αn(s)

))
x(s)ds +

∫T

0
g0
(
s, x(s)

)
x(s)ds

+
n∑

i=1

∫T

0
gi
(
s, x

(
αi(s)

))
x(s)ds +

∫T

0
r(s)x(s)ds ≤ 0.

(3.7)
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It follows from (C) that

θ

∫T

0

∣
∣x(s)

∣
∣q+1ds ≤ −

∫T

0
g0
(
s, x(s)

)
x(s)ds −

n∑

i=1

∫T

0
gi
(
s, x

(
αi(s)

))
x(s)ds

+
∫T

0
r(s)x(s)ds + β

∫T

0

∣
∣x(t)

∣
∣2dt

≤
∫T

0

∣
∣g0

(
s, x(s)

)∣∣
∣
∣x(s)

∣
∣ds +

n∑

i=1

∫T

0

∣
∣gi
(
s, x

(
αi(s)

))∣∣
∣
∣x(s)

∣
∣ds

+
∫T

0

∣
∣r(s)

∣
∣
∣
∣x(s)

∣
∣ds.

(3.8)

Let ε > 0 satisfy

θ >
(
r0 + ε

)
+

n∑

k=1

(
rk + ε

)∥∥β′k
∥∥q/(q+1)
∞ . (3.9)

For such ε > 0, there exists δ > 0 such that for every i = 0, 1, . . . , n,
∣∣gi(t, x)

∣∣ <
(
ri + ε

)|x|q for a.e. t ∈ [0, T] and all x such that |x| > δ. (3.10)

Let, for i = 1, . . . , n, Δ1,i = {t : t ∈ [0, T], |x(αi(t))| ≤ δ}, Δ2,i = {t : t ∈ [0, T], |x(αi(t))| > δ},
gδ,i = maxt∈[0,T],|x|≤δ |gi(t, x)|, and Δ1 = {t ∈ [0, T], |x(t)| ≤ δ}, Δ2 = {t ∈ [0, T], |x(t)| > δ}, and
δ′ = max{gδ,k : k = 0, . . . , n}. Then, we get

θ

∫T

0

∣∣x(s)
∣∣q+1ds

=
∫

Δ1

∣∣g0
(
s, x(s)

)∣∣∣∣x(s)
∣∣ds +

∫

Δ2

∣∣g0
(
s, x(s)

)∣∣∣∣x(s)
∣∣ds +

n∑

i=1

∫

Δ1,i

∣∣gi
(
s, x

(
αi(s)

))∣∣∣∣x(s)
∣∣ds

+
n∑

i=1

∫

Δ2,i

∣∣gi
(
s, x

(
αi(s)

))∣∣∣∣x(s)
∣∣ds +

∫T

0

∣∣r(s)
∣∣∣∣x(s)

∣∣ds

≤ (
r0 + ε

)
∫T

0

∣∣x(s)
∣∣q+1ds +

n∑

k=1

(
rk + ε

)
∫T

0

∣∣x
(
αk(s)

)∣∣q∣∣x(s)
∣∣ds

+
∫T

0

∣∣r(s)
∣∣∣∣x(s)

∣∣ds + gδ,0

∫T

0

∣∣x(s)
∣∣ds +

n∑

k=1

gδ,k

∫T

0

∣∣x(s)
∣∣ds

≤ (
r0 + ε

)
∫T

0

∣∣x(s)
∣∣q+1ds

+
n∑

k=1

(
rk + ε

)
(∫T

0

∣∣x
(
αk(s)

)∣∣q+1ds
)q/(q+1)(∫T

0

∣∣x(s)
∣∣q+1ds

)1/(q+1)

+
(∫T

0

∣∣r(s)
∣∣(q+1)/qds

)q/(q+1)(∫T

0

∣∣x(s)
∣∣q+1ds

)1/(q+1)

+ (n + 1)δ′
∫T

0

∣∣x(s)
∣∣ds

=
(
r0+ε

)
∫T

0

∣∣x(s)
∣∣q+1ds+

n∑

k=1

(
rk + ε

)
∣∣∣∣∣

∫αk(T)

αk(0)

