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1. Introduction

Let Ω ⊂ RN(N ≥ 1) be an open bounded subset with C2 boundary ∂Ω, and let X = L2(Ω) be
the space square integrable functions equipped with its natural ‖ · ‖L2(Ω) topology. Of concern
is the study of pseudo almost automorphic solutions to the N-dimensional heat equation
with divergence terms

∂

∂t

[
ϕ + F

(
t, B̂ϕ

)]
= Δϕ +G

(
t, B̂ϕ

)
, t ∈ R, x ∈ Ω

ϕ(t, x) = 0, t ∈ R, x ∈ ∂Ω,

(1.1)

where the symbols B̂ and Δ stand, respectively, for the first- and second-order differential
operators defined by

B̂ :=
N∑
j=1

∂

∂xj
, Δ =

N∑
j=1

∂2

∂x2
j

, (1.2)

and the coefficients F,G : R ×H1
0(Ω) �→ L2(Ω) are Sp-pseudo almost automorphic.
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To analyze (1.1), our strategy will consist of studying the existence of pseudo almost
automorphic solutions to the class of partial hyperbolic differential equations

d

dt

[
u(t) + f(t, Bu(t))

]
= Au(t) + g(t, Cu(t)), t ∈ R, (1.3)

where A : D(A) ⊂ X �→ X is a sectorial linear operator on a Banach space X whose
corresponding analytic semigroup (T(t))t≥0 is hyperbolic; that is, σ(A) ∩ iR = ∅, the operator
B,C are arbitrary linear (possibly unbounded) operators on X, and f, g are Sp-pseudo almost
automorphic for p > 1 and jointly continuous functions.

Indeed, letting Aϕ = Δϕ for all ϕ ∈ D(A) = H1
0(Ω) ∩ H2(Ω), B̂ϕ = Bϕ = Cϕ for all

ϕ ∈ H1
0(Ω), and f = F and g = G, one can readily see that (1.1) is a particular case of (1.3).
The concept of pseudo almost automorphy, which is the central tool here, was

recently introduced in literature by Liang et al. [1, 2]. The pseudo almost automorphy is a
generalization of both the classical almost automorphy due to Bochner [3] and that of pseudo
almost periodicity due to Zhang [4–6]. It has recently generated several developments and
extensions. For the most recent developments, we refer the reader to [1, 2, 7–9]. More recently,
in Diagana [7], the concept of Sp-pseudo almost automorphy (or Stepanov-like pseudo
almost automorphy) was introduced. It should be mentioned that the Sp-pseudo almost
automorphy is a natural generalization of the notion of pseudo almost automorphy.

In this paper, we will make extensive use of the concept of Sp-pseudo almost
automorphy combined with the techniques of hyperbolic semigroups to study the existence
of pseudo almost automorphic solutions to the class of partial hyperbolic differential
equations appearing in (1.3) and then to the N-dimensional heat equation (1.1).

In this paper, as in the recent papers [10–12], we consider a general intermediate space
Xα between D(A) and X. In contrast with the fractional power spaces considered in some
recent papers by Diagana [13], the interpolation andHölder spaces, for instance, depend only
on D(A) and X and can be explicitly expressed in many concrete cases. Literature related to
those intermediate spaces is very extensive; in particular, we refer the reader to the excellent
book by Lunardi [14], which contains a comprehensive presentation on this topic and related
issues.

Existence results related to pseudo almost periodic and almost automorphic solutions
to the partial hyperbolic differential equations of the form (1.3) have recently been established
in [12, 15–18], respectively. Though to the best of our knowledge, the existence of pseudo
almost automorphic solutions to the heat equation (1.1) in the case when the coefficients f, g
are Sp-pseudo almost automorphic is an untreated original problem and constitutes the main
motivation of the present paper.

2. Preliminaries

Let (X, ‖ · ‖), (Y, ‖ · ‖Y) be two Banach spaces. Let BC(R,X) (resp., BC(R × Y,X)) denote the
collection of all X-valued bounded continuous functions (resp., the class of jointly bounded
continuous functions F : R × Y �→ X). The space BC(R,X) equipped with the sup norm ‖ · ‖∞
is a Banach space. Furthermore, C(R,Y) (resp., C(R × Y,X)) denotes the class of continuous
functions from R into Y (resp., the class of jointly continuous functions F : R × Y �→ X).
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The notation L(X,Y) stands for the Banach space of bounded linear operators from X
intoY equippedwith its natural topology; in particular, this is simply denoted L(X)whenever
X = Y.

Definition 2.1 (see [19]). The Bochner transform fb(t, s), t ∈ R, s ∈ [0, 1] of a function f : R �→
X is defined by fb(t, s) := f(t + s).

Remark 2.2. (i) A function ϕ(t, s), t ∈ R, s ∈ [0, 1], is the Bochner transform of a certain
function f , ϕ(t, s) = fb(t, s), if and only if ϕ(t + τ, s − τ) = ϕ(s, t) for all t ∈ R, s ∈ [0, 1] and
τ ∈ [s − 1, s].

(ii) Note that if f = h + ϕ, then fb = hb + ϕb. Moreover, (λf)b = λfb for each scalar λ.

Definition 2.3. The Bochner transform Fb(t, s, u), t ∈ R, s ∈ [0, 1], u ∈ X of a function F(t, u)
on R × X, with values in X, is defined by Fb(t, s, u) := F(t + s, u) for each u ∈ X.

