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1. Formulation of the Inverse Problem for Second-Order
Elliptic Equations from Dirichlet to Neumann Map

In [1-9], the authors posed and discussed the inverse problem of second-order elliptic
equations. In this paper, by using the complex analytic method, the corresponding problem
for linear elliptic complex equations of first-order in multiply connected domains is firstly
discussed, afterwards the existence and global uniqueness of solutions of the inverse problem

for the elliptic equations of second-order are obtained.

Let G be an N + 1-connected domain bounded domain in the complex plane C with
the boundary oG = L = U;.\ZIOLj € Cfl (0 <p<1),whereL; (j =1,...,N) are inside of L.

Consider the linear elliptic equation of second-order:

Uy + Upy + aug +buy =0 in G,
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in which a = a($), b = b(¢) are real functions of { =  +i7, and a(¢),b(¢) € L, (G), p(>2)isa
positive constant. Moreover let a = b = 0 in C\ G. The above condition is called Condition C.
In this paper the notations are the same as those in [10] or [11].

Denote
W@ —usiv - ezl
wer ]l 0
_AIWe Wy Ut Uy
WE_T_uéé_T 1 G,
we can get
ug =We
1 .
=5 [We +iW, ]
1
=-1 [aug + buy |
(1.3)

= la(W + W) +ib(W )]

[(a+ib)W + (a-ib)W]

1
7
=-A(W -BQW
=-2Re[A(Q)W] inG,

where A = A(() = @ =B= [a + ib]/4. We choose a conformal mapping z = z({) from
the above general domain G onto the circular domain D with the boundary I' = U;.\zf oL To =
Ina ={lz[=1}, Tj={lz-zj| =1}, j=1,...,N,and z = 0 € D. In this case, the complex
equation (1.3) is reduced to the complex equation

Wz = -¢'(2)[A[¢(z)]W + B[¢(2)] W),

_ (1.4)
ws = Uz = 2Re{A[((2)]{ (z)u.} = 2Re{A[{(z)]J(z)w} in D,
where ug = uzg|z’(§)|2, W(Q) = u; = u.z'(¢), w(z) = uz, { = {(z) is the inverse function

of z = z(¢), and ¢'(z) = 1/2'(¢) = J(z) in D is a known Holder continuously differentiable
function (see [10, Section 2, Chapter I]), hence the above requirement can be realized.
Introduce the Dirichlet boundary condition for (1.1) as follows:

u=f() onL=0G, u=f[{(z)] onT=z(L), (1.5)

where f(¢) € CL(L), f[¢(z)] € CL(T), a(< (p—2)/p) is a positive constant, which is called
Problem D for (1.1) or (1.4). By [10, 11], Problem D has a unique solution u € Wg(G)
(or Wg(D)) satisfying (1.1) (or (1.4)) and the Dirichlet boundary condition (1.5). From this

solution, we can define the Dirichlet to Neumann map A : C:(L) — C,(L) or A : CL(T) —
Ca(T) by Af = 0u/on.
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Our inverse problem is to determine the coefficient a and b of (1.1) (or A(¢) in (1.3))
from the map A. In the following, we will transform the Dirichlet to Neumann map A into a
equivalent boundary condition. In fact, if we find the derivative of positive tangent direction
with respect to the unit arc length parameter s = argz(z € Iy) and s = —arg(z - z;) (z €
I';,j=1,...,N) of the boundary I' with 5(0) = arg z = arg(1 + 0) = 0, then

0 z
j, - YR

UzZs + UzZs = Uziz — Uziz = 2Re[izu;], on Ty,

uz(z - zj), +uz(z - zj), (1.6)

= —ui(z - zj) + uzi(z - zj)

= -2Re[i(z - zj)u:], onT;,j=1,...,N.

It is clear that the equivalent boundary value problem is to find a solution [W ({(z)), u({(z))]
of the complex equation (1.4) with the boundary conditions

L Re[izw(z)] = %, z €Ty,
Re[Mz)w(z)] = f
Reli(z - zj)w(z)] = —55, zelj, j=1,...,N, (1.7)
u(l) = f[5(M)] = bo,
and the relation
u(z) = ZReIZw(z)dz +by inD, (1.8)
1

in which A(z) =iz, z€Tyand A(z) = i(z - zj), z€Tj, j=1,...,N.Itis easy to see that

u,dz
T

ZRef W(¢)d¢ = 2Ref
L;
S;
= —2ReJ‘ i(z-zj)u.rjds (1.9)
0
S
= J fsrids =0,
0

where S; = 27rj (j = 1,...,N) is the arc length of I'; = {|z - zj| = r;} (j = 1,...,N) and
applying the Green formula, we can see that the function u(z) determined by the integral in
(1.8) in D is single-valued.
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Under the above condition, the corresponding Neumann boundary condition is

