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1. Introduction

Let T be a closed nonempty subset of R. In the light of some of the current literature,
T is called a time scale or measure chain. The following definitions and preliminary
notions, which can be found in [1–3], lay out the terms and notation needed later in the
discussion.

We will use the convention that, for each interval J of R, JT = J ∩ T. For t < supT
and r > infT, we define the forward jump operator, σ, and the backward jump operator, ρ,
respectively, by

σ(t) = inf{τ ∈ T : τ > t} ∈ T, ρ(r) = sup{τ ∈ T : τ < r} ∈ T, (1.1)

for all t, r ∈ T. However, t is said to be right-scattered if σ(t) > t and t is said to be right-dense
(rd) if σ(t) = t. Also, t is said to be left-scattered if ρ(t) < t and t is said to be left-dense (ld) if
ρ(t) = t. We introduce the sets Tk and Tk which are derived from the time scale T as follows.
If T has a right-scattered minimum m, then Tk = T − {m}; otherwise set Tk = T. If T has a
left-scattered maximumM, then Tk = T − {M}; otherwise, set Tk = T.
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A function f is left-dense continuous (ld-c, for short) if f is continuous at each
left-dense point in T and its right-sided limits exist at each right-dense points in T. By
Cld(T, [0,∞)) we mean the set of all left-dense continuous functions from T to [0,∞).

For x : T → R and t ∈ Tk, we define the delta derivative of x(t), xΔ(t), to be the
number (when it exists), with the property that, for each ε > 0, there exists a neighborhood
U of t such that

∣
∣x(σ(t)) − x(s) − xΔ(t)(σ(t) − s)∣∣ ≤ ε|σ(t) − s|, (1.2)

for all s ∈ U. We say x is Δ-differentiable at t if its delta derivative exists at t, and we say x is
Δ-differentiable on [0, 1]Tk if its delta derivative exists at each t ∈ [0, 1]Tk .

For x : T → R and t ∈ Tk, we define the nabla derivative of x(t), x∇(t), to be the
number (when it exists), with the property that, for each ε > 0, there exists a neighborhood
U of t such that

∣
∣x(ρ(t)) − x(s) − x∇(t)(ρ(t) − s)∣∣ ≤ ε|ρ(t) − s|, (1.3)

for all s ∈ U.
If T = R, then xΔ(t) = x∇(t) = x′(t). If T = Z, then xΔ(t) = x(t + 1) − x(t) is the forward

difference operator while x∇(t) = x(t) − x(t − 1) is the backward difference operator.
By CΔ

ld([0, 1]T), C
∇
ld([0, 1]T), we mean the set of all functions from [0, 1]T to [0,∞)

which are Δ-differentiable on [0, 1]Tk , ∇-differentiable on [0, 1]Tk , respectively, and by
CΔ∇

lr ([0, 1]Tk∩Tk) =: CΔ∇
lr , we mean the set of all functions from [0, 1]T to [0,∞) which are

Δ-differentiable on [0, 1]Tk and their delta derivatives are ∇-differentiable on [0, 1]Tk .
If FΔ(t) = f(t), then we define the delta integral by

∫ t

a

f(s)Δs = F(t) − F(a). (1.4)

If F∇(t) = f(t), then we define the nabla integral by

∫ t

a

f(s)∇s = F(t) − F(a). (1.5)

Throughout this paper, we assume T is closed subset of R with 0 ∈ Tk and 1 ∈ Tk. In the same
way as the proof of [4, Theorems 2.1, 2.3, and 2.10], it is not difficult to verify the following.

Lemma 1.1. Let f : T → R and t ∈ Tk (or t ∈ Tk). If f is Δ (or ∇)-differentiable at t, then f is
continuous at t. Moreover, the following formulas hold:

(i) (
∫ t

af(s)Δs)
Δ
= f(t),

(ii) (
∫ t

af(s)Δs)
∇
= f(ρ(t)),

(iii) (
∫ t

af(s)∇s)
Δ
= f(σ(t)),

(iv) (
∫ t

af(s)∇s)
∇
= f(t).
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The theory of time scales was initiated by Hilger [1] as a means of unifying
structure for the study of differential equations in the continuous case and the study of
finite difference equations in the discrete case and extending theories from differential and
difference equations. The theory of dynamical systems on time scales is undergoing rapid
development, see [2–10]. This paper is concerned with the multiplicity of positive solutions
for the following nonlinear four-point singular boundary value problem of a p-Lapalcian
dynamic equation on a time scale

[

φp
(

uΔ(t)
)]∇

+ a(t)f(u(t)) = 0, t ∈ [0, 1]T,

m1φp(u(0)) − n1φp
(

uΔ(ξ)
)

= 0, m2φp(u(1)) + n2φp
(

uΔ(η)
)

= 0,
(1.6)

where φp(s) is p-Laplacian operator, that is, φp(s) = |s|p−2s, p > 1 (thus, φp(s) is strictly
increasing on [0,∞)), (φp)

−1 = φq, 1/p + 1/q = 1, m1 > 0, n1 ≥ 0, m2 > 0, n2 ≥ 0, ξ, η ∈
(0, ρ(1))T is prescribed and ξ < η. Moreover,

(H1) f : R
+ → R

+ is continuous (R+ denotes the nonnegative reals),

(H2) a : T → [0,+∞) is ld-c and 0 <
∫

Ia(t)∇t < +∞ for any closed subinterval I of
[0, 1]T.