Definition 2.4. Let p ∈ [1,∞). The space BSp(X) of all Stepanov bounded functions, with the
exponent p, consists of all measurable functions f : R �→ X such that fb ∈ L∞(R;Lp((0, 1),X)).
This is a Banach space with the norm

∥∥f∥∥Sp :=
∥∥∥fb
∥∥∥
L∞(R,Lp)

= sup
t∈R

(∫ t+1

t

∥∥f(τ)∥∥p dτ

)1/p

. (2.1)

2.1. Sp-Pseudo Almost Periodicity

Definition 2.5. A function f ∈ C(R,X) is called (Bohr) almost periodic if for each ε > 0 there
exists l(ε) > 0 such that every interval of length l(ε) contains a number τ with the property
that

∥∥f(t + τ) − f(t)
∥∥ < ε for each t ∈ R. (2.2)

The number τ above is called an ε-translation number of f , and the collection of all
such functions will be denoted AP(X).

Definition 2.6. A function F ∈ C(R × Y,X) is called (Bohr) almost periodic in t ∈ R uniformly
in y ∈ K whereK ⊂ Y is any compact subsetK ⊂ Y if for each ε > 0 there exists l(ε) such that
every interval of length l(ε) contains a number τ with the property that

∥∥F(t + τ, y
) − F

(
t, y
)∥∥ < ε for each t ∈ R, y ∈ K. (2.3)

The collection of those functions is denoted by AP(R × Y).

Define the classes of functions PAP0(X) and PAP0(R × X), respectively, as follows:

PAP0(X) :=

{
u ∈ BC(R,X) : lim

T →∞
1
2T

∫T

−T
‖u(s)‖ds = 0

}
, (2.4)
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and PAP0(R × Y) is the collection of all functions F ∈ BC(R × Y,X) such that

lim
T →∞

1
2T

∫T

−T
‖F(t, u)‖dt = 0 (2.5)

uniformly in u ∈ Y.

Definition 2.7 (see [13]). A function f ∈ BC(R,X) is called pseudo almost periodic if it can be
expressed as f = h + ϕ, where h ∈ AP(X) and ϕ ∈ PAP0(X). The collection of such functions
will be denoted by PAP(X).

Definition 2.8 (see [13]). A function F ∈ C(R × Y,X) is said to be pseudo almost periodic if it
can be expressed as F = G +Φ,where G ∈ AP(R × Y) and φ ∈ PAP0(R × Y). The collection of
such functions will be denoted by PAP(R × Y).

Define AA0(R × Y) as the collection of all functions F ∈ BC(R × Y,X) such that

lim
T →∞

1
2T

∫T

−T
‖F(t, u)‖dt = 0 (2.6)

uniformly in u ∈ K, where K ⊂ Y is any bounded subset.
Obviously,

PAP0(R × Y) ⊂ AA0(R × Y). (2.7)

A weaker version of Definition 2.8 is the following.

Definition 2.9. A function F ∈ C(R × Y,X) is said to be B-pseudo almost periodic if it can be
expressed as F = G + Φ, where G ∈ AP(R × Y) and φ ∈ AA0(R × Y). The collection of such
functions will be denoted by BPAP(R × Y).

Definition 2.10 (see [20, 21]). A function f ∈ BSp(X) is called Sp-pseudo almost periodic
(or Stepanov-like pseudo almost periodic) if it can be expressed as f = h + ϕ, where
hb ∈ AP(Lp((0, 1),X)) and ϕb ∈ PAP0(Lp((0, 1),X)). The collection of such functions will
be denoted by PAPp(X).

In other words, a function f ∈ L
p

loc(R,X) is said to be Sp-pseudo almost periodic if its
Bochner transform fb : R → Lp((0, 1),X) is pseudo almost periodic in the sense that there
exist two functions h, ϕ : R �→ X such that f = h + ϕ, where hb ∈ AP(Lp((0, 1),X)) and
ϕb ∈ PAP0(Lp((0, 1),X)).

To define the notion of Sp-pseudo almost automorphy for functions of the form F :
R×Y �→ Y, we need to define the Sp-pseudo almost periodicity for these functions as follows.

Definition 2.11. A function F : R × Y �→ X, (t, u) �→ F(t, u) with F(·, u) ∈ L
p

loc(R,X) for each
u ∈ X, is said to be Sp-pseudo almost periodic if there exist two functions H,Φ : R × Y �→ X
such that F = H + Φ, where Hb ∈ AP(R × Lp((0, 1),X)) and Φb ∈ AA0(R × Lp((0, 1),X)).
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The collection of those Sp-pseudo almost periodic functions F : R × Y �→ X will be
denoted PAPp(R × Y).

2.2. Sp-Almost Automorphy

The notion of Sp-almost automorphy is a new notion due to N’Guérékata and Pankov [22].

Definition 2.12 (Bochner). A function f ∈ C(R,X) is said to be almost automorphic if for every
sequence of real numbers (s′n)n∈N

there exists a subsequence (sn)n∈N
such that

g(t) := lim
n→∞

f(t + sn) (2.8)

is well defined for each t ∈ R, and

lim
n→∞

g(t − sn) = f(t) (2.9)

for each t ∈ R.

Remark 2.13. The function g in Definition 2.12 is measurable but not necessarily continuous.
Moreover, if g is continuous, then f is uniformly continuous. If the convergence above is
uniform in t ∈ R, then f is almost periodic. Denote by AA(X) the collection of all almost
automorphic functions R → X. Note that AA(X) equipped with the sup norm, ‖ · ‖∞, turns
out to be a Banach space.