∣∣x(u)
∣∣q+1∣∣β′k(u)

∣∣du

∣∣∣∣∣

q/(q+1)(∫T

0

∣∣x(s)
∣∣q+1ds

)1/(q+1)
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+
(∫T

0

∣
∣r(s)

∣
∣(q+1)/qds

)q/(q+1)(∫T

0

∣
∣x(s)

∣
∣q+1ds

)1/(q+1)

+ (n + 1)δ′Tq/(q+1)
(∫T

0

∣
∣x(s)

∣
∣q+1ds

)1/(q+1)

≤ (
r0 + ε

)
∫T

0

∣
∣x(s)

∣
∣q+1ds

+
n∑

k=1

(
rk + ε

)∥∥β′k
∥
∥q/(q+1)

(∫T

0

∣
∣x(u)

∣
∣1+qdu

)q/(q+1)(∫T

0

∣
∣x(s)

∣
∣q+1ds

)1/(q+1)

+
(∫T

0

∣
∣r(s)

∣
∣(q+1)/qds

)q/(q+1)(∫T

0

∣
∣x(s)

∣
∣q+1ds

)1/(q+1)

+ (n + 1)δ′Tq/(q+1)
(∫T

0

∣∣x(s)
∣∣q+1ds

)1/(q+1)

=

(
(
r0 + ε

)
+

n∑

k=1

(
rk + ε

)∥∥β′k
∥∥q/(q+1)

)∫T

0

∣∣x(s)
∣∣q+1ds

+
(∫T

0

∣∣r(s)
∣∣(q+1)/qds

)q/(q+1)(∫T

0

∣∣x(s)
∣∣q+1ds

)1/(q+1)

+ (n + 1)δ′Tq/(q+1)
(∫T

0

∣∣x(s)
∣∣q+1ds

)1/(q+1)

.

(3.11)

Then, (3.9) implies that there exists a constant M1 > 0 such that
∫T
0 |x(s)|q+1ds ≤ M1.

Step 2. Prove that there exists a constant M2 > 0 such that ||x||∞ ≤ M2 for each x ∈ Ω1.
It follows from Step 1 that there exists ξ ∈ [0, T] such that |x(ξ)| ≤ (M1/T)

1/(q+1).
Multiplying both sides of the first equation of (3.3) by x(t), integrating it from 0 to T ,

we get, using (A1), (A2), and (C),
∫T

0

[
x′(s)

]2
ds = −1

2

m∑

k=1

[(
x
(
t+k
))2 − (x(tk

))2] −
m∑

k=1

[
x′(t+k

)
x
(
t+k
) − x′(tk)x

(
tk
)]

− λ

∫T

0
f
(
s, x(s), x

(
α1(s)

)
, . . . , x

(
αn(s)

))
x(s)ds + λβ

∫T

0

∣∣x(t)
∣∣2dt

≤ −λ
∫T

0
f
(
s, x(s), x

(
α1(s)

)
, . . . , x

(
αn(s)

))
x(s)ds + λβ

∫T

0

∣∣x(t)
∣∣2dt

≤ −λ
(∫T

0
h
(
s, x(s), x

(
α1(s)

)
, . . . , x

(
αn(s)

))
x(s)ds +

∫T

0
g0
(
s, x(s)

)
x(s)ds

+
n∑

i=1

∫T

0
gi
(
s, x

(
αi(s)

))
x(s)ds +

∫T

0
r(s)x(s)ds

)

+ λβ

∫T

0

∣∣x(t)
∣∣2dt
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≤ −λ
∫T

0
g0
(
s, x(s)

)
x(s)ds − λ

n∑

i=1

∫T

0
gi
(
s, x

(
αi(s)

))
x(s)ds − λ

∫T

0
r(s)x(s)ds

≤
∫T

0

∣
∣g0

(
s, x(s)

)∣∣
∣
∣x(s)

∣
∣ds +

n∑

i=1

∫T

0

∣
∣gi
(
s, x

(
αi(s)

))∣∣
∣
∣x(s)

∣
∣ds +

∫T

0

∣
∣r(s)

∣
∣
∣
∣x(s)