Some authors have studied the existence of multiple positive solutions for the
nonlinear second-order three-point boundary value problems on time scales, for instance,
Anderson [7] has proved that the problem

uΔ∇(t) + f(t, u(t)) = 0, u(0) = 0, au(η) = u(T) (1.7)

has at least three positive solutions by employing the fixed point theorem due to Leggett
and Williams [11], and He [9] has proved that the following problems have twin positive
solutions by employing double fixed point theorem due to Avery and Henderson [12]:

[

φp
(

uΔ(t)
)]∇

+ a(t)f(u(t)) = 0, t ∈ [0, T]T,

u(0) − B0
(

uΔ(η)
)

= 0, uΔ(T) = 0, or uΔ(0) = 0, u(T) + B1
(

uΔ(η)
)

= 0.
(1.8)

Hong [13] has proved that the aforementioned problems have triple positive solutions using
fixed point theorem due to Avery and Peterson [14]. In this paper, by using fixed point
theorems due to Avery and Henderson [12], Avery and Peterson [14], respectively, we prove
that there exist at least twin or triple positive solutions to problems (1.6).

In Section 2, we define an operator whose fixed points are solutions to (1.6) and state
two fixed point theorems due to [12, 14]. We also state and prove some lemmas that will be
needed in order to prove our main theorems. In Section 3, we state and prove two theorems
for the existence of multiple positive solutions of (1.6). Two examples are given in Section 4.

2. Preliminaries and Lemmas

The first part of this section is devoted to collect the main terminology and auxiliary
results for discussion of fixed points for operators on cones in Banach spaces, which will
be foundational in the proof of our main results.
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Let (E, ‖ · ‖) be a real Banach space. A nonempty convex closed set P contained in E is
called a cone if the following two conditions are satisfied:

(1) x ∈ P , λ ≥ 0 implies λx ∈ P ,
(2) x ∈ P and −x ∈ P implies x = 0.

The cone P induces an ordering ≤ on E by x ≤ y if and only if y − x ∈ P .
An operator F is said to be completely continuous if it is continuous and compact

(maps bounded sets into relatively compact sets).
For a given cone P in a real Banach space E, the map χ : P → [0,∞) is called a

nonnegative continuous concave function on cone P provided that χ is continuous and

χ(tx + (1 − t)y) ≥ tχ(x) + (1 − t)χ(y) (2.1)

for x, y ∈ P and 0 ≤ t ≤ 1. Dual to this, we call the map ϕ : P → [0,∞) a nonnegative
continuous convex function on P provided that ϕ is continuous and

ϕ(tx + (1 − t)y) ≤ tϕ(x) + (1 − t)ϕ(y) (2.2)

for x, y ∈ P and 0 ≤ t ≤ 1.
Let θ, γ, α, ψ be nonnegative functions on P and a, b, c, and d be positive real

numbers. We define the following convex sets:

P(γ, d) = {x ∈ P : γ(x) < d},
P(γ, α, b, d) = {x ∈ P : b ≤ α(x), γ(x) ≤ d},

P(γ, θ, α, b, c, d) = {x ∈ P : b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d},
(2.3)

and closed sets

∂P(γ, d) = {x ∈ P : γ(x) = d},
R(γ, ψ, a, d) = {x ∈ P : a ≤ ψ(x), γ(x) ≤ d}.

(2.4)

The following two fixed point theorems due to Avery and Henderson [12], Avery and
Peterson [14], respectively, are fundamental for us to establish our main results.

Theorem A (see [12]). Let P be a cone in a real Banach space E. Let α and δ be increasing,
nonnegative and continuous functions on P , and θ be a nonnegative, continuous function on P with
θ(0) = 0 such that for some constants h > 0 and d > 0,

α(x) ≤ θ(x) ≤ δ(x), ‖x‖ ≤ hα(x), (2.5)

for all x ∈ P(α, d). Suppose there exist constants a and b with 0 < a < b < d such that

θ(εx) ≤ εθ(x) for 0 ≤ ε ≤ 1, x ∈ ∂P(θ, b), (2.6)
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and F : P(α, d) → P is a completely continuous operator such that

(s1) α(Fx) > d for all x ∈ ∂P(α, d),
(s2) θ(Fx) < b for all x ∈ ∂P(θ, b),
(s3) P(δ, a)/=∅ and δ(Fx) > a for all x ∈ ∂P(δ, a).

Then F has at least two fixed points x1 and x2 belonging to P(α, d) such that

a < δ
(

x1
)

with θ
(

x1
)

< b,

b < θ
(

x2
)

with α
(

x2
)

< d.
(2.7)

Theorem B (see [14]). Let P be a cone in a real Banach space E. Let θ and γ be nonnegative
continuous convex functions on P , α a nonnegative continuous concave function on P and ψ a
nonnegative continuous function on P , moreover, ψ satisfy ψ(λx) ≤ λψ(x) for 0 ≤ λ ≤ 1 such
that, for some positive numbers h and d,

α(x) ≤ ψ(x), ‖x‖ ≤ hγ(x) (2.8)

for all x ∈ P(γ, d). Suppose that F : P(γ, d) → P(γ, d) is a completely continuous operator and there
exist positive real numbers a, b, and c with a < b such that the following conditions are satisfied:

(h1) {x ∈ P(γ, θ, α, b, c, d) : α(x) > b}/=∅ and

α(Fx) > b for x ∈ P(γ, θ, α, b, c, d), (2.9)

(h2) α(Fx) > b for x ∈ P(γ, α, b, d) with θ(Fx) > c,
(h3) 0/∈R(γ, ψ, a, d) and ψ(Fx) < a for x ∈ R(γ, ψ, a, d) with ψ(x) = a.

Then F has at least three fixed points x1, x2, x3 ∈ P(γ, d) such that

γ
(

xi
) ≤ d for i = 1, 2, 3,

b < α
(

x1
)

,

a < ψ
(

x2
)

with α
(

x2
)

< b,

ψ
(

x3
)

< a.