We will denote by AAu(X) the closed subspace of all functions f ∈ AA(X) with
g ∈ C(R,X). Equivalently, f ∈ AAu(X) if and only if f is almost automorphic, and the
convergences in Definition 2.12 are uniform on compact intervals, that is, in the Fréchet space
C(R,X). Indeed, if f is almost automorphic, then its range is relatively compact. Obviously,
the following inclusions hold:

AP(X) ⊂ AAu(X) ⊂ AA(X) ⊂ BC(X). (2.10)

Definition 2.14 (see [22]). The space ASp(X) of Stepanov-like almost automorphic functions
(or Sp-almost automorphic) consists of all f ∈ BSp(X) such that fb ∈ AA(Lp(0, 1;X)). That
is, a function f ∈ L

p

loc(R;X) is said to be Sp-almost automorphic if its Bochner transform fb :
R → Lp(0, 1;X) is almost automorphic in the sense that for every sequence of real numbers
(s′n)n∈N

there exists a subsequence (sn)n∈N
and a function g ∈ L

p

loc(R;X) such that

[∫ t+1

t

∥∥f(sn + s) − g(s)
∥∥pds

]1/p
−→ 0,

[∫ t+1

t

∥∥g(s − sn) − f(s)
∥∥pds

]1/p
−→ 0

(2.11)

as n → ∞ pointwise on R.
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Remark 2.15. It is clear that if 1 ≤ p < q < ∞ and f ∈ L
q

loc(R;X) is Sq-almost automorphic,
then f is Sp-almost automorphic. Also if f ∈ AA(X), then f is Sp-almost automorphic for any
1 ≤ p < ∞. Moreover, it is clear that f ∈ AAu(X) if and only if fb ∈ AA(L∞(0, 1;X)). Thus,
AAu(X) can be considered as AS∞(X).

Definition 2.16. A function F : R × Y �→ X, (t, u) �→ F(t, u) with F(·, u) ∈ L
p

loc(R;X) for each
u ∈ Y, is said to be Sp-almost automorphic in t ∈ R uniformly in u ∈ Y if t �→ F(t, u) is Sp-
almost automorphic for each u ∈ Y; that is, for every sequence of real numbers (s′n)n∈N

, there
exists a subsequence (sn)n∈N

and a function G(·, u) ∈ L
p

loc(R;X) such that

[∫ t+1

t

‖F(sn + s, u) −G(s, u)‖pds
]1/p

−→ 0,

[∫ t+1

t

‖G(s − sn, u) − F(s, u)‖pds
]1/p

−→ 0

(2.12)

as n → ∞ pointwise on R for each u ∈ Y.

The collection of those Sp-almost automorphic functions F : R×Y �→ Xwill be denoted
by ASp(R × Y).

2.3. Pseudo Almost Automorphy

The notion of pseudo almost automorphy is a new notion due to Liang et al. [2, 9].

Definition 2.17. A function f ∈ C(R,X) is called pseudo almost automorphic if it can be
expressed as f = h + ϕ, where h ∈ AA(X) and ϕ ∈ PAP0(X). The collection of such functions
will be denoted by PAA(X).

Obviously, the following inclusions hold:

AP(X) ⊂ PAP(X) ⊂ PAA(X), AP(X) ⊂ AA(X) ⊂ PAA(X). (2.13)

Definition 2.18. A function F ∈ C(R × Y,X) is said to be pseudo almost automorphic if it can
be expressed as F = G +Φ,where G ∈ AA(R ×Y) and ϕ ∈ AA0(R ×Y). The collection of such
functions will be denoted by PAA(R × Y).

A substantial result is the next theorem, which is due to Liang et al. [2].

Theorem 2.19 (see [2]). The space PAA(X) equipped with the sup norm ‖ · ‖∞ is a Banach space.

We also have the following composition result.

Theorem 2.20 (see [2]). If f : R × Y �→ X belongs to PAA(R × Y) and if x �→ f(t, x) is uniformly
continuous on any bounded subsetK of Y for each t ∈ R, then the function defined by h(t) = f(t, ϕ(t))
belongs to PAA(X) provided ϕ ∈ PAA(Y).
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3. Sp-Pseudo Almost Automorphy

This section is devoted to the notion of Sp-pseudo almost automorphy. Such a concept is
completely new and is due to Diagana [7].

Definition 3.1 (see [7]). A function f ∈ BSp(X) is called Sp-pseudo almost automorphic (or
Stepanov-like pseudo almost automorphic) if it can be expressed as

f = h + ϕ, (3.1)

where hb ∈ AA(Lp((0, 1),X)) and ϕb ∈ PAP0(Lp((0, 1),X)). The collection of such functions
will be denoted by PAAp(X).

Clearly, a function f ∈ L
p

loc(R,X) is said to be Sp-pseudo almost automorphic if its
Bochner transform fb : R → Lp((0, 1),X) is pseudo almost automorphic in the sense that
there exist two functions h, ϕ : R �→ X such that f = h + ϕ, where hb ∈ AA(Lp((0, 1),X)) and
ϕb ∈ PAP0(Lp((0, 1),X)).

Theorem 3.2 (see [7]). If f ∈ PAA(X), then f ∈ PAAp(X) for each 1 ≤ p < ∞. In other words,
PAA(X) ⊂ PAAp(X).

Obviously, the following inclusions hold:

AP(X) ⊂ PAP(X) ⊂ PAA(X) ⊂ PAAp(X),

AP(X) ⊂ AA(X) ⊂ PAA(X) ⊂ PAAp(X).
(3.2)

Theorem 3.3 (see [7]). The space PAAp(X) equipped with the norm ‖ · ‖Sp is a Banach space.