ou _
Un = o = UsZn + UsZy
UzZy + UzZy = UzZUzZ = 2Im [izu;] on Iy, (1.10)
= g(z) = I
—u(z-zj) —uz(z-zj) = -2Im[i(z - zj)u:] onTj j=1,...,N,

where n is the unit outwards normal vector of I'. The boundary value problem (1.1)
(or (1.4)), (1.10) will be called Problem N. Taking into account the partial indexes of
Ko = Ar,arg[A(z)] = Ar,argiz and Ar,argz are equal to -1 and K; = Ar,arg[A(z)] =
Ar, argi(z — z;) and Ar, arg (z-zj) (j =1,...,N) are equal to 1, thus the index of the above
boundary value problem is K = Ky + K; +--- + Ky = N — 1. In general the above Problem N
is not solvable, we need to give the modified boundary conditions as follows:

%un =Re[Mz)u:] = @ +g, z€l;, j=01,...,N,

u(l)=byp onT,

(1.11)

where \(z) =z, z€Tp,and M(z) =z-z;, z€T}, j=1,...,N, g(z) € Co(I') and gy = 0 on
I;(j=1,...,N), go onTIyis an undetermined real constant (see [11, Chapter VI]). Hence,
the Dirichlet to Neumann map can be transformed into the boundary conditions as follows:

' {ZRe [izu.] +2ilm[izu.] = 2izw(z), z €Ty,
Ug + iU, =

-2i(z - zj)w(z), zelj, j=1,...,N,
[ts + ity (1.12)
VD =
w(z) = h(z) = [its + ittn] '
BT sery, j=1,.. N,
2i(z - zj)

which will be called Problem DN for the complex equation (1.4) (or (1.1)) with the relation
(1.8), where h(z) (€ C4(T)) is a complex function satisfying the condition

J Re[i(z-zj)h(z)]ds=0, j=1,...,N. (1.13)

Y

For any function f[{(z)] (¢ CL(I')) in the Dirichlet boundary condition (1.5), there is a set
{g(z)} of the functions of Neumann boundary condition (1.10), where g(z) is corresponding
to the complex equation (1.4) one by one, namely if we know the boundary value f[{(z)] and
one complex equation in (1.4), then the boundary value g(z) can be determined. Inversely if
the g(z) in (1.10) is given, then one complex equation in (1.4) can be determined, which will
be verified later on. We denote the set of functions {e***h(z)} by Ry, where k is a complex
number and h(z) is as stated in (1.12).
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2. Some Relations of Inverse Problem for Second-Order
Elliptic Equations from Dirichlet to Neumann Map

According to [10], introduce the notations

_ 1 f(©)
Tf(Z) = —;J‘J‘C g_—zdo'g, (21)

in which f(z) € L,(D), p > 2. Suppose that f(z) = 0in C\ D. Obviously (Tf); = f(z) in C.
We consider the complex equation

g=+JAg +ex(z)BJg=0, g=+JAg+ex(z)JAg=0 inC, (2.2)

where g(z) = e**w, ex(z) = e*=*2) and k is a complex number. On the basis of the Pompeiu
formula (see [10, Chapters I and III]), the corresponding integral equation of the complex

equation (2.2) is as follows:

o

d¢ in D. (2.3)

For simplicity we can only consider the following integral equation

g(z, k) -T[JAg+exJAg] =1 or i inD (2.4)

later on.

Lemma 2.1. If f(z) € L,(D) (p > 2), then

lim max|(Texf)(z)| = 0. (2.5)
k—o zeD

Proof. 1t suffices to prove that for any small positive number ¢, there exists a sufficiently large
positive number N such that

[(Texf)(z)| <& forzeD, |k|>N. (2.6)

In fact, noting that ex(z) = e*Rekz = p2kzlicosl¢+arg2) " = argk, |ex(z)| = 1, and using the
Holder inequality, we have

ex(¢)
-z

| e2ailkél cos(prars ) | /g
<My JJ do ,
p G-zl ¢

s 29 )

(2.7)
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where My =1+L,f, 1<q=p/(p-1) <2. Now we estimate the integral

1/q

|e2qi|k§\ cos(p+arg ) |
Jo = J] doy (2.8)
D

|G —=2[7

We choose two sufficiently small positive constants 6 and 7, and divide the domain D into
threeBarts: Dy ={|g| £ 6}, Dy = {D\ Di}n ({larg¢+ | < n} U {|arg ¢+ ¢ — or| < 17}), and
D3 = D\ {D; UD,}, such that for the above positive number ¢, we can get

|62qi|k§| cos(p+arg ) |
=|ff do,

Dy 1§ —z|7
€

q
) <3M1) ’