(2.10)

In the second part of this section, some lemmas will be proved. A function u is said to
be T-concave on [0, 1]T if uΔ∇(t) ≤ 0 for t ∈ [0, 1]Tk∩Tk . Let E = CΔ

ld([0, 1]T,R) and

|x|0 = max
t∈[0,1]T

|x(t)|,

‖x‖ = max
{

max
t∈[0,1]T

|x(t)|, max
t∈[0,1]Tk

∣
∣xΔ(t)

∣
∣

}

.
(2.11)



6 Boundary Value Problems

For given σ ∈ [0, 1]T, let us define a set P by

P =
{

u ∈ E : u is T-concave and nonnegative valued on [0, 1]T, u
Δ(σ) = 0

}

. (2.12)

Clearly, both (E, | · |0) and (E, ‖ · ‖) are Banach spaces, P is a nonempty subset and a cone of E.

Remark 2.1. By (1.6) and its the boundary conditions, we have uΔ(ξ) ≥ 0, uΔ(η) ≤ 0, and
uΔ∇(t) ≤ 0 for t ∈ [0, 1]Tk∩Tk . Hence uΔ(t) is decreasing on [0, 1]T. This shows that σ ∈ [ξ, η]T,
that is, ξ ≤ σ ≤ η.

Lemma 2.2. Let λ ∈ (0, 1/2) be a given constant with λ < ξ and 1 − λ > η, then for each u ∈ P one
has

u(t) ≥ λ max
s∈[0,1]

|u(s)|, t ∈ [�1, �2
]

T, (2.13)

where �1 = min{t ∈ T : λ ≤ t ≤ ξ} and �2 = max{t ∈ T : η ≤ t ≤ 1 − λ}.

Proof. Since u is a T-concave function, we claim that each point on the chord between
(t1, u(t1)) and (t2, u(t2)) with t1 < t2 is below the graph of u(t). In fact, if there exists
t0 ∈ [t1, t2]T, let t0 = λ1t1 + λ2t2 for 0 ≤ λ1, λ2 ≤ 1 and λ1 + λ2 = 1. Then by the mean-value
theorem on time scales (see [6]), there exist τ1 ∈ [t1, t0), τ2 ∈ [t0, t2) such that

u
(

t0
) − u(t1

) ≥ uΔ(τ1)
(

t0 − t1
)

= uΔ
(

τ1
)

λ2
(

t2 − t1
)

,

u
(

t2
) − u(t0

) ≤ uΔ(τ2
)(

t2 − t0
)

= uΔ
(

τ2
)

λ1
(

t2 − t1
)

.
(2.14)

Multiplying by −λ1 and λ2 the aforementioned first and second equations, respectively, then
adding up them, we get

λ2u
(

t2
)

+ λ1u
(

t1
) − u(t0

) ≤ [uΔ(τ2
) − uΔ(τ1

)]

λ1λ2
(

t2 − t1
)

. (2.15)

Note that uΔ(t) is ∇-differentiable, we use the mean-value theorem on time scales on [τ1, τ2]
again, there exists τ ∈ [τ1, τ2) such that

uΔ
(

τ2
) − uΔ(τ1

) ≤ uΔ∇(τ)
(

τ2 − τ1
)

. (2.16)

Loading this into the aforementioned expression, combining uΔ∇(t) ≤ 0, we have

λ2u
(

t2
)

+ λ1u
(

t1
) − u(λ1t1 + λ2t2

) ≤ λ1λ2uΔ∇(τ)
(

τ2 − τ1
)(

t2 − t1
) ≤ 0. (2.17)

This yields our claim.
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If �1 = λ and �2 = 1 − λ, the rest of this proof is similar to [15, Lemma 2.2]. Otherwise,
it has at least one of two equations that is not holds, say �1 /=λ, thus �1 > λ. This implies
[λ, �1]T = ∅. Set

u∗(t) =

⎧

⎪
⎨

⎪
⎩

u
(

�1
)

, t ∈ [λ, �1
]

,

u(t), t ∈ (�1, 1 − λ
]

T.
(2.18)

Again, similar to [15, Lemma 2.2], we can verify the rest of this proof. The proof is similar in
other cases. This proof is completed.

Lemma 2.3. Suppose that conditions (H1), (H2) hold. Then u(t) ∈ P ∩CΔ∇
lr is a solution of boundary

value problems (1.6) if and only if u(t) ∈ E is a solution of the following integral equation:

u(t) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

φq

(

n1
m1

∫σ

ξ

a(s)f(u(s))∇s
)

+
∫ t

0
φq

(∫σ

s

a(τ)f(u(τ))∇τ
)

Δs, t ∈ [0, σ]T,

φq

(

n2
m2

∫η

σ

a(s)f(u(s))∇s
)

+
∫1

t

φq

(∫s

σ

a(τ)f(u(τ))∇τ
)

Δs, t ∈ [σ, 1]T,

(2.19)

where σ is given in (2.12).