Definition 3.4. A function F : R×Y �→ X, (t, u) �→ F(t, u)with F(·, u) ∈ Lp(R,X) for each u ∈ Y,
is said to be Sp-pseudo almost automorphic if there exists two functions H,Φ : R × Y �→ X
such that

F = H + Φ, (3.3)

where Hb ∈ AA(R × Lp((0, 1),X)) and Φb ∈ AA0(R × Lp((0, 1),X)). The collection of those
Sp-pseudo almost automorphic functions will be denoted by PAAp(R × Y).

We have the following composition theorems.

Theorem 3.5. Let F : R × X �→ X be a Sp-pseudo almost automorphic function. Suppose that F(t, u)
is Lipschitzian in u ∈ X uniformly in t ∈ R; that is there exists L > 0 such

‖F(t, u) − F(t, v)‖ ≤ L · ‖u − v‖ (3.4)

for all t ∈ R, (u, v) ∈ X × X.
If φ ∈ PAAp(X), then Γ : R → X defined byΓ(·) := F(·, φ(·)) belongs to PAAp(X).
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Proof. Let F = H + Φ, where Hb ∈ AA(R × Lp((0, 1),X)) and Φb ∈ AA0(R × Lp((0, 1),X)).
Similarly, let φ = φ1 + φ2, where φb

1 ∈ AA(Lp((0, 1),X)) and φb
2 ∈ PAP0(Lp((0, 1),X)), that is,

lim
T →∞

1
2T

∫T

−T

(∫ t+1

t

∥∥ϕ2(σ)
∥∥pdσ

)1/p

dt = 0 (3.5)

for all t ∈ R.
It is obvious to see that Fb(·, φ(·)) : R �→ Lp((0, 1),X). Now decompose Fb as follows:

Fb(·, φ(·)) = Hb(·, φ1(·)
)
+ Fb(·, φ(·)) −Hb(·, φ1(·)

)

= Hb(·, φ1(·)
)
+ Fb(·, φ(·)) − Fb(·, φ1(·)

)
+ Φb(·, φ1(·)

)
.

(3.6)

Using the theorem of composition of almost automorphic functions, it is easy to see
that Hb(·, φ1(·)) ∈ AA(Lp((0, 1),X)). Now, set

Gb(·) := Fb(·, φ(·)) − Fb(·, φ1(·)
)
. (3.7)

Clearly, Gb(·) ∈ PAP0(Lp((0, 1),X)). Indeed, we have

∫ t+1

t

‖G(σ)‖pdσ =
∫ t+1

t

∥∥F(σ, φ(σ)) − F(σ, φ1(σ))
∥∥pdσ

≤ Lp

∫ t+1

t

∥∥φ(σ) − φ1(σ)
∥∥pdσ

= Lp

∫ t+1

t

∥∥φ2(σ)
∥∥pdσ,

(3.8)

and hence for T > 0,

1
2T

∫T

−T

(∫ t+1

t

‖G(σ)‖pdσ
)1/p

dt ≤ L

2T

∫T

−T

(∫ t+1

t

∥∥φ2(σ)
∥∥pdσ

)1/p

dt. (3.9)

Now using (3.5), it follows that

lim
T →∞

1
2T

∫T

−T

(∫ t+1

t

‖G(σ)‖pdσ
)1/p

dt = 0. (3.10)

Using the theorem of composition of functions of PAP(Lp((0, 1),X)) (see [13]) it is
easy to see that Φb(·, φ1(·)) ∈ PAP0(Lp((0, 1),X)).

Theorem 3.6. Let F = H + Φ : R × X �→ X be an Sp-pseudo almost automorphic function, where
Hb ∈ AA(R×Lp((0, 1),X)) and Φb ∈ AA0(R×Lp((0, 1),X)). Suppose that F(t, u) andΦ(t, x) are
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uniformly continuous in every bounded subset K ⊂ X uniformly for t ∈ R. If g ∈ PAAp(X), then
Γ : R → X defined by Γ(·) := F(·, g(·)) belongs to PAAp(X).

Proof. Let F = H + Φ, where Hb ∈ AA(R × Lp((0, 1),X)) and Φb ∈ AA0(R × Lp((0, 1),X)).
Similarly, let g = φ1 + φ2, where φb

1 ∈ AA(Lp((0, 1),X)) and φb
2 ∈ PAP0(Lp((0, 1),X)).

It is obvious to see that Fb(·, g(·)) : R �→ Lp((0, 1),X). Now decompose Fb as follows:

Fb(·, g(·)) = Hb(·, φ1(·)
)
+ Fb(·, g(·)) −Hb(·, φ1(·)

)

= Hb(·, φ1(·)
)
+ Fb(·, g(·)) − Fb(·, φ1(·)

)
+ Φb(·, φ1(·)

)
.

(3.11)

Using the theorem of composition of almost automorphic functions, it is easy to see
that Hb(·, φ1(·)) ∈ AA(Lp((0, 1),X)). Now, set

Gb(·) := Fb(·, g(·)) − Fb(·, φ1(·)
)
. (3.12)

We claim that Gb(·) ∈ PAP0(Lp((0, 1),X)). First of all, note that the uniformly
continuity of F on bounded subsetsK ⊂ X yields the uniform continuity of its Bohr transform
Fb on bounded subsets ofX. Since both g, φ1 are bounded functions, it follows that there exists
K ⊂ X a bounded subset such that g(σ), φ1(σ) ∈ K for each σ ∈ R. Now from the uniform
continuity of Fb on bounded subsets ofX, it obviously follows that Fb is uniformly continuous
on K uniformly for each t ∈ R. Therefore for every ε > 0 there exists δ > 0 such that for all
X,Y ∈ K with ‖X − Y‖ < δ yield

∥∥∥Fb(σ,X) − Fb(σ,X)
∥∥∥ < ε ∀σ ∈ R. (3.13)

Using the proof of the composition theorem [2, Theorem2.4], (applied to Fb) it follows

lim
T →∞

1
2T

∫T

−T

(∫ t+1

t

‖G(σ)‖pdσ
)1/p

dt = 0. (3.14)

Using the theorem of composition [2, Theorem2.4] for functions of PAP0(Lp((0, 1),X)) it is
easy to see that Φb(·, φ1(·)) ∈ PAP0(Lp((0, 1),X)).

