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1. Formulation of the Inverse Problem for Second-Order
Elliptic Equations from Dirichlet to Neumann Map

In [1–9], the authors posed and discussed the inverse problem of second-order elliptic
equations. In this paper, by using the complex analytic method, the corresponding problem
for linear elliptic complex equations of first-order in multiply connected domains is firstly
discussed, afterwards the existence and global uniqueness of solutions of the inverse problem
for the elliptic equations of second-order are obtained.

Let G be an N + 1-connected domain bounded domain in the complex plane C with
the boundary ∂G = L = ∪Nj=0Lj ∈ C2

μ (0 < μ < 1), where Lj (j = 1, . . . ,N) are inside of L0.
Consider the linear elliptic equation of second-order:

uξξ + uηη + auξ + buη = 0 in G, (1.1)
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in which a = a(ζ), b = b(ζ) are real functions of ζ = ξ + iη, and a(ζ), b(ζ) ∈ Lp(G), p(> 2) is a
positive constant. Moreover let a = b = 0 in C \G. The above condition is called Condition C.
In this paper the notations are the same as those in [10] or [11].

Denote

W(ζ) = U + iV =

[
uξ − iuη

]

2
= uζ,

Wζ =

[
Wξ + iWη

]

2
= uζζ =

[
uξξ + uηη

]

4
in G,

(1.2)

we can get

uζζ =Wζ

=
1
2
[
Wξ + iWη

]

= −1
4
[
auξ + buη

]

= −1
4
[
a
(
W +W

)
+ ib
(
W −W)]

= −1
4
[
(a + ib)W + (a − ib)W]

= −A(ζ)W − B(ζ)W
= −2Re[A(ζ)W

]
in G,

(1.3)

where A = A(ζ) = B(ζ) = B = [a + ib]/4. We choose a conformal mapping z = z(ζ) from
the above general domain G onto the circular domain D with the boundary Γ = ∪Nj=0Γj , Γ0 =
ΓN+1 = {|z| = 1}, Γj = {|z − zj | = rj}, j = 1, . . . ,N, and z = 0 ∈ D. In this case, the complex
equation (1.3) is reduced to the complex equation

Wz = −ζ′(z){A[ζ(z)]W + B
[
ζ(z)
]
W
}
,

wz = uzz = −2Re{A[ζ(z)]ζ′(z)uz
}
= −2Re{A[ζ(z)]J(z)w} in D,

(1.4)

where uζζ = uzz|z′(ζ)|2, W(ζ) = uζ = uzz
′(ζ), w(z) = uz, ζ = ζ(z) is the inverse function

of z = z(ζ), and ζ′(z) = 1/z′(ζ) = J(z) in D is a known Hölder continuously differentiable
function (see [10, Section 2, Chapter I]), hence the above requirement can be realized.

Introduce the Dirichlet boundary condition for (1.1) as follows:

u = f(ζ) on L = ∂G, u = f
[
ζ(z)
]

on Γ = z(L), (1.5)

where f(ζ) ∈ C1
α(L), f[ζ(z)] ∈ C1

α(Γ), α(≤ (p − 2)/p) is a positive constant, which is called
Problem D for (1.1) or (1.4). By [10, 11], Problem D has a unique solution u ∈ W2

p(G)
(or W2

p(D)) satisfying (1.1) (or (1.4)) and the Dirichlet boundary condition (1.5). From this
solution, we can define the Dirichlet to Neumann map Λ : C1

α(L) → Cα(L) or Λ : C1
α(Γ) →

Cα(Γ) by Λf = ∂u/∂n.
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Our inverse problem is to determine the coefficient a and b of (1.1) (or A(ζ) in (1.3))
from the map Λ. In the following, we will transform the Dirichlet to Neumann map Λ into a
equivalent boundary condition. In fact, if we find the derivative of positive tangent direction
with respect to the unit arc length parameter s = arg z(z ∈ Γ0) and s = − arg(z − zj) (z ∈
Γj , j = 1, . . . ,N) of the boundary Γ with s(0) = arg z = arg(1 + 0) = 0, then

fs =
∂f
[
ζ(z)
]

∂s

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

uzzs + uzzs = uziz − uziz = 2Re
[
izuz

]
, on Γ0,

uz
(
z − zj

)
s
+ uz

(
z − zj

)
s

= −uzi
(
z − zj

)
+ uzi

(
z − zj

)

= −2Re[i(z − zj
)
uz
]
, on Γj , j = 1, . . . ,N.