2
|]1| < 3_]\/11/

g |62qi|k§|cos(qb+arg§) |
L= J‘J‘ do,
=), e

fszlé — 2[id)g - z|de‘

< ; )q
< r v 7
~ \3M;

|2 <

(2.9)

<

£
3M;’

where 6 = arg{. Moreover noting that |d(6 + ¢)| = |dcos(0 + ¢)/sin(0 + ¢)| < |dcos(0 +
¢)/ siny|, if { € D3, and then

g | eZqi|k§| cos(p+arg g) |
= do
5] HD gz O

1
< ; -
2g|k ming-|¢|sin7|

|de2qi|k§\ cos(¢p+arg¢) |
[[ g -2
D; |€ - Z|q

JJ< |62qi|k§| cos(p+arg ) |
d|¢ — z|d2g|k¢| cos(¢ + ar
g e - 22| cos(¢ + arg )

(2.10)

<1
~ 2glkb sin|

<< £ >q |]|<L for [k| > N
“\3M,/’ 3=3M, =



Boundary Value Problems 7
Thus we obtain

|(Texf) @] < |Lpf il + |Lpf o] + [Lpf 5]

B @2.11)
<M (|| +|J2| +|J3]) <e forzeD, |k|>N.

This shows that the formula (2.6) is true. O

Lemma 2.2. If L,[A, D] < ko, p > 2, where ky is a positive constant, then the solution g(z, k) of
(2.2) satisfies the estimate

ClX [8(21 k)l D] < MZ = MZ(P,“; kOr D)/ (212)

in which M is a positive constant.

Proof. First of all, we verify that any solution g(z, k) of (2.2) satisfies the boundedness
estimate

C|g(z, k),D] < M3 = M3(p,a, ko, D), (2.13)

where M3 is a positive constant. Suppose that (2.13) is not true, then there exists a sequence
of coefficients {A,,(z)}, which satisfy the same condition of coefficient A(z) and weakly
converges to Ao(z), and the corresponding integral equations

Sz + JAmGm + exJAugn =0 inD, m=1,2,... (2.14)

possess the solutions g, (z, k) (m=1,2,...),but C[gm(z,k),ﬁ] (m=1,2,...) are unbounded.
Hence we can choose a subsequence of {g,(z,k)} denoted by {g.(z, k)} again, such that
hy = Clgm(z, k),ﬁ] — oo as m — oo, and can assume h,, > 1. Obviously g,(z, k) =
gm(z,k)/hy (m=1,2,...) are solutions of the integral equations

Gz + JAWZm +exJAngn =0 inD, m=1,2,.... (2.15)

Noting that L,[Angm] < ko, Lp [ekAmgm,B] < ko, we can derive the estimate
Co[TJAmSm + TexJAm&m, D] < Ms = Mu(p,a, ko, D), (2.16)
(see [10, 11]), thus

Cu [gm, D] < M5 = M5(p, a, ko, D) (217)

Hence from {g,,(z,k)}, we can choose a subsequence denoted by {g,(z,k)} again, which
uniformly converges to gy(z) in D, it is clear that gy(z) is a solution of the equation

S0z +JA0G =0, or Z(z)+TJAZ =0 in D. (2.18)
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On the basis of the result in [10, Section 5, Chapter III], the solution gy(z) = 0 in D, however,
from C[g(z,k),D] = 1, there exists a point z* € D, such that C[gy(z*), D] = 1, which is
impossible. This shows that (2.13) and then the estimate (2.12) are true. O

Lemma 2.3. Under the above conditions, one has

lim g(z,k) = g(z) in D, (2.19)

where gy(z) is a unique solution of the equation

gz +JAg =0 inD. (2.20)

Proof. Denote by g(z, k) the solution of (2.2) in D. From Lemma 2.2, we know that the
solution g(z, k) satisfies the estimate (2.12). Moreover by using (2.5), that is,

Jlim max|(TexJAg)(z)| =0, (2.21)
—® zeD

we can choose subsequences {k,} and {g(z, k,)}, where k, — o0 as n — oo, such that
{g(z,ky)} in D uniformly converges to gy(z) as n — oo, which is a solution of (2.20) in D
(see [11]). The uniqueness of solutions of (2.20) can be seen from the proof of Lemma 2.4
below. O

Lemma 2.4. The solution gy(z) of (2.20) can be expressed as
20(z) =®(z)e’ "4 in D, (2.22)

where ®(z) = 1in D.