Proof. Necessity. First, by Cauchy ∇-integrating to the equation of (1.6) on (σ, t)T, we have

φp
(

uΔ(t)
)

= φp
(

uΔ(σ)
) −
∫ t

σ

a(s)f(u(s))∇s. (2.20)

By the definition of φp and (2.12), we have φp(uΔ(σ)) = 0 and uΔ(t) = −φq(
∫ t

σa(s)f(u(s))∇s),
thus, in virtue of Cauchy Δ-integral from σ to t of uΔ(t), we have

u(t) = u(σ) −
∫ t

σ

φq

(∫ s

σ

a(τ)f(u(τ))∇τ
)

Δs. (2.21)

Let t = η on (2.20), we have φp(uΔ(η)) = −∫ησa(s)f(u(s))∇s. The boundary condition of (1.6)
yields φp(u(1)) = −(n2/m2)φp(uΔ(η)), then

u(1) = φq
(
n2
m2

∫η

σ

a(s)f(u(s))∇s
)

. (2.22)

From (2.21) with t = 1, together with (2.22), it follows that

u(σ) = φq
(
n2
m2

∫η

σ

a(s)f(u(s))∇s
)

+
∫1

σ

φq

(∫s

σ

a(τ)f(u(τ))∇τ
)

Δs. (2.23)
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Now (2.21) and (2.23) guarantee that, for any t ∈ [σ, 1]T,

u(t) = φq
(
n2
m2

∫η

σ

a(s)f(u(s))∇s
)

+
∫1

t

φq

(∫s

σ

a(τ)f(u(τ))∇τ
)

Δs. (2.24)

Similarly, for t ∈ [0, σ]T, by Cauchy ∇-integrating to (1.6) on (0, σ)T, it is possible to get

u(t) = φq
(
n1
m1

∫σ

ξ

a(s)f(u(s))∇s
)

+
∫ t

0
φq

(∫σ

s

a(τ)f(u(τ))∇τ
)

Δs. (2.25)

This implies that (2.19) is true.

Sufficiency. Suppose that (2.19) holds. By Δ-differential of (2.19), we have

uΔ(t) =

⎧

⎪⎪⎪
⎨

⎪⎪⎪
⎩

φq

(∫σ

t

a(τ)f(u(τ))∇τ
)

≥ 0, t ∈ [0, σ]T,

−φq
(∫ t

σ

a(τ)f(u(τ))∇τ
)

≤ 0, t ∈ [σ, 1]T.
(2.26)

So, by Lemma 1.1 we have (φp(uΔ(t)))
∇ + a(t)f(u(t)) = 0, t ∈ [0, 1]T. This shows that the first

equation of (1.6) holds. Furthermore, taking t = 0 and t = 1, respectively on (2.19) and (2.26),
we are able to obtain the boundary value equations of (1.6). This proof is completed.

Now, we define a mapping F : P → E by

(Fu)(t) =

⎧

⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎩

φq

(
n1
m1

∫σ

ξ

a(s)f(u(s))∇s
)

+
∫ t

0
φq

(∫σ

s

a(τ)f(u(τ))∇τ
)

Δs, t ∈ [0, σ]T,

φq

(
n2
m2

∫η

σ

a(s)f(u(s))∇s
)

+
∫1

t

φq

(∫s

σ

a(τ)f(u(τ))∇τ
)

Δs, t ∈ [σ, 1]T.

(2.27)

Lemma 2.4. F : P → P is completely continuous.

Proof. Note that

(F(u))Δ(t) =

⎧

⎪⎪⎪
⎨

⎪⎪⎪⎩

φq

(∫σ

t

a(τ)f(u(τ))∇τ
)

≥ 0, t ∈ [0, σ]T,

−φq
(∫ t

σ

a(τ)f(u(τ))∇τ
)

≤ 0, t ∈ [σ, 1]T,
(2.28)

we see that Fu ∈ CΔ
ld([0, T]T, [0,∞)) and (F(u))Δ(σ) = 0. For any given u ∈

P , set G(t) = (F(u))Δ(t), then G is a continuous function and G(t) ≥ 0 for
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t ∈ [0, σ]T and G(t) ≤ 0 for t ∈ [σ, 1]T. Note that φq is increasing, we get that G is decreasing
on [0, 1]T. Now if t ∈ [0, 1]Tk∩Tk is left-scattered, from [4, Theorem 2.3] it follows that

G∇(t) =
G(ρ(t)) −G(t)

ρ(t) − t ≤ 0. (2.29)

If t ∈ [0, 1]Tk∩Tk is left-dense, again, from [4, Theorem 2.3], it follows that

G∇(t) = lim
s→ t

G(t) −G(s)
t − s ≤ 0. (2.30)

Consequently, (Fu)Δ∇(t) = G∇(t) ≤ 0 on [0, 1]Tk∩Tk . This implies that Fu is T-concave on
[0, 1]T. Therefore, F(P) ⊂ P .

Suppose D ⊂ P is a bounded set. Let C > 0 be such that ‖u‖ ≤ C for u ∈ D. For any
u ∈ D, note that |Fu|0 = (Fu)(σ), we have

|(Fu)|0 = (Fu)(σ)

= φq
(
n1
m1

∫σ

ξ

a(s)f(u(s))∇s
)

+
∫σ

0
φq

(∫σ

s

a(τ)f(u(τ))∇τ
)

Δs

≤
[

φq

(
n1
m1

∫σ

0
a(s)∇s

)

+
∫σ

0
φq

(∫σ

s

a(τ)∇τ
)

Δs
]

φq

(

sup
u∈D

f(u)
)

.

(2.31)

In addition, from (2.28)we have

∣
∣(Fu)Δ(t)

∣
∣ = φq

(∫σ

t

a(τ)f(u(τ))∇τ
)

≤ φq
(∫σ

0
a(r)∇r

)

φq

(

sup
u∈D

f(u)
)

(2.32)

for all t ∈ [0, σ]T and

∣
∣(Fu)Δ(t)

∣
∣ =
∣
∣
∣
∣
− φq

(∫ t

σ

a(τ)f(u(τ))∇τ
)∣
∣
∣
∣
≤ φq

(∫1

σ

a(r)∇r
)

φq

(

sup
u∈D

f(u)
)

(2.33)

for all t ∈ [σ, 1]T. This yields that F(D) is bounded in the norm | · |0 or ‖ · ‖. Furthermore, it is
easy to see by the Arzela-Ascoli theorem and Lebesgue dominated convergent theorem that
F is completely continuous. The proof is completed.