(1.6)

It is clear that the equivalent boundary value problem is to find a solution [W(ζ(z)), u(ζ(z))]
of the complex equation (1.4) with the boundary conditions

Re
[
λ(z)w(z)

]
=

⎧
⎪⎪⎨

⎪⎪⎩

Re
[
izw(z)

]
=
fs
2
, z ∈ Γ0,

Re
[
i(z − zj)w(z)

]
= −fs

2
, z ∈ Γj , j = 1, . . . ,N,

u(1) = f
[
ζ(1)
]
= b0,

(1.7)

and the relation

u(z) = 2Re
∫z

1
w(z)dz + b0 in D, (1.8)

in which λ(z) = iz, z ∈ Γ0 and λ(z) = i(z − zj), z ∈ Γj , j = 1, . . . ,N. It is easy to see that

2Re
∫

Lj

W(ζ)dζ = 2Re
∫

Γj
uz dz

= −2Re
∫Sj

0
i
(
z − zj

)
uzrj ds

=
∫Sj

0
fsrj ds = 0,

(1.9)

where Sj = 2πrj (j = 1, . . . ,N) is the arc length of Γj = {|z − zj | = rj} (j = 1, . . . ,N) and
applying the Green formula, we can see that the function u(z) determined by the integral in
(1.8) in D is single-valued.
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Under the above condition, the corresponding Neumann boundary condition is

un =
∂u

∂n
= uzzn + uzzn

= g(z) =

⎧
⎨

⎩

uzzn + uzzn = uzzuzz = 2 Im
[
izuz

]
on Γ0,

−uz
(
z − zj

) − uz
(
z − zj

)
= −2Im[i(z − zj

)
uz
]

on Γj , j = 1, . . . ,N,

(1.10)

where n is the unit outwards normal vector of Γ. The boundary value problem (1.1)
(or (1.4)), (1.10) will be called Problem N. Taking into account the partial indexes of
K0 = ΔΓ0 arg[λ(z)] = ΔΓ0 arg iz and ΔΓ0 arg z are equal to −1 and Kj = ΔΓj arg[λ(z)] =
ΔΓj arg i(z − zj) and ΔΓj arg (z − zj) (j = 1, . . . ,N) are equal to 1, thus the index of the above
boundary value problem isK = K0 +K1 + · · · +KN =N − 1. In general the above ProblemN
is not solvable, we need to give the modified boundary conditions as follows:

1
2
un = Re

[
λ(z)uz

]
=
g(z)
2

+ g0, z ∈ Γj , j = 0, 1, . . . ,N,

u(1) = b0 on Γ,
(1.11)

where λ(z) = z, z ∈ Γ0, and λ(z) = z − zj , z ∈ Γj , j = 1, . . . ,N, g(z) ∈ Cα(Γ) and g0 = 0 on
Γj (j = 1, . . . ,N), g0 on Γ0 is an undetermined real constant (see [11, Chapter VI]). Hence,
the Dirichlet to Neumann map can be transformed into the boundary conditions as follows:

us + iun =

⎧
⎨

⎩

2Re
[
izuz

]
+ 2iIm

[
izuz

]
= 2izw(z), z ∈ Γ0,

−2i(z − zj
)
w(z), z ∈ Γj , j = 1, . . . ,N,

w(z) = h(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
us + iun

]

2iz
, z ∈ Γ0,

−
[
us + iun

]

2i
(
z − zj

) , z ∈ Γj , j = 1, . . . ,N,

(1.12)

which will be called Problem DN for the complex equation (1.4) (or (1.1)) with the relation
(1.8), where h(z) (∈ Cα(Γ)) is a complex function satisfying the condition

∫

Γj
Re
[
i
(
z − zj

)
h(z)

]
ds = 0, j = 1, . . . ,N. (1.13)

For any function f[ζ(z)] (∈ C1
α(Γ)) in the Dirichlet boundary condition (1.5), there is a set

{g(z)} of the functions of Neumann boundary condition (1.10), where g(z) is corresponding
to the complex equation (1.4) one by one, namely if we know the boundary value f[ζ(z)] and
one complex equation in (1.4), then the boundary value g(z) can be determined. Inversely if
the g(z) in (1.10) is given, then one complex equation in (1.4) can be determined, which will
be verified later on. We denote the set of functions {eikzh(z)} by Rh, where k is a complex
number and h(z) is as stated in (1.12).