4. Sectorial Linear Operators

Definition 4.1. A linear operator A : D(A) ⊂ X �→ X (not necessarily densely defined) is said
to be sectorial if the following holds: there exist constants ω ∈ R, θ ∈ (π/2, π), and M > 0
such that ρ(A) ⊃ Sθ,ω,

Sθ,ω :=
{
λ ∈ C : λ/=ω,

∣∣arg(λ −ω)
∣∣ < θ

}
,

‖R(λ,A)‖ ≤ M

|λ −ω| , λ ∈ Sθ,ω.
(4.1)
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The class of sectorial operators is very rich and contains most of classical operators
encountered in literature.

Example 4.2. Let p ≥ 1 and let Ω ⊂ Rd be open bounded subset with regular boundary ∂Ω.
Let X := (Lp(Ω), ‖ · ‖p) be the Lebesgue space.

Define the linear operator A as follows:

D(A) = W2,p(Ω) ∩W
1,p
0 (Ω), A

(
ϕ
)
= Δϕ, ∀ϕ ∈ D(A). (4.2)

It can be checked that the operator A is sectorial on Lp(Ω).

It is wellknown that [14] if A is sectorial, then it generates an analytic semigroup
(T(t))t≥0, which maps (0,∞) into B(X) and such that there exist M0,M1 > 0 with

‖T(t)‖ ≤ M0e
ωt, t > 0, (4.3)

‖t(A −ω)T(t)‖ ≤ M1e
ωt, t > 0. (4.4)

Throughout the rest of the paper, we suppose that the semigroup (T(t))t≥0 is
hyperbolic; that is, there exist a projection P and constantsM,δ > 0 such that T(t) commutes
with P , N(P) is invariant with respect to T(t), T(t) : R(Q) �→ R(Q) is invertible, and the
following hold:

‖T(t)Px‖ ≤ Me−δt‖x‖ for t ≥ 0, (4.5)

‖T(t)Qx‖ ≤ Meδt‖x‖ for t ≤ 0, (4.6)

where Q := I − P and, for t ≤ 0, T(t) := (T(−t))−1.
Recall that the analytic semigroup (T(t))t≥0 associated withA is hyperbolic if and only

if

σ(A) ∩ iR = ∅, (4.7)

see details in [23, Proposition 1.15, page 305]

Definition 4.3. Let α ∈ (0, 1). A Banach space (Xα, ‖ · ‖α) is said to be an intermediate space
between D(A) and X, or a space of class Jα, if D(A) ⊂ Xα ⊂ X, and there is a constant c > 0
such that

‖x‖α ≤ c‖x‖1−α‖x‖αA, x ∈ D(A), (4.8)

where ‖ · ‖A is the graph norm of A.
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Concrete examples of Xα includeD((−Aα)) for α ∈ (0, 1), the domains of the fractional
powers of A, the real interpolation spaces DA(α,∞), α ∈ (0, 1), defined as the space of all
x ∈ X such

[x]α = sup
0<t≤1

∥∥∥t1−αAT(t)x
∥∥∥ < ∞ (4.9)

with the norm

‖x‖α = ‖x‖ + [x]α, (4.10)

the abstract Hölder spaces DA(α) := D(A)
‖.‖α as well as the complex interpolation spaces

[X, D(A)]α; see Lunardi [14] for details.
For a hyperbolic analytic semigroup (T(t))t≥0, one can easily check that similar

estimations as both (4.5) and (4.6) still hold with the α-norms ‖ · ‖α. In fact, as the part of
A in R(Q) is bounded, it follows from (4.6) that

‖AT(t)Qx‖ ≤ C′eδt‖x‖ for t ≤ 0. (4.11)

Hence, from (4.8) there exists a constant c(α) > 0 such that

‖T(t)Qx‖α ≤ c(α)eδt‖x‖ for t ≤ 0. (4.12)

In addition to the above, the following holds:

‖T(t)Px‖α ≤ ‖T(1)‖B(X,Xα)‖T(t − 1)Px‖, t ≥ 1, (4.13)

and hence from (4.5), one obtains

‖T(t)Px‖α ≤ M′e−δt‖x‖, t ≥ 1, (4.14)

where M′ depends on α. For t ∈ (0, 1], by (4.4) and (4.8),

‖T(t)Px‖α ≤ M′′t−α‖x‖. (4.15)

Hence, there exist constants M(α) > 0 and γ > 0 such that

‖T(t)Px‖α ≤ M(α)t−αe−γt‖x‖ for t > 0. (4.16)

5. Existence of Pseudo Almost Automorphic Solutions

This section is devoted to the search of an almost automorphic solution to the partial hyper-
bolic differential equation (1.3).
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Definition 5.1. Let α ∈ (0, 1). A bounded continuous function u : R �→ Xα is said to be a
mild solution to (1.3) provided that the function s → AT(t − s)Pf(s, Bu(s)) is integrable on
(−∞, t), s → AT(t − s)Qf(s, Bu(s)) is integrable on (t,∞) for each t ∈ R, and

u(t) = −f(t, Bu(t)) −
∫ t

−∞
AT(t − s)Pf(s, Bu(s))ds

+
∫∞

t

AT(t − s)Qf(s, Bu(s))ds

+
∫ t

−∞
T(t − s)Pg(s, Cu(s))ds

−
∫∞

t

T(t − s)Qg(s, Cu(s))ds

(5.1)

for all t ∈ R.