Proof. On the basis of the results as in [10, Section 5, Chapter III], we know that the integral
equations

1 in D,
g0(z)-TJAg = { ] (2.23)
1 inC

have the unique solutions gy(z) in D and C respectively, this shows that the function gy(z) in
D can be extended in C. Moreover by the result in [10, 11], the solution gy(z) can be expressed
as W(z) = go(z) = ®(z)e /4 in C. Note that TJA — 0as z — oo, and the entire function
®(z) in C satisfies the condition ®(z) — 1 as z — oo, hence ®(z) = 1 in C, and then
g0(z) =e 4 inD. O

Theorem 2.5. For the inverse problem of the equation

[80(2)]s+JAg =0 inD, (2.24)



Boundary Value Problems 9

with the boundary condition
8(z)(#0) onT, (2.25)
one can obtain

TJA=-Ingy(z) onT, (2.26)

which is a known function.

Proof. From the expression (2.22) of the solution gy(z) in D and @(z) = 1in D, it follows that
(2.26) is true. O

3. The Inverse Scattering Method for Second-Order
Elliptic Equations from Dirichlet to Neumann Map

TTA

For the complex equation (1.4), through the transformation W (z) = w(z)e'’/*, we can obtain

that the function W (z) satisfies the complex equation

Wz+C(z)W =0 inC, (3.1)

where C = C(z) = B[4(2)]] (z)eT/ATTA = A[¢(2)] ] (z)eT/ATTA and C = C(z) = 0in C\ D, in
this case every function h(z)e™** in R, is reduced to h(z)e™***T/4, hence later on it suffices to
discuss the complex equation (3.1) and system of complex equations

dz+ (-1 C@)ex(z)f =0 inC, j=12. (52

where ex(z) = ¢ikz=+k2) T the following we will find two solutions ¢1(z) and i$,(z) of

complex equation [¢]; + C(z)ex(z)P(z) = 0 with the conditions ¢1(z) — 1and i¢y(z) — ias
z — oo.

Now we find two solutions W1 (z) and W;(z) in C of (3.1) with the conditions W1 (z) ~
e 2 and W, (z) ~ ie ™ for sufficiently large |z|. In other words, there exist two solutions
$1(z) = €Wy (z) and ¢»(z) = —ie'**W,(z) in C of (3.2) with the conditions ¢;(z) — 1 and
¢2(z) — lasz — oo. Denote

[¢1(=2) + §2(2)]

[4’2(2) -1 (Z)] (3.3)
5 , - e——

mi(z, k) = my(z, k) = ex(z) 5 ,

obviously m(z, k), my(z, k) satisfy the system of first-order complex equations

[m1]- = Cmy, [ma] , —ikmy = Cmy, exle-xmz], = Cmy,

(3.4)

[ma], = ex [¢2 ; ¢1:| +ikmy = Cmy + ikmy,
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such that mi(z, k) — 1 and my(z,k) — 0 (|ma(z, k)| = |lex(z)ma(z, k)] — 0) as z — oo.
According to the way in [8], we can obtain the following two lemmas.

Lemma 3.1. Under the above conditions, there exist two functions my(z, k), ma(z, k) satisfying the
system of complex equations:

[mi(z, k)¢ + T (k)ex(z)my(z, k) = (35)
[m2(2, k)] + T(k)ex (2)m (2, k) = '

where

T =~ [ [ ex@C@mi @ Rda =~z [[ HCRW:-Wador. G

Proof. In the following we verify the (3.5). From (3.4), we have

=1+ [ S8,

c z2-6

] - _H C(¢) mZ]kd
H CT (k)ek(é)ml(é k) 4o
= -T(k)ex(z)ma(z, k),
cam- ;ff:f?d o
o]y = myg - i(é - z+2)m1 7

=m — i(Z—E)ml —izmy,

Mg = ex [e_xmy| ¢ + izmy

C
= ek (2) Jf [e kml kdag +izmy

1 c<c>e_k<g>mg i o
o [; f f CE—_Zldog < f f LHOCOmE, k)doc]

[ f f T(k)ag)mz(c K oy + T(k)]

= -T(k)ex(z)m;.
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In addition, from (3.5) it follows that

[mi1(z, k) + my(z, k)| = =T (k)ex(z) [mi(z, k) + ma(z, k)],

[m1(z, k) — may(z, k)| = T(k)ex(z) [mi(z, k) - ma(z, k)]. 59
It is easy to see that
¢1(z, k) = mi(z, k) + ma(z, k), (39)
p2(2, k) = mi(z, k) -~ ma(z, k)
satisfy the system of complex equations
¢+ T(k)ex(z)gp1 =0, ¢z —T(k)ex(z)ga =0 (3.10)

with the conditions ¢ = e*=p, ~ 1 and ¢ = —ietk=g, ~ 1 for sufficient large |k|, and ¥; =
e3¢y, W, = ie*2¢s, are the solutions of the complex equation