Boundary Value Problems 5

2. Some Relations of Inverse Problem for Second-Order
Elliptic Equations from Dirichlet to Neumann Map

According to [10], introduce the notations

Tf(z) = − 1
π

∫∫

C

f(ζ)
ζ − zdσζ, (2.1)

in which f(z) ∈ Lp(D), p > 2. Suppose that f(z) = 0 in C \D. Obviously (Tf)z = f(z) in C.
We consider the complex equation

gz + JAg + ek(z)BJg = 0, gz + JAg + ek(z)JAg = 0 in C, (2.2)

where g(z) = eikzw, ek(z) = ei(kz+kz) and k is a complex number. On the basis of the Pompeiu
formula (see [10, Chapters I and III]), the corresponding integral equation of the complex
equation (2.2) is as follows:

g(z, k) − T[JAg + ekJAg
]
=

1
2πi

∫

Γ

g(ζ, k)
ζ − z dζ in D. (2.3)

For simplicity we can only consider the following integral equation

g(z, k) − T[JAg + ekJAg
]
= 1 or i in D (2.4)

later on.

Lemma 2.1. If f(z) ∈ Lp(D) (p > 2), then

lim
k→∞

max
z∈D

∣∣(Tekf
)
(z)
∣∣ = 0. (2.5)

Proof. It suffices to prove that for any small positive number ε, there exists a sufficiently large
positive numberN such that

∣∣(Tekf
)
(z)
∣∣ < ε for z ∈ D, |k| ≥N. (2.6)

In fact, noting that ek(z) = e2iRekz = e2|kz|i cos(φ+arg z), φ = arg k, |ek(z)| = 1, and using the
Hölder inequality, we have

∣∣(Tekf
)
(z)
∣∣ ≤ Lpf

(∫∫

D

∣∣∣∣
ek(ζ)
ζ − z

∣∣∣∣

q

dσζ

)1/q

≤M1

(∫∫

D

∣∣e2qi|kζ| cos(φ+arg ζ)
∣∣

|ζ − z|q dσζ

)1/q

,

(2.7)
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whereM1 = 1 + Lpf, 1 < q = p/(p − 1) < 2. Now we estimate the integral

J0 =

∣∣∣∣∣

∫∫

D

∣∣e2qi|kζ| cos(φ+arg ζ)
∣∣

|ζ − z|q dσζ

∣∣∣∣∣

1/q

. (2.8)

We choose two sufficiently small positive constants δ and η, and divide the domain D into
three parts: D1 = {|ζ| ≤ δ}, D2 = {D \ D1} ∩ ({| arg ζ + φ| ≤ η} ∪ {| arg ζ + φ − π | ≤ η}), and
D3 = D \ {D1 ∪D2}, such that for the above positive number ε, we can get

∣∣J
q

1

∣∣ =

∣∣∣∣∣

∫∫

D1

∣∣e2qi|kζ| cos(φ+arg ζ)
∣∣

|ζ − z|q dσζ

∣∣∣∣∣

<

(
ε

3M1

)q
,

∣∣J1
∣∣ <

ε

3M1
,

∣∣J
q

2

∣∣ =

∣∣∣∣∣

∫∫

D2

∣∣e2qi|kζ| cos(φ+arg ζ)
∣∣

|ζ − z|q dσζ

∣∣∣∣∣

≤
∣∣∣∣∣

∫∫

D2

|ζ − z|1−qd|ζ − z|dθ
∣∣∣∣∣

≤
(

ε

3M1

)q
,

∣∣J2
∣∣ ≤ ε

3M1
,

(2.9)

where θ = arg ζ. Moreover noting that |d(θ + φ)| = |d cos(θ + φ)/ sin(θ + φ)| ≤ |d cos(θ +
φ)/ sinη|, if ζ ∈ D3, and then

∣∣J
q

3

∣∣ =

∣∣∣∣∣

∫∫

D3

∣∣e2qi|kζ| cos(φ+arg ζ)
∣∣

|ζ − z|q dσζ

∣∣∣∣∣

≤ 1
2q
∣∣k minD3

∣∣ζ| sinη|

∣∣∣∣∣

∫∫

D3

∣∣e2qi|kζ| cos(φ+arg ζ)
∣∣

|ζ − z|q−1 d
∣∣ζ − z|d2q|kζ∣∣ cos(φ + arg ζ)

∣∣∣∣∣

≤ 1
2q|kδ sinη|

∣∣∣∣∣

∫∫

D3

|de2qi|kζ| cos(φ+arg ζ)|
|ζ − z|q−1 d|ζ − z|

∣∣∣∣∣

≤
(

ε

3M1

)q
,

∣∣J3
∣∣ ≤ ε

3M1
for |k| ≥N.