3. Main Results

In this section, we consider the existence of twin or triple positive solutions for (1.6). Let
us start by defining that the function u: [0, 1]T → R is called a solution of (1.6) if u is Δ-
differentiable, uΔ: [0, 1]Tk → R is nabla differentiable on [0, 1]Tk∩Tk , u

Δ∇: [0, 1]Tk∩Tk → R is
continuous, and u satisfies the boundary value problem (1.6).
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We first deal with the existence of double positive solutions of (1.6). Let λ, �1 and �2
be as in Lemma 2.2 and define the increasing, nonnegative, and continuous functions γ, θ, α
on P by

θ(x) = max
t∈[0,�1]T

|x(t)|, α(x) = min
t∈[�1, �2]T

x(t),

δ(x) = min
t∈[�1,σ]T

x(t).
(3.1)

Remark 3.1. From the fact that x is T-concave on [0, 1]T, we see that xΔ(t) is decreasing on
[0, 1]Tk . Consequently, we obtain that xΔ(t) ≥ xΔ(σ) = 0 for t ∈ [0, σ]Tk and x

Δ(t) ≤ xΔ(σ) = 0
for t ∈ [σ, 1]Tk . This implies that x(t) is increasing on [0, σ]T and decreasing on [σ, 1]T. Hence,

θ(x) = x
(

�1
)

= δ(x), α(x) = min
{

x
(

�1
)

, x
(

�2
)}

. (3.2)

For notational convenience, we denote S1, S2, andM by

S1 = min
t∈[ξ,η]T

[

φq

(

n1
m1

∫ t

ξ

a(s)∇s
)

+ λφq

(∫ t

�1

a(τ)∇τ
)]

,

S2 = min
t∈[ξ,η]T

[

φq

(

n2
m2

∫η

t

a(s)∇s
)

+ λφq

(∫�2

t

a(τ)∇τ
)]

,

M = φq

(

n1
m1

∫η

ξ

a(s)∇s
)

+ �1φq

(∫η

0
a(τ)∇τ

)

.

(3.3)

In addition, let us impose the following hypotheses on f :

(D1) f(w) > φp(d/S) for S = min{S1,S2} and w ∈ [d, (1/λ)d];

(D2) f(w) < φp(b/M) for w ∈ [0, (1/λ)b];

(D3) f(w) > φp(a/S1) for w ∈ [a, (1/λ)a].

Here constants a, b, d satisfy 0 < a < b < λd and a/S1 < b/M. In the following theorem, we
will work in the Banach space (E, | · |0).

Theorem 3.2. Assume that conditions (H1)-(H2) and (D1)–(D3) hold, then (1.6) has at least two
positive solutions x1, x2 such that

a < min
t∈[�1,σ]T

x1(t) with max
t∈[0,�1]T

x1(t) < b,

b < max
t∈[0,�1]T

x2(t) with min
t∈[�1,�2]T

x2(t) < d.
(3.4)

Proof. To obtain the result of Theorem 3.2, it is sufficient from Lemma 2.3 to show that F has at
least two fixed points. To this purpose, we show that all conditions of TheoremA are fulfilled.
We see that, for each x ∈ P ,

α(x) ≤ x(�1
)

= θ(x) = δ(x), (3.5)
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and from Lemma 2.2 it follows that

|x|0 ≤ 1
λ

min
{

x
(

�1
)

, x
(

�2
)}

=
1
λ
α(x). (3.6)

Obviously, θ(εx) = εθ(x) for ε ∈ [0, 1] and x ∈ ∂P(θ, b). Lemma 2.4 guarantees that F maps
P(α, d) into P . Now we verify that condition (s1) holds. Choose x ∈ ∂P(α, d), that is, α(x) =
mint∈[�1,�2]Tx(t) = min{x(�1), x(�2)} = d. This implies that x(t) ≥ d for all t ∈ [�1, �2]T. From
Lemma 2.2, we have

d ≤ x(t) ≤ 1
λ
d, t ∈ [�1, �2

]

T. (3.7)

As a consequence of (D1),

f(x(t)) > φp
(
d

S
)

, t ∈ [�1, �2
]

T. (3.8)

Since Fx ∈ P , we have

(Fx)
(

�1
)

= φq

(

n1
m1

∫σ

ξ

a(s)f(x(s))∇s
)

+
∫�1

0
φq

(∫σ

s

a(τ)f(x(τ))∇τ
)

Δs

≥ φq
(

n1
m1

∫σ

ξ

a(s)f(x(s))∇s
)

+
∫�1

0
φq

(∫σ

�1

a(τ)f(x(τ))∇τ
)

Δs

>

[

φq

(

n1
m1

∫σ

ξ

a(s)∇s
)

+ �1φq

(∫σ

�1

a(τ)∇τ
)]

d

S

≥
[

φq

(

n1
m1

∫σ

ξ

a(s)∇s
)

+ λφq

(∫σ

�1

a(τ)∇τ
)]

d

S

≥ d,

(Fx)
(

�2
)

= φq

(

n2
m2

∫η

σ

a(s)f(x(s))∇s
)

+
∫1

�2

φq

(∫s

σ

a(τ)f(x(τ))∇τ
)

Δs

≥ φq
(

n2
m2

∫η

σ

a(s)f(x(s))∇s
)

+
∫1

�2

φq

(∫�2

σ

a(τ)f(x(τ))∇τ
)

Δs

>

[

φq

(

n2
m2

∫η

σ

a(s)∇s
)

+
(

1 − �2
)

φq

(∫�2

σ

a(τ)∇τ
)]

d

S

≥
[

φq

(

n2
m2

∫η

σ

a(s)∇s
)

+ λφq

(∫�2

σ

a(τ)∇τ
)]

d

S

≥ d.