[¥]z+T(k)¥=0 forkeC. (3.11)

Later on we will verify T'(k) € L (C).
Similarly to the way from (3.2) to (3.6), we can obtain the following result. O

Lemma 3.2. Under the above conditions, there exist two functions W1(z, k), Wa(z, k) satisfying the
system of complex equations:
[Wi(z,k)]. + C(z)Wi(z,k) =0, [Wa(z k)].+C(z)Wa(z,k) =0 inC, (3.12)

where

=] e @TR)m (2 K)o

' (3.13)
= —LH e R=T (k) [¥:1(z, k') —i¥2(z, k)] doy.
2 )) ¢
Proof. Now we verify that (3.12) and (3.13) are true. Denote
k k k) =gz, k
1y = [p1(z, k) + g2(z, k)] 1 = e (2) [p2(2, k) — g1 (z, k)] (3.14)

2 ! 2 !
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we see that n1(z, k), na(z, k) satisfy the system of first-order complex equations

[mlg=TMm,  [m],—izma=T()m,  exf[em], =T(k)m,
(3.15)

[12] . = ex [('Uz ;('Ul:l +izng = T(k)ny +izny,
k

such that n1(z,k) — 1and ny(z,k) — 0(|n2(z, k)| = lex(z)n2(z, k)| — 0) as k — oo. Thus

we have
T k
T(k' [1’!2 =
[m]z= —II P —————doy
CT(K )ek/nl (z, k")
JT P do
= —C(z)ek(z)nz(z, k),
T (k'
ey = L f f exT(K)m ,
c k-K
_ ey T(k’)n1
exny = _ff k k, Ok',
3.16
ex[e-kmi]; = iz - i(k —k+ k)n1 (3.16)
=Nz — I(EI - E)Tll - iETll,
nyz = ex [exm] . + ikny
T(k') [e-wm]= _
= ek(z) II ( 6 k nl] dO‘kr + ilez
T(k’)e krTl1z i 10N
= 1 —_— ] T ! ! 1
[ IJ‘ P oK + ﬂ_J‘J‘Ce K (2)T (k" )m (z,k)dok]
CT k’ ,k’
o[ T ]
= -C(z)ex(z)m1.
In addition, from (3.12) it follows that
[n1(z, k) + na(z, k)] + C(2)ex(2) [m1(z, k) + na(z, k)| = (3.17)

[n1(z, k) = na(z, k)]s - C(2)ex(2) [n1(z, k) —na(z, k)] = 0.
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It is obvious that
¢1(z, k) =ni(z, k) + na(z, k), ¢2(z, k) =ni(z, k) —na(z, k) (3.18)
satisfy the system of complex equations
Pz +C(2)ex(z)p1 =0, oz~ C(2)ex(z)¢2 = 0 (3.19)

with the conditions ¢, = e*=W; ~ 1 and ¢ = —ietkzW, ~ 1 for sufficient large |z|, and
Wi = e‘”‘z(j)l, W, = ie‘ikquz are the solutions of the complex equation

Wz+C(z)W(z) =0 forzeC. (3.20)

From (3.6) and Lemma 3.3 below, the functions Hi(z,k) = Wj(z, k), Hy(z, k) =
W>(z, k) onT can be obtained, then

i = ,
T(k) = _gﬂce-lk@c(w1 —iW,)do;

L R vl 77
ZWIIDE (Wl le)ng‘g

(3.21)
1 ( _dir o\ 5
=—— | e ™ Wy - W
4‘71_J‘r€ ( 1—1 z)dC
i = o o
= — W - W .
4”Irve (Wi —iW,)dS
Here we use the Green formula
1 _ 1(_
v.dxdy=—-—| vdz= 2| vods, (3.22)
D 2i )y 2)r
and for Ty = {|z| =1}, v =z = e = e8% and [} = {|z-zj| = 1j}, v = —(z—-z))/1; =

—e™0 = —e7iag(=2) j=1,... N, dz=-ivdS, S=0, zely, -dz=-d(z-7%;) =ivdS, S=
ri6, z € I'j, j = 1,...,N. This shows that the function T (k) for k € C is known, and then
we can solve the solutions m;, m; of equations in (3.5). On the basis of Lemma 3.2, we can
obtain the system of complex equations in (3.12) and the coefficient C(z) = B(z)J(z)e!/A-T/4

of (3.1). This is just the so-called inverse scattering method. We mention that sometimes
Wi(z, k), Wa(z, k) are written as W1(z), Wa(z). O
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Lemma 3.3. Under the above conditions, the functions hi(z), hy(z) as stated in (1.12) are the
solutions of the system of integral equations

1 , 1 .
5(1 —iSk)hy = e7*=, E(l —iSk)hy = ie7 =,
. , (3.23)
ik({-z) ik({-z)
i = L[ MO g L[ T
r)r -z )y -z
We first prove one lemma (see [7]).