Throughout the rest of the paper we denote by Γ1,Γ2,Γ3, and Γ4 the nonlinear integral
operators defined by

(Γ1u)(t) :=
∫ t

−∞
AT(t − s)Pf(s, Bu(s))ds,

(Γ2u)(t) :=
∫∞

t

AT(t − s)Qf(s, Bu(s))ds,

(Γ3u)(t) :=
∫ t

−∞
T(t − s)Pg(s, Cu(s))ds,

(Γ4u)(t) :=
∫∞

t

T(t − s)Qg(s, Cu(s))ds.

(5.2)

Let p > 1 and let q ≥ 1 such that 1/p + 1/q = 1. Throughout the rest of the paper,
we suppose that the operator A is sectorial and generates a hyperbolic (analytic) semigroup
(T(t))t≥0 and requires the following assumptions.

(H.1) Let 0 < α < 1. Then Xα = D((−Aα)), or Xα = DA(α, p), 1 ≤ p ≤ ∞, or Xα = DA(α), or
Xα = [X, D(A)]α. Moreover, we assume that the linear operators B,C : Xα �→ X are
bounded.

(H.2) Let 0 < α < β < 1, f : R × X �→ Xβ be an Sp-pseudo almost automorphic function in
t ∈ R uniformly in u ∈ X, and letg : R×X �→ X be Sp-pseudo almost automorphic in
t ∈ R uniformly in u ∈ X. Moreover, the functions f, g are uniformly Lipschitz with
respect to the second argument in the following sense: there exists K > 0 such that

∥∥f(t, u) − f(t, v)
∥∥
β ≤ K‖u − v‖,

∥∥g(t, u) − g(t, v)
∥∥ ≤ K‖u − v‖

(5.3)

for all u, v ∈ X and t ∈ R.
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In order to show that Γ1 and Γ2 are well defined, we need the next lemma whose proof
can be found in Diagana [12].

Lemma 5.2 (see [12]). Let 0 < α, β < 1. Then

‖AT(t)Qx‖α ≤ ceδt‖x‖β for t ≤ 0, (5.4)

‖AT(t)Px‖α ≤ ctβ−α−1e−γt‖x‖β, for t > 0. (5.5)

The proof for the pseudo almost automorphy of Γ2u is similar to that of Γ1u and hence
will be omitted.

Lemma 5.3. Under assumptions (H.1)-(H.2), consider the function Γ1u, for u ∈ PAPp(Xα), defined
by

(Γ1u)(t) :=
∫ t

−∞
AT(t − s)Pf(s, Bu(s))ds (5.6)

for each t ∈ R. If

L
(
q, γ, α, β

)
=

∞∑
n=1

[∫n

n−1
e−qγssq(β−α−1)ds

]1/q
< ∞, (5.7)

then Γ1u ∈ PAA(Xα).

Remark 5.4. Note that the assumption L(c, q, γ, α, β) < ∞ holds in several case. This is in
particular the case when β − α > 1/p.

Proof. Let u ∈ PAAp(Xα). Since B ∈ B(Xα,X), it follows that Bu ∈ PAAp(X). Setting h(t) =
f(t, Bu(t)) and using Theorem 3.5 it follows that h ∈ PAAp(Xβ). Moreover, using (5.5) it
follows that

‖AT(t − s)Ph(s)‖α ≤ c(t − s)β−α−1e−γ(t−s)‖h(s)‖β, (5.8)

and hence the function s �→ AT(t − s)Ph(s) is integrable over (−∞, t) for each t ∈ R.
Let h = Y + Z where Yb ∈ AA(Lp(0, 1),Xα)) and Zb ∈ PAP0(Lp(0, 1),Xα)). Define, for

all n = 1, 2, . . . , the sequence of integral operators

Γ1n(t) :=
∫n

n−1
AT(s)PY (t − s)ds, Γ̂1n(t) :=

∫n

n−1
AT(s)PZ(t − s)ds (5.9)

for each t ∈ R.
Now letting r = t − s, it follows that

Γ1n(t) =
∫ t−n+1

t−n
AT(t − r)Y (r)dr ∀t ∈ R. (5.10)
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Using Hölder’s inequality and the estimate (5.8), it follows that

‖Γ1n(t)‖α ≤
∫ t−n+1

t−n
c(t − r)β−α−1e−γ(t−r)‖Y (r)‖βdr

= c

[∫n

n−1
e−qγssq(β−α−1)ds

]1/q
‖Y‖Sp .

