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1. Introduction

The nonlinear delay differential equation

h′(t) = −αh(t) + β

1 + hn(t − τ) , t ≥ 0, (1.1)

where α, β, τ > 0, n ∈ N, has been proposed by Mackey and Glass [1] as an appropriate
model of hematopoiesis that describes the process of production of all types of blood cells
generated by a remarkable self-regulated system that is responsive to the demands put upon
it. In medical terms, h(t) denotes the density of mature cells in blood circulation at time t
and τ is the time delay between the production of immature cells in the bone marrow and
their maturation for release in circulating bloodstream. It is assumed that the cells are lost
from the circulation at a rate α, and the flux of the cells into the circulation from the stem cell
compartment depends on the density of mature cells at the previous time t − τ .
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In the real-world phenomena, the parameters can be nonlinear functions. The variation
of the environment, however, plays an important role in many biological and ecological
dynamical systems. In particular, the effects of a periodically varying environment are
important for evolutionary theory as the selective forces on systems in a fluctuating
environment differ from those in a stable environment. Thus, the assumption of periodicity
of the parameters are a way of incorporating the periodicity of the environment. It has been
suggested by Nicholson [2] that any periodical change of climate tends to impose its period
upon oscillations of internal origin or to cause such oscillations to have a harmonic relation
to periodic climatic changes.

On the other hand, some dynamical systems which describe real phenomena are
characterized by the fact that at certain moments in their evolution, they undergo rapid
changes. Most notably, this takes place due to certain seasonal effects such as weather,
resource availability, food supplies, and mating habits. These phenomena are best described
by the so-called impulsive differential equations [3]. Thus, it is more realistic to consider the
case of combined effects: periodicity of the environment, time delays and impulse actions.
Namely, an equation of the form

h′(t) = −α(t)h(t) + β(t)
1 + hn(t − τ) , t /= θk,

Δh(θk) := h
(
θ+k

) − h(θ−k
)
= γkh

(
θ−k

)
+ δk, k ∈ N,

(1.2)

holds, where θk represent the instants at which the density suffers an increment of δk units.
The density of mature cells in blood circulation decreases at prescribed instants θk by some
medication and it is proportional to the density at that time (θ−k).

Theory of impulsive delay differential equations is now being recognized not only
to be richer than the corresponding theory of ordinary differential equations but also to
represent a more natural framework for mathematical modeling of some relevant real-world
phenomena. This justifies the intensive investigation of this type of equations in the recent
years. We refer the readers to the references [4–13]. The qualitative properties for model
of hematopoiesis have been extensively investigated in literature, see [14–22]. In the recent
paper [23], in particular, sufficient conditions have been established for the existence of
periodic solutions, persistence, global attractivity, and oscillation of solutions of equation of
form (1.2) improving and complementing some previously obtained ones.

One can easily see, nevertheless, that most of the equations considered in the
above-mentioned papers are under periodic assumptions. In this paper, we consider the
generalization to almost periodicity. Almost periodic functions are functions that are periodic
up to a small error. Its study was initiated by Bohr in [24]. To the best of the authors’
knowledge, there are a few published papers considering the notion of almost periodicity of
delay differential equations with or without impulses, see [25–36]. Motivated by this, the aim
of this paper is to establish sufficient conditions for the existence and exponential stability
of positive almost periodic solution of nonlinear impulsive delay model of hematopoiesis
of form (1.2). Our approach is based on using the contraction mapping principle as well as
applying Gronwall-Bellman’s inequality.

This paper is organized as follows. In Section 2, we present some general concepts
and results that will be used later. In Section 3, we state and prove our main results on the
existence of a unique positive almost periodic solution and then we show that it is stable.



Boundary Value Problems 3

2. Some Essential Definitions and Lemmas

Let {θk}k∈N
be a fixed sequence such that σ ≤ θ1 < θ2 < . . . < θk < θk+1 < . . ., where

limk→∞θk = ∞ and σ is a positive number.
Denote by PLC([σ − τ, σ],R+) the space of all piecewise left continuous functions ϕ :

[σ − τ, σ] → R
+ with points of discontinuity of the first kind at t = θk, k ∈ N. By a solution of

(1.2), we mean a function h(t) defined on [σ − τ,∞) and satisfying (1.2) for t ≥ σ. For a given
initial function ξ ∈ PLC([σ − τ, σ],R+), it is well known [37] that (1.2) has a unique solution
h(t) = h(t;σ, ξ) defined on [σ − τ,∞) and satisfying the initial condition:

h(t;σ, ξ) = ξ(t), σ − τ ≤ t ≤ σ. (2.1)

As we are interested in solutions of biomedical significance, we restrict our attention to
positive ones.