Lemma 3.4. The function g(z, k) = e**h;(z) (€ Ry, j =1,2) is a solution of the integral equations

g(z,k) + TJAg + TerJAg = {1 in D,
1

. (3.24)
e"**hi(z)
/k = . r/
g(z, k) {elkth ) n
if and only if it is a solution of the integral equation

1 1 ( 8¢k .. |1, ) etem(@),

2 g [ e {i, s {eikghz(é),
h(z) 1 ( h@e*? (3.25)

- de = —ikz,
2 Tami) ooz deTe

ik({-z) .
hZ(Z) + L hz(g)e dg — ieﬂkz

T.
2 Toxi), ¢z on

Proof. It is clear that we can only discuss the case of h;. If g(z, k) is a solution of (3.24), then
gz = —JAg — exJAg. On the basis of the Pompeiu formula

1 (g k)
8(z/k) = 5— - dg-T(g( k)]z
- (3.26)
1 , — .
_ Tm_[rgg Z—d¢-T[JAg+eJAg] inD
(see [10, Chapters I and III]), we have
2(z,k) + TJAg+TerJAg =1 = —— 8&HR) 4o b, (3.27)

2ri) (—z
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where g(¢, k) = e**h;({) on T. Moreover by using the Plemelj-Sokhotzki formula for Cauchy
type integral (see [12, 13])

O (7 )
C2mi)p -

28(Z,k) g, k) =e*hi(g) onT, (3.28)

which is the formula (3.25).
On the contrary if (3.25) is true, then there exists a solution of equation gz = —AJg -

exJ Ag in D with the boundary values g(¢, k) = e*¢h;(¢) on T, thus we have (3.26), where the
integral (1/ ZJri)fr( (¢, k)/(¢—=))d¢ in D is analytic, whose boundary value on I is

1 (8 k) L I A(Z20

1
— == 2
z/(eD)—z(el) 201 ) ¢ §— 2/ a6 28(2’ k) + 2 zwi)r -z (329)
hence
1 (8K . - .
2__7['i . é 2 dé =1 in D, (330)
and the formula (3.24) is true. O

Proof of Lemma 3.3. On the basis of the theory of integral equations (see [12, 13]), we can
obtain the solutions h;(z) and h;(z) of (3.23). From Lemma 3.4, we define the functions

- ik(¢-z) o
e_lkZ_LJ‘ %dél ZEC\D,

271 ) ¢ -z
Wi(z, k) = 1
—zkz IJ C<§)Wl (g k) gf z e 5/
(3.31)
(e 1 ha()e*e D
e k —Z—MJ‘FC_—ng, ZEC\D,
WZ(Z/ k) =3
e L[ COWaEK) k4 5
1ek+;f Cg—z o, z€D,

which are analytic in C \ D with the boundary values hi(z), h2(z) on I respectively, and
satisfy the complex equation (3.1). O

Moreover according to [6, 7], we can obtain the following two lemmas.

Lemma 3.5. Under the above conditions, one has

”eikzwl(z k < M, ” —ieikzwz(z k 1”W1 L) S <M, for |k| >R,

(3.32)

1”wlz(c:( 2))
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where p > 2, the positive constant My = M (k,p, R) is only dependent on k, p and R, and R is a
sufficiently large positive number. Moreover the function T (k) in (3.6) satisfies T (k) € Lo, (C(k)). In
particular, T (k) € Ly, »(C(k)), where p1 (0 < p1 < o0) is a non-negative number.