(5.11)

Using the assumption L(q, γ, α, β) < ∞, we then deduce from the well-known
Weirstrass theorem that the series

∑∞
n=1 Γ

1
n(t) is uniformly convergent on R. Furthermore,

ΓY (t) =
∞∑
n=1

Γ1n(t), (5.12)

ΓY ∈ C(R,Xα), and

‖ΓY (t)‖α ≤
∞∑
n=1

∥∥∥Γ1n(t)
∥∥∥
α
≤ cL

(
q, γ, α, β

) ‖Y‖Sp (5.13)

for each t ∈ R.
We claim that Γ1n ∈ AA(Xα)). Indeed, let (sm)m∈N

be a sequence of real numbers. Since
Y ∈ ASp(Xβ), there exists a subsequence (smk)k∈N

of (sm)m∈N
and a function Ŷ ∈ ASp(Xβ)

such that

[∫ t+1

t

∥∥∥Y (smk + σ) − Ŷ (σ)
∥∥∥
p

β
dσ

]1/p
−→ 0 as k −→ ∞. (5.14)

Define

Δ1
n(t) =

∫n

n−1
AT(ξ)PŶ (t − ξ)dξ. (5.15)

Set Hγ

α,β
(ξ) = ξβ−α−1e−γξ for ξ > 0. Then using both Hölder’s inequality and (5.5), we

obtain

∥∥∥Γ1n(t + smk) − Γ1n(t)
∥∥∥
α
=
∥∥∥∥
∫n

n−1
AT(ξ)P

[
Y (t + smk − ξ) − Ŷ (t − ξ)

]
dξ

∥∥∥∥
α

≤ c

∫n

n−1
H

γ

α,β(ξ)
∥∥∥Y (t + smk − ξ) − Ŷ (t − ξ)

∥∥∥
β
dξ

≤ L
γ,α,β
c,q

[∫n

n−1

∥∥∥Y (t + smk − ξ) − Ŷ (t − ξ)
∥∥∥
p

β
dξ

]1/p
,

(5.16)

where Lγ,α,β
c,q = c · supn[

∫n
n−1(H

c,γ

α,β
(s))

q
ds]

1/q
< ∞, as L(q, γ, α, β) < ∞.
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Obviously,

∥∥∥Γ1n(t + smk) −Δ1
n(t)
∥∥∥
α
−→ 0 as k −→ ∞. (5.17)

Similarly, we can prove that

∥∥∥Δ1
n(t + smk) − Γ1n(t)

∥∥∥
α
−→ 0 as k −→ ∞. (5.18)

Therefore the sequence Γ1n ∈ AA(Xα) for each n, and hence its uniform limit ΓY ∈ AA(Xα).
Let us show that each Γ̂1n ∈ PAP0(Xα). Indeed,

∥∥∥Γ̂1n(t)
∥∥∥
α
≤
∫ t−n+1

t−n
c(t − r)β−α−1e−γ(t−r)‖Z(r)‖βdr

≤ c

[∫n

n−1
e−qγssq(β−α−1)ds

]1/q
·
[∫ t−n+1

t−n
‖Z(s)‖pβds

]1/p
,

(5.19)

and hence Γ̂1n ∈ PAP0(Xα), as Zb ∈ PAP0(Lp((0, 1),Xα)). Furthermore, using the assumption
L(q, γ, α, β) < ∞, we then deduce from the well-known Weirstrass theorem that the series

∞∑
n=1

Γ̂1n(t) (5.20)

is uniformly convergent on R. Moreover,

Γ̂Z(t) =
∞∑
n=1

Γ̂1n(t), (5.21)

Γ̂1u ∈ C(R,Xα), and

∥∥∥Γ̂Z(t)
∥∥∥
α
≤

∞∑
n=1

∥∥∥Γ̂1n(t)
∥∥∥
α
≤ L
(
c, q, γ, α, β

)‖Z‖Sp (5.22)

for each t ∈ R.
Consequently the uniform limit Γ̂Z(t) =

∑∞
n=1 Γ̂

1
n(t) ∈ PAP0(Xα); see [21, Lemma2.5] .

Therefore, Γ1u = ΓY + Γ̂Z : R �→ Xα is pseudo almost automorphic.

The proof for the almost automorphy of Γ4u is similar to that of Γ3u and hence will be
omitted.
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Lemma 5.5. Under assumptions (H.1)-(H.2), consider the function Γ3u, for u ∈ PAAp(Xα), defined
by

(Γ3u)(t) :=
∫ t

−∞
T(t − s)Pg(s, Cu(s))ds (5.23)

for each t ∈ R.
IfM(q, γ, α) =

∑∞
n=1 [
∫n
n−1s

−qαe−qγsds]
1/q

< ∞, then Γ3u ∈ PAA(Xα).

Proof. The proof is similar to that of Lemma 5.3 and hence omitted, though here we make use
of the approximation (5.4) rather than (5.5).

Throughout the rest of the paper, the constant k(α) denotes the bound of the
embedding Xβ ↪→ Xα, that is,

‖u‖α ≤ k(α)‖u‖β for each u ∈ Xβ. (5.24)

Theorem 5.6. Under the previous assumptions and if assumptions (H.1)-(H.2) hold, then the
evolution equation (1.3) has a unique pseudo almost automorphic solution whenever K is small
enough, that is,

Θ := K�

[
k(α) +

c

δ
+ c

Γ
(
β − α

)

γβ−α
+
M(α)Γ(1 − α)

γ1−α
+
c(α)
δ

]
< 1, (5.25)

where� = max(‖B‖B(Xα,X), ‖C‖B(Xα,X)).