∣
∣ds

≤
[(

(
r0 + ε

)
+

n∑

k=1

(
rk + ε

)∥∥β′k
∥
∥q/(1+q)
∞

)∫T

0

∣
∣x(s)

∣
∣q+1ds

+
(∫T

0

∣
∣r(s)

∣
∣(q+1)/qds

)q/(q+1)(∫T

0

∣
∣x(s)

∣
∣q+1ds

)1/(q+1)]

+ (n + 1)δ′Tq/(q+1)
(∫T

0

∣
∣x(s)

∣
∣q+1ds

)1/(q+1)

. (3.12)

Then,
∫T

0

[
x′(s)

]2
ds ≤

[(
(
r0 + ε

)
+

n∑

k=1

(
rk + ε

)∥∥β′k
∥∥q/(1+q)
∞

)

M1 +
(∫T

0

∣∣r(s)
∣∣(q+1)/qds

)q/(q+1)

M
1/(q+1)
1

]

+ (n + 1)δ′Tq/(q+1)M
1/(q+1)
1

=: M2.

(3.13)

Due to (A3), one sees that

∣∣x(t)
∣∣ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∣∣∣∣∣
x(ξ) + λ

∑

ξ≤tk<t
Ik
(
x
(
tk
)
, x′(tk

))
+
∫ t

ξ

x′(s)ds

∣∣∣∣∣
if t ≥ ξ,

∣∣∣∣∣
x(ξ) − λ

∑

t≤tk<ξ
Ik
(
x
(
tk
)
, x′(tk

)) −
∫ ξ

t

x′(s)ds

∣∣∣∣∣
if t < ξ,

≤
(
M1

T

)1/(q+1)

+
m∑

k=1

θk‖x‖ +
∫T

0

∣∣x′(s)
∣∣ds

≤
(
M1

T

)1/(q+1)

+
m∑

k=1

θk‖x‖ + T1/2
(∫T

0

∣∣x′(s)
∣∣2ds

)1/2

≤
(
M1

T

)1/(q+1)

+
m∑

k=1

θk‖x‖ + T1/2M1/2
2 .

(3.14)

It follows from (A3) that

||x||∞ ≤ 1
1 −∑m

k=1 θk

((
M1

T

)1/(q+1)

+ T1/2M1/2
2

)

. (3.15)

It follows that Ω1 is bounded. This completes the proof of Lemma 3.3.

Lemma 3.4. Suppose β < 0 and α > 0 and (A′
1), (A2), (A3), and (C) hold. Let Ω1 = {x ∈ D(L) :

Lx = λNx, ∃λ ∈ (0, 1)}. Then, Ω1 is bounded if (2.11) holds.
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Proof. The proof is similar to that of Lemma 3.3.

Lemma 3.5. Suppose β > 0 and α > 0 and (A′
1), (A

′
2), (A3), and (C′) hold. Let Ω1 = {x ∈ D(L) :

Lx = λNx, ∃λ ∈ (0, 1)}. Then, Ω1 is bounded if (2.11) holds.

Proof. Suppose x ∈ Ω1, then we get (3.3).

Step 1. Prove that there exists a constant M1 > 0 so that
∫T
0 |x(s)|q+1ds ≤ M1 for each x ∈ Ω1.

Multiplying both sides of the first equation of (3.3) by x(t), integrating it from 0 to T ,
we get from (C′)

x′(T)x(T) − x′(0)x(0) −
m∑

k=1

[
x′(t+

k

)
x
(
t+
k

) − x′(tk
)
x
(
tk
)] −

∫T

0

[
x′(s)

]2
ds

+
α

2
[(
x(T)

)2 − (x(0))2] − α

2

m∑

k=1

[(
x
(
t+k
))2 − (x(tk

))2] + β

∫T

0

∣
∣x(t)

∣
∣2dt

= λ

(∫T

0
h
(
s, x(s), x

(
α1(s)

)
, . . . , x

(
αn(s)

))
x(s)ds +

∫T

0
g0
(
s, x(s)

)
x(s)ds

+
n∑

i=1

∫T

0
gi
(
s, x

(
αi(s)

)
x(s)ds +

∫T

0
r(s)x(s)ds

)

.