Proof. From Lemma 3.1, noting that ¢;(z,k) — 1, z — oo, j = 1,2, we have

1(z, k) = e Wi (z,k) =1+ I I §>ek<<;>(§1<g ) s,

(3.33)
$2(z, k) = —ie™W,(z,k) =1 - %H C(G)ekz(é)i)z(é k)
On the basis of the result in [10], we can get
C k
1912 0) = Uy oy = H f f ek<¢>¢1(c ), ‘
W},(C(2))
< M| Ce ()1 (6 R 11, e (3.34)

< Ms||ClIL, )

<M (k,p,R)

in which |k| > Rand M; = M;(k,p,R) (j = 2,3) are positive constants only dependent on
k, p and R. Similarly, we can obtain the second estimate in (3.32).
In addition, for

T(k) = —ﬁ f f Ce-ik?é(w1 — iW,)doy, = —ﬁﬂce_k(g)é(@ + ¢)doy, (3.35)
we have

IT®N L0 <

3| | e @T@i+ g

Lo (C(K))

(3.36)

ok (¢)Cmy (¢, k)do,

Lo (C(K))

1
;”C”LPZ(C(Z))””ml(g 1, cop lstctr.

in which g = p/(p - 1), 1 < g < 2. It is not difficult to see that T(k) € L, »(C(k)), where
p1 (0 < p1 < o0) is a non-negative constant. O
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Lemma 3.6. Under the above conditions, one can find the coefficients Q = Q(z) of the complex system
of first-order equations Dimy = my, — ikmy = Qmy(Q = C) in D as follows

Q(z) = lim _IJ‘|k e Dymy(z, k)doy

ko — JZ'T'2
(3.37)
= lim —sz Qmi(z, k)doy,
k0_>°° Jar |k—ko|<r
in which doy = dRe k dIm k.
Proof. From the formula (3.4), we can get
lim ff Dymy(z, k)doy = Q lim JT my(z, k)doy
ko= ) ) |k—ko|<r ko—=o0 ) ) |k—ko|<r (3.38)
= wr*Q(2),
where m;(z,k) — 1as k — oo, hence the the formula (3.37) is true. O

Theorem 3.7. For the inverse problem of Problem DN for (1.3) with Condition C, one can
reconstruct the coefficients a(g) and b((g).

Proof. Similarly to [9], we will use the generalized Cauchy formula
F(z) = LI Qi(z,{)Fdg - LJ‘ Qy(z,¢)Fd, in D (3.39)
T o) 2mi) ’ '

for the complex equation

Fz=[e™].=eTY(-A)]) = —6<£>e*m = —ﬁi (3.40)
J J

to find the function F = F(z) = e 74/ in D, in which Qi (z, {), Q(z,¢) are the standard kernels
of equation (3.40) (see [10, Chapter III]). In fact, denote F = e 74/ in D, and F = e 74/ on
I' is known from Theorem 2.5, then according to (3.39), we can find the function F(z) in D.
Moreover from

[—lnF]z=ﬁ]/F7=E(§> eI TAl = A] in D, (3.41)

thus the coefficient A = [a(g) +ib({)] /4 in G is obtained. O
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4. The Global Uniqueness Result for Inverse Problem of First-Order
Elliptic Complex Equations from Dirichlet to Neumann Map

For the elliptic equation of second-order
Ujez + Ujnn + ajuje + bjum =0 in G, ] =1,2, (4.1)
in which a; = a;({), bj = b;(¢) are real functions of { = { +in(€ G,j = 1,2), and a;,b; €

Lp(é), j =1,2, p(> 2) is a positive constant. Moreover define a; =b; =0 (j =1,2) in C\ G.
Denote

v [~ i) e
Wj(g):u]'Jerf:T:”jé:”jZ inG, j=1,2, (4.2)
and we can get
Wo = Wit +iWi]
j¢ 2
1
=~ lajujs + bjujy] (4.3)

=-A;(QW, - B;(Q)W;

= 2Re[AW;] inG, j=12,

where A; = A;({) = Bj(¢) = [aj +ibj]/4, j = 1,2. As stated in Section 1, suppose that the
above equations satisfy Condition C, and through a conformal mapping z = z(¢), the complex
equations in (4.3) can be reduced to the following form

Wiz = —¢'(2){ A;[¢(2)]W; + B [4(2)|W;),
Wiz = —ZRe{A] [g(z)]%uu} (44)
=-2Re{A;[¢(2)]J(z)w;} inD, j=1,2,

where D is a circular domain, and J(z) = m

If wj(z) = uj. (j = 1,2) are the corresponding solutions of (4.4) from the Dirichlet
to Neumann maps A; (j = 1,2), and Ay = Ay = A, then the boundary conditions of the
inverse boundary value problem for second-order elliptic equations in (4.1) from Dirichlet to
Neumann map can be reduced to

wj(z) =ujz =h(z) onl, j=1,2, (4.5)

where h(z) (€ Co(I'), 0 < a < (p —2)/p) is a known complex function. In the following we
will prove the uniqueness theorem as follows.
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Theorem 4.1. For the inverse problem of Problem DN for (1.1) (or (1.3)) with Condition C, one can
uniquely determine the coefficients a, b. In other words, if A1 = A, for (4.1), then a1 = a», by = bs.