Proof. In PAAp(Xα), define the operator L : PAAp(Xα) → C(R,Xα) by setting

Lu(t) = −f(t, Bu(t)) −
∫ t

−∞
AT(t − s)Pf(s, Bu(s))ds

+
∫∞

t

AT(t − s)Qf(s, Bu(s))ds

+
∫ t

−∞
T(t − s)Pg(s, Cu(s))ds

−
∫∞

t

T(t − s)Qg(s, Cu(s))ds

(5.26)

for each t ∈ R.
As we have previously seen, for every u ∈ PAAp(Xα), f(·, Bu(·)) ∈ PAAp(Xβ) ⊂

PAAp(Xα). From previous assumptions one can easily see that Lu is well defined and
continuous. Moreover, from Theorem 3.5, Lemma 5.3, and Lemma 5.5 we infer that L maps
PAAp(Xα) into PAA(Xα). In particular, L maps PAA(Xα) ⊂ PAAp(Xα) into PAA(Xα). To
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complete the proof one has to show that L has a unique fixedpoint. Let v,w ∈ PAA(Xα). It is
routine to see that

‖Lv − Lw‖∞,α ≤ Θ · ‖v −w‖∞,α. (5.27)

Therefore, by the Banach fixed-point principle, if Θ < 1, then L has a unique fixed-point,
which obviously is the only pseudo almost automorphic solution to (1.3).

6. Example

Let Ω ⊂ RN(N ≥ 1) be an open bounded subset with C2 boundary ∂Ω, and let X = L2(Ω)
equipped with its natural topology ‖ · ‖L2(Ω).

Define the linear operator appearing in (1.3) as follows:

Au = Δ u ∀u ∈ D(A) = H1
0(Ω) ∩H2(Ω). (6.1)

The operator A defined above is sectorial and hence is the infinitesimal generator of an
analytic semigroup (T(t))t≥0. Moreover, the semigroup (T(t))t≥0 is hyperbolic as σ(A)∩iR = ∅.

Throughout the rest of the paper, for each μ ∈ (0, 1), we take Xμ = D((−Δ)μ) equipped
with its μ-norm ‖ · ‖μ. Moreover, we let α = 1/2 and suppose that 1/2 < β < 1. Letting

B̂u = Bu = Cu for all u ∈ X1/2 = D((−Δ)1/2) = H1
0(Ω), one easily sees that both operators are

bounded from H1
0(Ω) into L2(Ω)with� = 1.

We require the following assumption.

(H.3) Let 1/2 < β < 1, let F : R × H1
0(Ω) �→ Xβ be an Sp-pseudo almost automorphic

function in t ∈ R uniformly in u ∈ H1
0(Ω), and let G : R × H1

0(Ω) �→ L2(Ω) be
Sp-pseudo almost automorphic in t ∈ R uniformly in u ∈ H1

0(Ω). Moreover, the
functions F,G are uniformly Lipschitz with respect to the second argument in the
following sense: there exists K′ > 0 such that

‖F(t, u) − F(t, v)‖β ≤ K′‖u − v‖L2(Ω),

‖G(t, u) −G(t, v)‖L2(Ω) ≤ K′‖u − v‖L2(Ω)

(6.2)

for all u, v ∈ L2(Ω) and t ∈ R.

We have the following.

Theorem 6.1. Under the previous assumptions including (H.3), then the N-dimensional heat
equation (1.1) has a unique pseudo almost automorphic solution ϕ ∈ H1

0(Ω) ∩ H2(Ω) whenever
K′ is small enough.
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Classical examples of the above-mentioned functions F,G : R × H1
0(Ω) �→ L2(Ω) are

given as follows:

F
(
t, B̂u

)
=

Ke(t)

1 +
∣∣∣B̂u
∣∣∣
, G

(
t, B̂u

)
=

Km(t)

1 +
∣∣∣B̂u
∣∣∣
, (6.3)

where the functions e,m : R �→ R are Sp-pseudo almost automorphic.
In this particular case, the corresponding heat equation, that is,

∂

∂t

⎡
⎣ϕ +

Ke(t)

1 +
∣∣∣B̂ϕ
∣∣∣

⎤
⎦ = Δϕ +

Km(t)

1 +
∣∣∣B̂ϕ
∣∣∣
, t ∈ R, x ∈ Ω,

ϕ(t, x) = 0, t ∈ R, x ∈ ∂Ω

(6.4)

has a unique pseudo almost automorphic solution ϕ ∈ H1
0(Ω) ∩H2(Ω) whenever K is small

enough.

References

[1] J. Liang, J. Zhang, and T.-J. Xiao, “Composition of pseudo almost automorphic and asymptotically
almost automorphic functions,” Journal of Mathematical Analysis and Applications, vol. 340, pp. 1493–
1499, 2008.

[2] T.-J. Xiao, J. Liang, and J. Zhang, “Pseudo almost automorphic solutions to semilinear differential
equations in banach spaces,” Semigroup Forum, vol. 76, no. 3, pp. 518–524, 2008.

[3] S. Bochner, “Continuous mappings of almost automorphic and almost periodic functions,”
Proceedings of the National Academy of Sciences of the United States of America, vol. 52, pp. 907–910, 1964.

[4] C. Y. Zhang, “Pseudo-almost-periodic solutions of some differential equations,” Journal of Mathemati-
cal Analysis and Applications, vol. 151, pp. 62–76, 1994.

[5] C. Y. Zhang, “Pseudo almost periodic solutions of some differential equations. II,” Journal of
Mathematical Analysis and Applications, vol. 192, pp. 543–561, 1995.

[6] C. Y. Zhang, “Integration of vector-valued pseudo-almost periodic functions,” Proceedings of the
American Mathematical Society, vol. 121, pp. 167–174, 1994.

[7] T. Diagana, “Existence of pseudo almost automorphic solutions to some abstract differential
equations with Sp-pseudo almost automorphic coefficients,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 70, no. 11, pp. 3781–3790, 2009.
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