(3.9)

This implies that α(x) > d, for all x ∈ ∂P(α, d), that is, (s1) is true.
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Next, we cheek the condition (s2). For x ∈ ∂P(θ, b), we have θ(x) = x(�1) = b.
Lemma 2.2 shows that maxt∈[0,1]T x(t) ≤ (1/λ)x(�1) = (1/λ)b. Therefore,

0 ≤ x(t) ≤ 1
λ
b, t ∈ [0, 1]T. (3.10)

(D2) guarantees f(x(t)) < φp(b/M) for t ∈ [0, 1]T. Thus,

θ(Fx) = (Fx)
(

�1
)

= φq

(

n1
m1

∫σ

ξ

a(s)f(x(s))∇s
)

+
∫�1

0
φq

(∫σ

s

a(τ)f(x(τ))∇τ
)

Δs

≤ φq
(

n1
m1

∫η

ξ

a(s)f(x(s))∇s
)

+
∫�1

0
φq

(∫η

0
a(τ)f(x(τ))∇τ

)

Δs

<

[

φq

(

n1
m1

∫η

ξ

a(s)∇s
)

+ �1φq

(∫η

0
a(τ)∇τ

)]

b

M

= b.

(3.11)

This implies that (s2) holds.
Finally, we verify that the condition (s3) is satisfied. Take x(t) = a/2, for all t ∈

[0, 1]T, then δ(x) = a/2 < a. This yields that P(δ, a)/=∅. Let x ∈ ∂P(δ, a), then δ(x) =
mint∈[�1,σ]T x(t) = x(�1) = a. Again, Lemma 2.2 guarantees that

a ≤ x(t) ≤ 1
λ
a, t ∈ [�1, σ

]

T. (3.12)

From (D3), we have f(x(t)) > φp(a/S1) for t ∈ [�1, σ]T. Hence, we have

δ(Fx) = (Fx)
(

�1
)

= φq

(

n1
m1

∫σ

ξ

a(s)f(x(s))∇s
)

+
∫�1

0
φq

(∫σ

s

a(τ)f(x(τ))∇τ
)

Δs

≥ φq
(

n1
m1

∫σ

ξ

a(s)f(x(s))∇s
)

+
∫�1

0
φq

(∫σ

�1

a(τ)f(x(τ))∇τ
)

Δs

>

[

φq

(

n1
m1

∫σ

ξ

a(s)∇s
)

+ λφq

(∫σ

�1

a(τ)∇τ
)]

a

S1

≥ a.

(3.13)

Consequently, Theorem A implies that F has at least two fixed points which are positive
solutions and satisfy Theorem 3.2. This proof is completed.
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In what follows, we discuss the existence of three positive solutions of (1.6) and we
will work in the Banach space (E, ‖ · ‖). We need the positive numbers S1, S2 and K, M
defined by

K = max
{

φq

(∫η

0
a(s)∇s

)

, φq

(∫1

ξ

a(s)∇s
)}

,

M = φq
(
n1
m1

∫η

ξ

a(s)∇s
)

+ ηφq
(∫η

0
a(τ)∇τ

)

.

(3.14)

We will consider the problem (1.6) under the following assumptions:

(C1) f(w) ≤ φp(d/N)withN = max{M,K} and w ∈ [0, d];

(C2) f(w) > φp(b/S)with S = min{S1,S2} and w ∈ [b, (1/λ)b];

(C3) f(w) < φp(a/M) for w ∈ [0, λa].

Here constants a, b, d satisfy 0 < a < b < (λ/2)d and b/S ≤ d/N.
For x ∈ P , define

γ(x) = ‖x‖, θ(x) = max
t∈[0,1]T

|x(t)|

α(x) = min
t∈[�1, �2]T

x(t), ψ(x) = max
t∈[�1,�2]T

x(t),
(3.15)

where λ, �1 and �2 are given as in Lemma 2.2.

Remark 3.3. Clearly, γ and θ are nonnegative continuous convex functions, α is the
nonnegative continuous concave function and ψ is nonnegative continuous function on the
cone P . In view of Remark 3.1, we see clearly that α(x) ≤ ψ(x) = x(σ). Hence, condition (2.8)
is satisfied with h = 1. We also have that ψ(πx) = πψ(x) for π ∈ [0, 1] and x ∈ P . Remark 3.1
shows that α(x) = min{x(�1), x(�2)}.

Theorem 3.4. If the conditions (H1)-(H2) and (C1)–(C3) hold, then (1.6) has at least three positive
solutions x1, x2, and x3 satisfying

∥
∥xi
∥
∥ ≤ d for i = 1, 2, 3;

b < min
{∣
∣x1(t)

∣
∣ : t ∈ [�1, �2

]

T

}

;

a < max
{∣
∣x2(t)

∣
∣ : t ∈ [�1, �2

]

T

}

with min
{∣
∣x2(t)

∣
∣ : t ∈ [�1, �2

]

T

}

< b;

max
{∣
∣x3(t)

∣
∣ : t ∈ [0, 1]T

}

< a.