(2.10)
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Thus we obtain
∣∣(Tekf

)
(z)
∣∣ ≤ ∣∣LpfJ1

∣∣ +
∣∣LpfJ2

∣∣ +
∣∣LpfJ3

∣∣

≤M1
(∣∣J1
∣∣ +
∣∣J2
∣∣ +
∣∣J3
∣∣) < ε for z ∈ D, |k| ≥N.

(2.11)

This shows that the formula (2.6) is true.

Lemma 2.2. If Lp[A,D] ≤ k0, p > 2, where k0 is a positive constant, then the solution g(z, k) of
(2.2) satisfies the estimate

Cα

[
g(z, k), D

] ≤M2 =M2
(
p, α, k0, D

)
, (2.12)

in whichM2 is a positive constant.

Proof. First of all, we verify that any solution g(z, k) of (2.2) satisfies the boundedness
estimate

C
[
g(z, k), D

] ≤M3 =M3
(
p, α, k0, D

)
, (2.13)

whereM3 is a positive constant. Suppose that (2.13) is not true, then there exists a sequence
of coefficients {Am(z)}, which satisfy the same condition of coefficient A(z) and weakly
converges to A0(z), and the corresponding integral equations

gmz + JAmgm + ekJAmgm = 0 in D, m = 1, 2, . . . (2.14)

possess the solutions gm(z, k) (m = 1, 2, . . .), but C[gm(z, k), D] (m = 1, 2, . . .) are unbounded.
Hence we can choose a subsequence of {gm(z, k)} denoted by {gm(z, k)} again, such that
hm = C[gm(z, k), D] → ∞ as m → ∞, and can assume hm ≥ 1. Obviously g̃m(z, k) =
gm(z, k)/hm (m = 1, 2, . . .) are solutions of the integral equations

g̃mz + JAmg̃m + ekJAmg̃m = 0 in D, m = 1, 2, . . . . (2.15)

Noting that Lp[Amg̃m] ≤ k0, Lp[ekAmg̃m,D] ≤ k0,we can derive the estimate

Cα

[
TJAmg̃m + TekJAmg̃m,D

] ≤M4 =M4
(
p, α, k0, D

)
, (2.16)

(see [10, 11]), thus

Cα

[
g̃m,D

] ≤M5 =M5
(
p, α, k0, D

)
. (2.17)

Hence from {g̃m(z, k)}, we can choose a subsequence denoted by {g̃m(z, k)} again, which
uniformly converges to g̃0(z) in D, it is clear that g̃0(z) is a solution of the equation

g̃0z + JA0g̃0 = 0, or g̃0(z) + TJA0g̃0 = 0 in D. (2.18)
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On the basis of the result in [10, Section 5, Chapter III], the solution g̃0(z) = 0 in D, however,
from C[g̃m(z, k), D] = 1, there exists a point z∗ ∈ D, such that C[g̃0(z∗), D] = 1, which is
impossible. This shows that (2.13) and then the estimate (2.12) are true.

Lemma 2.3. Under the above conditions, one has

lim
k→∞

g(z, k) = g0(z) in D, (2.19)

where g0(z) is a unique solution of the equation

g0z + JAg0 = 0 in D. (2.20)

Proof. Denote by g(z, k) the solution of (2.2) in D. From Lemma 2.2, we know that the
solution g(z, k) satisfies the estimate (2.12). Moreover by using (2.5), that is,

lim
k→∞

max
z∈D

∣∣(TekJAg
)
(z)
∣∣ = 0, (2.21)

we can choose subsequences {kn} and {g(z, kn)}, where kn → ∞ as n → ∞, such that
{g(z, kn)} in D uniformly converges to g0(z) as n → ∞, which is a solution of (2.20) in D
(see [11]). The uniqueness of solutions of (2.20) can be seen from the proof of Lemma 2.4
below.