To say that impulsive delay differential equations have positive almost periodic
solutions, one needs to adopt the following definitions of almost periodicity for such type
of equations.

The definitions are borrowed from the monograph [3].

Definition 2.1. The set of sequences {θp
k
}, θp

k
= θk+p − θk, k, p ∈ N, is said to be uniformly

almost periodic if for arbitrary ε > 0 there exists a relatively dense set of ε-almost periods
common for any sequences.

Definition 2.2. A function ϕ ∈ PLC(R+,R+) is said to be almost periodic if the following
conditions hold:

(a1) the set of sequences {θpk} is uniformly almost periodic;

(a2) for any ε > 0, there exists a real number δ = δ(ε) > 0 such that if the points t′

and t′′ belong to the same interval of continuity of ϕ(t) and satisfy the inequality
|t′ − t′′| < δ, then |ϕ(t′) − ϕ(t′′)| < ε;

(a3) for any ε > 0, there exists a relatively dense set T of ε-almost periods such that if
ω ∈ T , then |ϕ(t + ω) − ϕ(t)| < ε for all t ∈ R

+ satisfying the condition |t − θk| > ε,
k ∈ N. The elements of T are called ε-almost periods.

Related to (1.2), we consider the linear equation:

h′(t) = −α(t)h(t), t /= θk,

Δh(θk) = γkh(θk), k ∈ N.
(2.2)

It is well known [3] that (2.2) with an initial condition h(t0) = h0 has a unique solution
represented by the form

h(t; t0, h0) = H(t, t0)h0, t0, h0 ∈ R
+, (2.3)
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whereH is the Cauchy matrix of (2.2) defined as follows:

H(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

e−
∫ t
sα(r)dr , θk−1 < s ≤ t ≤ θk,

k∏

i=m

(
1 + γi

)
e−

∫ t
sα(r)dr , θm−1 < s ≤ θm ≤ θk < t ≤ θk+1.

(2.4)

Throughout this paper, we introduce the following conditions (C) for (1.2):

(C1) the function α ∈ C[R+,R+] is almost periodic in the sense of Bohr and there exists a
constant μ such that α(t) ≥ μ > 0;

(C2) the sequence {γk} is almost periodic and −1 ≤ γk ≤ 0, k ∈ N;

(C3) the set of sequences {θp
k
} is uniformly almost periodic and there exists η > 0 such

that infk∈N θ
1
k = η > 0;

(C4) the function β(t) ∈ C[R+,R+] is almost periodic in the sense of Bohr and
supt∈R

|β(t)| < ν where ν > 0 and β(0) = 0;

(C5) the sequence {δk} is almost periodic and supk∈N
|δk| < κ, k ∈ N.

The following results prove helpful.

Lemma 2.3 (see [3]). Let conditions (C) hold. Then for each ε > 0, there exists ε1, 0 < ε1 < ε,
relatively dense sets T of positive real numbers and Q of natural numbers such that the following
relations are fulfilled:

(b1) |α(t +ω) − α(t)| < ε, t ∈ R
+, ω ∈ T ;

(b2) |β(t +ω) − β(t)| < ε, t ∈ R
+, ω ∈ T ;

(b3) |γk+p − γk| < ε, p ∈ Q, k ∈ N;

(b4) |δk+p − δk| < ε, p ∈ Q, k ∈ N;

(b5) |θpk −ω| < ε1, ω ∈ T , p ∈ Q, k ∈ N.

Lemma 2.4 (see [3]). Let condition (C3) be fulfilled. Then for each j > 0, there exists a positive
integer N such that on each interval of length j, there is no more than N elements of the sequence
{θk}, that is,

i(s, t) ≤N(t − s) +N, (2.5)

where i(s, t) is the number of the points θk in the interval (s, t).

The following lemmas provide a bound for the Cauchy matrixH(t, s) of (2.2).