(3.16)

Proof. To obtain the result of Theorem 3.4, it is sufficient from Lemma 2.3 to show that F has
at least three fixed points. To this purpose, We show that all conditions of Theorem B are
fulfilled. we will divide this proof into three steps.
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Step 1. We will prove that F maps P(γ, d) into itself. In fact, for each u ∈ P(γ, d), from γ(u) =
‖u‖ ≤ d and (C1), it follows that

f(u(r)) ≤ φp
(
d

N

)

for r ∈ [0, 1]T. (3.17)

Applying this, together with Fu ∈ P , we have the following estimate:

max
t∈[0,1]T

|(Fu)(t)| = (Fu)(σ)

= φq

(

n1
m1

∫σ

ξ

a(s)f(u(s))∇s
)

+
∫σ

0
φq

(∫σ

s

a(τ)f(u(τ))∇τ
)

Δs

≤ φq
(

n1
m1

∫σ

ξ

a(s)f(u(s))∇s
)

+
∫σ

0
φq

(∫σ

0
a(τ)f(u(τ))∇τ

)

Δs

≤
[

φq

(

n1
m1

∫η

ξ

a(s)∇s
)

+ ηφq

(∫η

0
a(τ)∇τ

)]

d

N

≤ d.

(3.18)

From (2.28), we also have

∣
∣(Fu)Δ(t)

∣
∣ = φq

(∫σ

t

a(τ)f(u(τ))∇τ
)

≤ φq
(∫η

0
a(r)∇r

)
d

N
≤ d, (3.19)

for all t ∈ [0, σ]T and

∣
∣(Fu)Δ(t)

∣
∣ =
∣
∣
∣
∣
− φq

(∫ t

σ

a(τ)f(u(τ))∇τ
)∣
∣
∣
∣
≤ φq

(∫1

ξ

a(r)∇r
)
d

N
≤ d, (3.20)

for all t ∈ [σ, 1]T. Hence, γ(Fu) = ‖Fu‖ ≤ d. By Lemma 2.4, we deduce that F maps P(γ, d)
into itself.

Step 2. To check condition (h1), we choose u(t) = (1/λ)b, t ∈ [0, 1]T. It is easy to see that u(t) =
(1/λ)b ∈ P(γ, θ, α, b, (1/λ)b, d) and α(u) = (1/λ)b > b, that is, {u ∈ P(γ, θ, α, b, (1/λ)b, d) :
α(u) > b}/=∅. For any u ∈ P(γ, θ, α, b, (1/λ)b, d), then b ≤ u(t) ≤ (1/λ)b for all t ∈ [�1, �2]T.
Assumption (C2) guarantees

f(u(r)) > φp
(
b

S
)

∀r ∈ [�1, �2
]

T. (3.21)
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Since Fu ∈ P , we have

(Fu)
(

�1
)

= φq

(

n1
m1

∫σ

ξ

a(s)f(u(s))∇s
)

+
∫�1

0
φq

(∫σ

s

a(τ)f(u(τ))∇τ
)

Δs

≥ φq
(

n1
m1

∫σ

ξ

a(s)f(u(s))∇s
)

+
∫�1

0
φq

(∫σ

�1

a(τ)f(u(τ))∇τ
)

Δs

>

[

φq

(

n1
m1

∫σ

ξ

a(s)∇s
)

+ �1φq

(∫σ

�1

a(τ)∇τ
)]

d

S

≥
[

φq

(

n1
m1

∫σ

ξ

a(s)∇s
)

+ λφq

(∫σ

�1

a(τ)∇τ
)]

b

S

≥ b,

(Fu)
(

�2
)

= φq

(

n2
m2

∫η

σ

a(s)f(u(s))∇s
)

+
∫1

�2

φq

(∫ s

σ

a(τ)f(u(τ))∇τ
)

Δs

≥ φq
(

n2
m2

∫η

σ

a(s)f(u(s))∇s
)

+
∫1

�2

φq

(∫�2

σ

a(τ)f(u(τ))∇τ
)

Δs

>

[

φq

(

n2
m2

∫η

σ

a(s)∇s
)

+
(

1 − �2
)

φq

(∫�2

σ

a(τ)∇τ
)]

d

S

≥
[

φq

(

n2
m2

∫η

σ

a(s)∇s
)

+ λφq

(∫�2

σ

a(τ)∇τ
)]

b

S

≥ b.

(3.22)

By Remark 3.3, we infer that α(F(u)) > b for all u ∈ P(γ, θ, α, b, (1/λ)b, d). This shows that
condition (h1) is true.

Step 3. It remains to prove (in virtue of Theorem B) that conditions (h2) and (h3) hold.
We first check (h2). For any u ∈ P(γ, α, b, d)with θ(Fu) > (1/λ)b, from Lemma 2.2, we

have

(Fu)
(

�1
) ≥ λθ(Fu) > λ 1

λ
b = b,

(Fu)
(

�2
) ≥ λθ(Fu) > λ 1

λ
b = b.

(3.23)

So, by means of Remark 3.3, we have α(Fu) > b. This implies that (h2) is true.