We first prove the Carleman estimate (see [7]).

Lemma 4.2. If the complex function u(z) € W;(D) with the condition u(z) = 0 on I, and the real
function ¢(z) € Wg(D) (p > 2) then one has the Carleman estimate

” AdlulPe? do. < 4” |uz|’e? do. (4.6)
D D
Proof. 1t is sufficient to prove the equality
ff Adlul*e? do., + 4ff |- + u¢z|ze4’ do, = 4ff |ug|ze¢ do., 4.7)
D D D

in which ¢(z) € WS(D), and u(z) € Wr} (D) with the condition u(z) = 0 on I'. We first consider
the complex form of the Green formula about v = 1.

EJ‘J‘ [thxx + 11y | dx dy = ff Uz dxdy = 1’[ [uxdy — u, dx| = lf u.dz,

1 1
vzdxdy = —,I vdz, or fj v, dxd =——,j vdz,
.”D v 2i) ¢ D v 2i) ¢

with u € C%(D).
If u(z), ¢(z) are the above functions, by using the Green formula, we have

(4.8)

Jf [uﬁze‘i’]zdx dy = JT uzuze? dx dy + ff u[ﬁze‘l’]zdx dy = lf wize?dz =0,
D D D 2i) ¢
ff |ug|2e¢ dxdy = JT uzu.e? dx dy = —ff u[ﬂze‘i’]fdx dy
D D D
= —II u [ﬁzE + ﬁquf] e? dx dy'
D
ff oz + u¢z|2e4’ dxdy = ff [tz + ug,] [uz + up=z]e?dx dy
D D
= —” uluze? + upze?] _dx dy + ” ud, [tz + ugz|e?dx dy
D D
= —ff ultiz + Uz + U] e?dx dy - JI u[uz + ugz| ¢ze¢dx dy
D D
+ ff ud, [tz + upz)e?dx dy
D

= —jf ultiz + Uz + U] etdx dy,
: (4.9)
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thus

ff |uz|e? dx dy - ff |uz + ud.|’e? dx dy = ff uup.ze? dx dy
P P P (4.10)

= ” 1|u|2A¢e¢ dxdy.
D4

This is just the formula (4.7) for u(z) € C?(D). Due to the density of C2(D) in W,(D)(p > 2),
it is known that (4.7) is also true for u(z) € W; (D) with the condition u(z) =0 on T O

Lemma 4.3. Under the above conditions, one can derive

Ci1 =Gy, z€D. (411)
Proof. On the basis of hi(z) = hy(z) on I, and the results of Lemmas 3.1 and 3.2, it follows

that the corresponding coefficients T;(k) = T>(k), and then C;(z) = C»(z) in D. This shows
that the formula (4.11) is true. O

Proof of Theorem 4.1. Similarly to [7], we can prove

Ai=A, inD. (4.12)
From (4.11), we have
Cy = A JeTTATTA 2 A, JeTT A TIA =, zeD. (4.13)
If we define Aj(z) =0, z € C\ D, then C; = C;, z € C, and denote
E(z)=TJ(Ay - A1), Ez=J(A-A)),  F(z)=elTAra T (4.14)
one gets
JA, = F(2)JAs, E(z)=TJ(Ay—A) =T(1-F(z))JA; inC. (4.15)
Setting that i0(z) = m - TJ(Ay — Ay), obviously 0(z) is a real function, and

o )

[TTCA = A - TI (A - AD| <20TI (A - AD =20E@], )
[E(2)]; =T (A2 - A1),
[[EGL] < 1 Asl 1 - Fa)] < 2] Adl[EGR),

|1—F(z)|=|ei9—1|=|ei9/2—e_i6/2|=2 §|9|

where E(z) = TJ(A; — A1) =0onT is derived from Theorem 2.5.
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Finally we use the Carleman estimate for u(z) = E(z) and (4.16), and can get

” A¢|E(z)|2e¢dozg4fj |Ez|*e? do,
D D

(4.17)
< 16IID|]A2|2|E(Z) I’e? do.
Taking into account A; € L,(D), p > 2, and choosing
P(z) = %IID|]A|21n|§ —z|do; for A(z) = max (1,|As|), (4.18)
it is easy to see that A¢ = 4¢.z = 18|JA|* in D, and then
ZHD|]A(Z)|2|E(Z)|2e¢ do.<0, E(z)=0 inD. (4.19)
Consequently
J(Ay-A)) =0, Ay—A;=0 inD, (4.20)
this shows the coefficients a; = ap, by = b, of equations in (4.1) in G. O
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