Lemma 2.4. The solution g0(z) of (2.20) can be expressed as

g0(z) = Φ(z)e−TJA in D, (2.22)

where Φ(z) = 1 in D.

Proof. On the basis of the results as in [10, Section 5, Chapter III], we know that the integral
equations

g0(z) − TJAg0 =
{
1 in D,

1 in C
(2.23)

have the unique solutions g0(z) inD and C respectively, this shows that the function g0(z) in
D can be extended inC. Moreover by the result in [10, 11], the solution g0(z) can be expressed
as W(z) = g0(z) = Φ(z)e−TJA in C. Note that TJA → 0 as z → ∞, and the entire function
Φ(z) in C satisfies the condition Φ(z) → 1 as z → ∞, hence Φ(z) = 1 in C, and then
g0(z) = e−TJA in D.

Theorem 2.5. For the inverse problem of the equation

[
g0(z)

]
z + JAg0 = 0 in D, (2.24)
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with the boundary condition

g0(z)(/≡ 0) on Γ, (2.25)

one can obtain

TJA = − ln g0(z) on Γ, (2.26)

which is a known function.

Proof. From the expression (2.22) of the solution g0(z) in D and Φ(z) = 1 in D, it follows that
(2.26) is true.

3. The Inverse Scattering Method for Second-Order
Elliptic Equations from Dirichlet to Neumann Map

For the complex equation (1.4), through the transformationW(z) = w(z)eTJA, we can obtain
that the functionW(z) satisfies the complex equation

Wz + C(z)W = 0 in C, (3.1)

where C = C(z) = B[ζ(z)]J(z)eTJA−TJA = A[ζ(z)]J(z)eTJA−TJA and C = C(z) = 0 in C \D, in
this case every function h(z)eikz in RA is reduced to h(z)eikz+TJA, hence later on it suffices to
discuss the complex equation (3.1) and system of complex equations

φjz + (−1)j−1C(z)ek(z)φj = 0 in C, j = 1, 2. (3.2)

where ek(z) = ei(kz+kz). In the following we will find two solutions φ1(z) and iφ2(z) of
complex equation [φ]z +C(z)ek(z)φ(z) = 0 with the conditions φ1(z) → 1 and iφ2(z) → i as
z → ∞.

Nowwe find two solutionsW1(z) andW2(z) in C of (3.1)with the conditionsW1(z) ∼
e−ikz and W2(z) ∼ ie−ikz for sufficiently large |z|. In other words, there exist two solutions
φ1(z) = eikzW1(z) and φ2(z) = −ieikzW2(z) in C of (3.2) with the conditions φ1(z) → 1 and
φ2(z) → 1 as z → ∞. Denote

m1(z, k) =

[
φ1(z) + φ2(z)

]

2
, m2(z, k) = ek(z)

[
φ2(z) − φ1(z)

]

2
, (3.3)

obviouslym1(z, k), m2(z, k) satisfy the system of first-order complex equations

[
m1
]
z = Cm2,

[
m2
]
z − ikm2 = Cm1, ek

[
e−km2

]
z = Cm1,

[
m2
]
z = ek

[
φ2 − φ1

2

]

z

+ ikm2 = Cm1 + ikm2,

(3.4)
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such that m1(z, k) → 1 and m2(z, k) → 0 (|m2(z, k)| = |ek(z)m2(z, k)| → 0) as z → ∞.
According to the way in [8], we can obtain the following two lemmas.

Lemma 3.1. Under the above conditions, there exist two functionsm1(z, k), m2(z, k) satisfying the
system of complex equations:

[
m1(z, k)

]
k + T(k)ek(z)m2(z, k) = 0,

[
m2(z, k)

]
k + T(k)ek(z)m1(z, k) = 0,

(3.5)

where

T(k) = − i

π

∫∫

C
e−k(ζ)C(ζ)m1(ζ, k)dσζ = − i

2π

∫∫

C
e−ikzC(ζ)

(
W1 − iW2

)
dσζ. (3.6)