(3.16)

It follows from (A′
1) that

m∑

k=1

[(
x
(
t+k
))2 − (x(tk

))2] =
m∑

k=1

(
x
(
t+k
) − x

(
tk
))(

x
(
t+k
)
+ x

(
tk
))

=
m∑

k=1

Δx
(
tk
)(
2x
(
tk
)
+ Δx

(
t−k
))

= λ
m∑

k=1

Ik
(
x
(
tk
)
, x′(tk

))(
2x
(
tk
)
+ λIk

(
x
(
tk
)
, x′(tk

)))

≤ λ
m∑

k=1

Ik
(
x
(
tk
)
, x′(tk

))(
2x
(
tk
)
+ Ik

(
x
(
tk
)
, x′(tk

)))

≤ 0.

(3.17)

On the other hand, (A′
2) implies that

m∑

k=1

(
x′(t+k

)
x
(
t+k
) − x′(tk

)
x
(
tk
))

=
m∑

k=1

[
x′(t+k

)(
x
(
t+k
) − x

(
tk
))

+
(
x′(t+k

) − x′(tk
))
x
(
tk
))]

= λ
m∑

k=1

(
x′(tk

)
Ik
(
x
(
tk
)
, x′(tk

))
+ x

(
tk
)
Jk
(
x
(
tk
)
, x′(tk

)))

+ λ2
m∑

k=1

Ik
(
x
(
tk
)
, x′(tk

))
Jk
(
x
(
tk
)
, x′(tk

))

≤ 0.
(3.18)
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We get

λ

(∫T

0
h
(
s, x(s), x

(
α1(s)

)
, . . . , x(αn(s)

))
x(s)ds +

∫T

0
g0
(
s, x(s)

)
x(s)ds

+
n∑

i=1

∫T

0
gi
(
s, x

(
αi(s)

)
x(s)ds +

∫T

0
r(s)x(s)ds

)

≥ 0.

(3.19)

It follows from (C′) that

θ

∫T

0

∣
∣x(s)

∣
∣q+1ds ≤

∫T

0
g0
(
s, x(s)

)
x(s)ds −

n∑

i=1

∫T

0
gi
(
s, x

(
αi(s)

)
x(s)ds

+
∫T

0
r(s)x(s)ds + β

∫T

0

∣
∣x(t)

∣
∣2dt

≤
∫T

0

∣∣g0
(
s, x(s)

)∣∣∣∣x(s)
∣∣ds +

n∑

i=1

∫T

0

∣∣gi
(
s, x

(
αi(s)

)∣∣∣∣x(s)
∣∣ds

+
∫T

0

∣∣r(s)
∣∣∣∣x(s)

∣∣ds.

(3.20)

The remainder of the proof is similar to that of the corresponding part of the proof of
Lemma 3.3.

Lemma 3.6. Suppose β > 0 and α < 0 and (A1), (A2), (A3), and (C) hold. Let Ω1 = {x ∈ D(L) :
Lx = λNx, ∃λ ∈ (0, 1)}. Then, Ω1 is bounded if (2.11) holds.

Proof. The proof is similar to that of Lemma 3.5.

Proof of Theorem 2.1. It is easy to show that L : D(L) ⊂ X→Y is a Fredholm operator of index
zero with KerL = {0}, N : X→Y is L-compact on any open-bounded subset of X. Let Ω
satisfy 0 ∈ Ω1 ⊂ Ω ⊂ X which is a open-bounded subset, where Ω1 is given in Lemma 3.3. It
follows from Lemma 3.3 that Lx/=λNx for all x ∈ D(L) ∩ ∂Ω and λ ∈ [0, 1], then there exists
at least one x ∈ Ω such that Lx = Nx. Hence, x is a solution of PBVP (1.13).

Proof of Theorem 2.2. Following Lemma 3.4, the proof is similar to that of Theorem 2.1.

Proof of Theorem 2.3. Following Lemma 3.5, the proof is similar to that of Theorem 2.1.

Proof of Theorem 2.4. Following Lemma 3.6, the proof is similar to that of Theorem 2.1.
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