Lemma 2.5. Let conditions (C1)–(C3) be satisfied. Then for the Cauchy matrixH(t, s) of (2.2), there
exists a positive constant μ such that

H(t, s) ≤ e−μ(t−s), t ≥ s, t, s ∈ R
+. (2.6)
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Proof. In virtue of condition (C2), we deduce that the sequence {γk} is bounded. Further, it
follows that 1 + γk ≤ 1. Thus, from (2.4) and condition (C1), we get

H(t, s) ≤ e−μ(t−s), t ≥ s, t, s ∈ R
+. (2.7)

Lemma 2.6. Let conditions (C1)–(C3) be satisfied. Then for each ε > 0, t ∈ R
+, s ∈ R

+, t ≥
s, |t − θk| > ε, |s − θk| > ε, k ∈ N, there exists a relatively dense set T of ε-almost periods of the
function α(t) and a positive constantM such that for ω ∈ T, it follows that

|H(t +ω, s +ω) −H(t, s)| ≤ εMe−(μ/2)(t−s). (2.8)

Proof. Consider the sets T and Q defined as in Lemma 2.3. Let ω ∈ T . Since the matrixH(t +
ω, s +ω) is a solution of (2.2), we have the following:

∂

∂t
H = α(t)H(t +ω, s +ω) + [α(t) − α(t +ω)]H(t +ω, s +ω), t /= θ′k,

ΔH
(
θ′k, s

)
= γkH(θk +ω, s +ω) +

(
γk − γk+p

)
H
(
θ′k +ω, s +ω

)
,

(2.9)

where θ′k = θk − p, p ∈ Q, k ∈ N. Then,

H(t +ω, s +ω) = H(t, s) +
∫ t

s

H(t, r)[α(r) − α(r +ω)]H(r +ω, s +ω)dr

+
∑

s<θ′
k
<t

H
(
t, θ′k + 0

)[
γk+p − γk

]
H
(
θ′k +ω, s +ω

)
.

(2.10)

In view of Lemma 2.3, it follows that if |t − θ′
k
| > ε, then θ′

k+p < t + ω < θ′
k+p+1. Further, we

obtain

|H(t +ω, s +ω) −H(t, s)| ≤ ε(t − s)e−μ(t−s) + εi(s, t)e−μ(t−s), (2.11)

for |t − θ′k| > ε, |s − θ′k| > ε where i(s, t) is the number of the points θ′k in the interval (s, t).
From Lemma 2.4, (2.11) becomes

|H(t +ω, s +ω) −H(t, s)|

≤ ε
[
2
μ

{μ
2
(t − s)e−(μ/2)(t−s)

}
+N

2
μ

{μ
2
(t − s)e−(μ/2)(t−s)

}
+Ne−(μ/2)(t−s)

]
e−(μ/2)(t−s).

(2.12)

By using the inequalities e−(μ/2)(t−s) < 1 and (μ/2)(t − s)e−(μ/2)(t−s) ≤ 1, we get

|H(t +ω, s +ω) −H(t, s)| ≤ εM, (2.13)
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where

M =
2
μ

(
1 +N +

μ

2
N
)
. (2.14)

3. The Main Result

Throughout this section, it is assumed that

ν < μ. (3.1)

Theorem 3.1. Let conditions (C) hold. Then there exists a unique positive almost periodic solution
h(t) of (1.2).

Proof. Let D ⊂ PLC(R+,R+) denote the set of all positive almost periodic functions ϕ(t) with

‖ϕ‖ ≤ K, (3.2)

where

∥∥ϕ
∥∥ = sup

t∈R

∣∣ϕ(t)
∣∣, K :=

1
μ
ν +

2
1 − e−μ κN. (3.3)

Define an operator F in D by the formula

[
Fϕ

]
(t) =

∫ t

−∞
H(t, s)β(s)

1
1 + ϕn(s − τ)ds +

∑

θk<t

H(t, θk)δk. (3.4)

One can easily check that Fϕ is a solution of (1.2). In the following, we first show that F maps
the set D into itself. In view of relation (2.6) and the inequality

∑

θk

e−μ(t−θk) =
∞∑

m=0

∑

t−m−1≤θk<t−m
e−μ(t−θk) ≤ 2N

∞∑

m=0

e−μm = 2N
1

1 − e−μ , (3.5)

we obtain that

∥∥Fϕ
∥∥ = sup

t∈R+

{∫ t

−∞
H(t, s)

∣∣β(s)
∣∣ 1
1 + ϕn(s − τ)ds +

∑

θk<t

H(t, θk)|δk|
}

<
1
μ
ν +

2
1 − e−μ κN = K,

(3.6)

for arbitrary ϕ ∈ D.
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Now, we shall prove that Fϕ is almost periodic. Indeed, let ω ∈ T, p ∈ Q where the
sets T and Q are defined as in Lemma 2.3, it follows that