Proof. In the following we verify the (3.5). From (3.4), we have

m1 = 1 +
1
π

∫∫

C

C(ζ)m2

z − ζ dσζ,

[
m1
]
k =

1
π

∫∫

C

C(ζ)
[
m2
]
k

z − ζ dσζ

= − 1
π

∫∫

C

CT(k)ek(ζ)m1(ζ, k)
z − ζ dσζ

= −T(k)ek(z)m2(z, k),

e−km2 =
1
π

∫∫

C

e−kCm1

z − ζ
dσζ,

ekm2 =
1
π

∫∫

C

ekCm1

z − ζ dσζ,

ek
[
e−km1

]
k = m1k − i

(
ζ − z + z)m1

= m1k − i
(
ζ − z)m1 − izm1,

m2k = ek
[
e−km2

]
k + izm2

=
ek(z)
π

∫∫

C

C
[
e−km1

]
k

z − ζ
dσζ + izm2

= ek

[
1
π

∫∫

C

C(ζ)e−k(ζ)m1k

z − ζ
dσζ +

i

π

∫∫

C
e−k(ζ)C(ζ)m1(ζ, k)dσζ

]

= −ek
[
1
π

∫∫

C

T(k)C(ζ)m2(ζ, k)

z − ζ
dσζ + T(k)

]

= −T(k)ek(z)m1.

(3.7)
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In addition, from (3.5) it follows that

[
m1(z, k) +m2(z, k)

]
k = −T(k)ek(z)

[
m1(z, k) +m2(z, k)

]
,

[
m1(z, k) −m2(z, k)

]
k = T(k)ek(z)

[
m1(z, k) −m2(z, k)

]
.

(3.8)

It is easy to see that

ψ1(z, k) = m1(z, k) +m2(z, k),

ψ2(z, k) = m1(z, k) −m2(z, k)
(3.9)

satisfy the system of complex equations

ψ1k + T(k)ek(z)ψ1 = 0, ψ2k − T(k)ek(z)ψ2 = 0 (3.10)

with the conditions ψ1 = eikzΨ1 ∼ 1 and ψ2 = −ieikzΨ2 ∼ 1 for sufficient large |k|, and Ψ1 =
e−ikzψ1, Ψ2 = ie−ikzψ2 are the solutions of the complex equation

[Ψ]k + T(k)Ψ = 0 for k ∈ C. (3.11)

Later on we will verify T(k) ∈ L∞(C).
Similarly to the way from (3.2) to (3.6), we can obtain the following result.

Lemma 3.2. Under the above conditions, there exist two functionsW1(z, k), W2(z, k) satisfying the
system of complex equations:

[
W1(z, k)

]
z + C(z)W1(z, k) = 0,

[
W2(z, k)

]
z + C(z)W2(z, k) = 0 in C, (3.12)

where

C(z) = − i

π

∫∫

C
e−k′(z)T

(
k′
)
m1
(
z, k′
)
dσk′

= − i

2π

∫∫

C
e−ik

′z T
(
k′
)[
Ψ1
(
z, k′
) − iΨ2

(
z, k′
)]
dσk′ .

(3.13)

Proof. Now we verify that (3.12) and (3.13) are true. Denote

n1 =

[
ψ1(z, k) + ψ2(z, k)

]

2
, n2 = ek(z)

[
ψ2(z, k) − ψ1(z, k)

]

2
, (3.14)
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we see that n1(z, k), n2(z, k) satisfy the system of first-order complex equations

[
n1
]
k = T(k)n2,

[
n2
]
k − izn2 = T(k)n1, ek

[
e−kn2

]
k = T(k)n1,

[
n2
]
k = ek

[
ψ2 − ψ1

2

]

k

+ izn2 = T(k)n1 + izn2,
(3.15)

such that n1(z, k) → 1 and n2(z, k) → 0 (|n2(z, k)| = |ek(z)n2(z, k)| → 0) as k → ∞. Thus
we have

n1 = 1 +
1
π

∫∫

C

T
(
k′
)
n2

k − k′ dσk′ ,

[n1]z =
1
π

∫∫

C

T
(
k′
)[
n2
]
z

k − k′ dσk′

= − 1
π

∫∫

C

CT
(
k′
)
ek′n1

(
z, k′
)

k − k′ dσk′

= −C(z)ek(z)n2(z, k),

e−kn2 =
1
π

∫∫

C

e−k′T
(
k′
)
n1

k − k′
dσk′ ,

ekn2 =
1
π

∫∫

C

ek′T
(
k′
)
n1

k − k′ dσk′ ,

ek
[
e−kn1

]
z = n1z − i

(
k
′ − k + k

)
n1

= n1z − i
(
k
′ − k)n1 − ikn1,

n2z = ek
[
e−kn2

]
z + ikn2

=
ek(z)
π

∫∫

C

T
(
k′
)[
e−k′n1

]
z

k − k′
dσk′ + ikn2

= ek

[
1
π

∫∫

C

T
(
k′
)
e−k′n1z

k − k′
dσk′ +

i

π

∫∫

C
e−k′(z)T

(
k′
)
n1
(
z, k′
)
dσk′

]

− ek
[
1
π

∫∫

C

CT
(
k′
)
n2
(
z, k′
)

k − k′
dσk′ + C(z)

]

= −C(z)ek(z)n1.