Finally, we check condition (h3). Clearly, as ψ(0) = 0 < a, we have 0/∈R(γ, ψ, a, d).
Suppose that u ∈ R(γ, ψ, a, d) with ψ(u) = maxt∈[0,1]T u(t) = u(σ) = a. Then, in virtue of
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Lemma 2.2, we have

max
t∈[0,1]T

|u(t)| ≤ λu(σ) = λa. (3.24)

This yields (note that u is nonnegative)

0 ≤ u(t) ≤ λa for t ∈ [0, 1]T. (3.25)

By assumption (C3), we have

f(u(r)) < φp
(
a

M
)

for r ∈ [0, 1]T. (3.26)

Thereby

ψ(Fu) = (Fu)(σ)

= φq

(

n1
m1

∫σ

ξ

a(s)f(u(s))∇s
)

+
∫σ

0
φq

(∫σ

s

a(τ)f(u(τ))∇τ
)

Δs

≤ φq
(

n1
m1

∫σ

ξ

a(s)f(u(s))∇s
)

+
∫σ

0
φq

(∫σ

0
a(τ)f(u(τ))∇τ

)

Δs

<

[

φq

(

n1
m1

∫η

ξ

a(s)∇s
)

+ ηφq

(∫η

0
a(τ)∇τ

)]

a

M

= a,

(3.27)

which implies ψ(Fu) < a. So, condition (h3) holds.
Conclusively, we obtain that (1.6) has at least three solutions x1, x2, and x3 satisfying

Theorem 3.4. The proof is completed.

4. Two Examples

Example 4.1. Let T = {1−(1/2)z : z ∈ N}∪{1/16, 1/8, 1/4, 1} (N stands for the natural number
set). If function f : R → R

+ is defined by

f(x) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + x2, x ≤
√
2 − 1
8

,

1 +

(

x −
√
2 + 7
8

)2

,

√
2 − 1
8

< x ≤ 8,

1 +

(

x −
√
2 + 7
8

)2

+ 2782(x − 8), x > 8,

(4.1)
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then the condition (H1) holds. Taking λ = 1/16, ξ = 1/8, σ = 1/4, η = 1/2, p = 2, m1 = n1 =
m2 = n2 = 1, and A(t) = (1/2)

√
t, then

a(t) = A∇(t) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1

2(
√

ρ(t) +
√
t)
, ρ(t) < t,

1

4
√
t
, ρ(t) = t

(4.2)

satisfying condition (H2). Clearly,

S1 = min
t∈[1/8,1/2]

[

φq

(∫ t

1/8
a(s)∇s

)

+
1
16
φq

(∫ t

1/16
a(τ)∇τ

)]

=
1

64
√
2
− 1
128

,

S2 = min
t∈[1/8,1/2]

[

φq

(∫1/2

t

a(s)∇s
)

+
1
16
φq

(∫15/16

t

a(τ)∇τ
)]

=
√
15

128
− 1

32
√
2
,

M = φq

(∫1/2

1/8
a(s)∇s

)

+
1
16
φq

(∫1/2

0
a(s)∇s

)

=
9

32
√
2
.

(4.3)

Now we choose a = (
√
2 − 1)/128, b = 1/2, d = 9, then f(x) satisfies

f(x) > φp
(
d

S
)

=
1152√
2 − 1

, x ∈ [9, 144];

f(x) < φp
(
b

M

)

=
16
√
2

9
, x ∈ [0, 8];

f(x) > φp
(
a

S1

)

= 1, x ∈
[√

2 − 1
128

,

√
2 − 1
8

]

.

(4.4)

Consequently, all assumptions of Theorem 3.2 hold. Hence, by Theorem 3.2, the boundary
value problems (1.6) has at least two positive solutions x1 and x2 satisfying

√
2 − 1
128

< min
t∈[1/16,1/4]T

x1(t) with max
t∈[0,1/16]T

x1(t) <
1
2
,

1
2
< max

t∈[0,1/16]T
x2(t) with min

t∈[1/16,15/16]T
x2(t) < 9.

(4.5)
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Example 4.2. Let the set T, the functions a, and all parameters be the same as those in
Example 4.1. Then we have

K = max

{

φq

(∫1/2

0
a(s)∇s

)

, φq

(∫1

1/8
a(s)∇s

)}

=
√
2
4
,

M = φq

(∫1/2

1/8
a(s)∇s

)

+
1
2
φq

(∫1/2

0
a(τ)∇τ

)

=
√
2
4
.

(4.6)

Consider the function

f(x) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
x, 0 ≤ x ≤ 1

16
,

1
4
+
256(16x − 1)2

961
(√

2 − 1
) ,

1
16

< x ≤ 2,

(x − 2)2

95000
+

256√
2 − 1

+
1
4
, x > 2.

(4.7)

Let us choose a = 1, b = 2, d = 219, then it is easy to check that conditions (C1)–(C3) hold.
Consequently, all assumptions of Theorem 3.4 hold and so, by Theorem 3.4, (1.6) has at least
three positive solutions x1, x2, and x3 satisfying, for any given τ ∈ (0, 3/4),

∥
∥xi
∥
∥ ≤ 219 for i = 1, 2, 3;

2 < min
{
∣
∣x1(t)

∣
∣ : t ∈

[
1
16
,
15
16

]

T

}

;

1 < min
{
∣
∣x2(t)

∣
∣ : t ∈

[
1
16
,
15
16

]

T

}

with min
{
∣
∣x2(t)

∣
∣ : t ∈

[
1
16
,
15
16

]

T

}

< 2;

min
{∣
∣x3(t)

∣
∣ : t ∈ [0, 1]T

}

< 1.

(4.8)
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Birkhäuser, Boston, Mass, USA, 2001.

[3] V. Lakshmikantham, S. Sivasundaram, and B. Kaymakcalan, Dynamic Systems on Measure Chains, vol.
370 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands,
1996.

[4] F. M. Atici and G. Sh. Guseinov, “On Green’s functions and positive solutions for boundary value
problems on time scales,” Journal of Computational and Applied Mathematics, vol. 141, no. 1-2, pp. 75–99,
2002.



Shihuang Hong 19

[5] R. P. Agarwal and M. Bohner, “Basic calculus on time scales and some of its applications,” Results in
Mathematics, vol. 35, no. 1-2, pp. 3–22, 1999.
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