∥
∥Fϕ(t +ω) − Fϕ(t)∥∥

≤ sup
t∈R+

{∫ t

−∞
|H(t +ω, s +ω) −H(t, s)|∣∣β(s +ω)∣∣ 1

1 + ϕn(s +ω − τ)ds

+
∫ t

−∞
H(t, s)

∣
∣
∣
∣
∣
∣β(s +ω)

∣
∣ 1
1 + ϕn(s +ω − τ) −

∣
∣β(s)

∣
∣ 1
1 + ϕn(s − τ)

∣
∣
∣
∣ds

+
∑

θk<t

∣
∣H

(
t +ω, θk+p

) −H(t, θk)
∣
∣
∣
∣δk+p

∣
∣ +

∑

θk<t

H(t, θk)
∣
∣δk+p − δk

∣
∣
}

(3.7)

or

∥∥Fϕ(t +ω) − Fϕ(t)∥∥

≤ sup
t∈R+

{∫ t

−∞
|H(t +ω, s +ω) −H(t, s)|∣∣β(s +ω)∣∣ 1

1 + ϕn(s +ω − τ)ds

+
∫ t

−∞
H(t, s)

{∣∣β(s +ω) − β(s)∣∣ 1
1 + ϕn(s +ω − τ)

+
∣∣β(s)

∣∣
∣∣∣∣

1
1 + ϕn(s +ω − τ) −

1
1 + ϕn(s − τ)

∣∣∣∣

}
ds

+
∑

θk<t

∣∣H
(
t +ω, θk+p

) −H(t, θk)
∣∣∣∣δk+p

∣∣ +
∑

θk<t

H(t, θk)
∣∣δk+p − δk

∣∣
}

≤ εC1,

(3.8)

where

C1 =
2
μ
νM +

1
μ
(1 + ν) + κM

2N

1 − e−(μ/2)
+

2N
1 − e−μ . (3.9)

In virtue of (3.6) and (3.8), we deduce that Fϕ ∈ D. Therefore, F is a self-mapping from D to
D.

Finally, we prove that F is a contraction mapping on D. Let ϕ, ψ ∈ D. From (3.4), we
have

∥∥Fϕ − Fψ∥∥ ≤
∫ t

−∞
H(t, s)

∣∣β(s)
∣∣
∣∣∣∣

1
1 + ϕn(s − τ) −

1
1 + ψn(s − τ)

∣∣∣∣ds

≤ 1
μ
ν
∥∥ϕ − ψ∥∥.

(3.10)



8 Boundary Value Problems

The assumption that ν < μ implies that F is a contraction mapping on D. Then there exists
a unique fixed point h ∈ D such that Fh = h. This implies that (1.2) has a unique positive
almost periodic solution h(t).

Theorem 3.2. Let conditions (C) hold. Then the unique positive almost periodic solution h(t) of (1.2)
is exponentially stable.

Proof. Let g(t) be an arbitrary solution of (1.2) supplemented with the initial condition

g(t) = ζ(t), ζ ∈ PLC([σ − τ, σ],R+). (3.11)

Let h(t) be the unique positive almost periodic solution of (1.2) with the initial condition
(2.1). It follows that

h(t) − g(t) = H(t, σ)(ξ − ζ) +
∫ t

σ

H(t, s)β(s)
(

1
1 + hn(s − τ) −

1
1 + gn(s − τ)

)
ds. (3.12)

Taking the norm of both sides, we get

∥∥h(t) − g(t)∥∥ ≤ e−μ(t−σ)‖ξ − ζ‖ +
∫ t

σ

e−μ(t−s)ν
∥∥h(s) − g(s)∥∥ds. (3.13)

Setting u(t) = ‖h(t) − g(t)‖eμt and applying Gronwall-Bellman’s inequality [38] we end up
with the expression

∥∥h(t) − g(t)∥∥ ≤ ‖ξ − ζ‖e−(μ−ν)(t−σ). (3.14)

The assumption that ν < μ implies that the unique positive almost periodic solution of (1.2)
is exponentially stable.

Corollary 3.3. Let conditions (C) hold. If supt∈R+ β(t) < supt∈R+ α(t) then there exists a unique
positive almost periodic exponential stable solution h(t) of

h′(t) = −α(t)h(t) + β(t)
1 + hn(t − τ) , t /= θk,

Δh(θk) = γkh(θk), k ∈ N.

(3.15)
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