(3.16)

In addition, from (3.12) it follows that

[
n1(z, k) + n2(z, k)

]
z + C(z)ek(z)

[
n1(z, k) + n2(z, k)

]
= 0,

[
n1(z, k) − n2(z, k)

]
z − C(z)ek(z)

[
n1(z, k) − n2(z, k)

]
= 0.

(3.17)
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It is obvious that

φ1(z, k) = n1(z, k) + n2(z, k), φ2(z, k) = n1(z, k) − n2(z, k) (3.18)

satisfy the system of complex equations

φ1z + C(z)ek(z)φ1 = 0, φ2z − C(z)ek(z)φ2 = 0 (3.19)

with the conditions φ1 = eikzW1 ∼ 1 and φ2 = −ieikzW2 ∼ 1 for sufficient large |z|, and
W1 = e−ikzφ1, W2 = ie−ikzφ2 are the solutions of the complex equation

Wz + C(z)W(z) = 0 for z ∈ C. (3.20)

From (3.6) and Lemma 3.3 below, the functions H1(z, k) = W1(z, k), H2(z, k) =
W2(z, k) on Γ can be obtained, then

T(k) = − i

2π

∫∫

C
e−ikζC

(
W1 − iW2

)
dσζ

=
i

2π

∫∫

D
e−ikζ

(
W1 − iW2

)
ζdσζ

= − 1
4π

∫

Γ
e−ikζ

(
W1 − iW2

)
dζ

=
i

4π

∫

Γ
νe−ikz

(
W1 − iW2

)
dS.

(3.21)

Here we use the Green formula

∫∫

D

vz dx dy = − 1
2i

∫

Γ
v dz =

1
2

∫

Γ
νv dS, (3.22)

and for Γ0 = {|z| = 1}, ν = z = e−iθ = e−i arg z, and Γj = {|z − zj | = rj}, ν = −(z − zj)/rj =
−e−iθ = −e−i arg(z−zj ), j = 1, . . . ,N, dz = −iν dS, S = θ, z ∈ Γ0, − dz = −d(z − zj) = iν dS, S =
rjθ, z ∈ Γj , j = 1, . . . ,N. This shows that the function T(k) for k ∈ C is known, and then
we can solve the solutions m1, m2 of equations in (3.5). On the basis of Lemma 3.2, we can
obtain the system of complex equations in (3.12) and the coefficient C(z) = B(z)J(z)eTJA−TJA

of (3.1). This is just the so-called inverse scattering method. We mention that sometimes
W1(z, k), W2(z, k) are written asW1(z), W2(z).
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Lemma 3.3. Under the above conditions, the functions h1(z), h2(z) as stated in (1.12) are the
solutions of the system of integral equations

1
2
(
1 − iSk

)
h1 = e−ikz,

1
2
(
1 − iSk

)
h2 = ie−ikz,

Skh1 =
1
π

∫

Γ

h1(ζ)eik(ζ−z)

ζ − z dζ, Skh2 =
1
π

∫

Γ

h2(ζ)eik(ζ−z)

ζ − z dζ.

(3.23)

We first prove one lemma (see [7]).

Lemma 3.4. The function g(z, k) = eikzhj(z) (∈ Rh, j = 1, 2) is a solution of the integral equations

g(z, k) + TJAg + TekJAg =

{
1
i

in D,

g(z, k) =

{
eikzh1(z)
eikzh2(z)

on Γ,

(3.24)

if and only if it is a solution of the integral equation

1
2
g(z, k) +

1
2πi

∫

Γ

g(ζ, k)
ζ − z dζ =

{
1,
i,

g(ζ, k) =

⎧
⎨

⎩

eikζh1(ζ),

eikζh2(ζ),

h1(z)
2

+
1

2πi

∫

Γ

h1(ζ)eik(ζ−z)

ζ − z dζ = e−ikz,

h2(z)
2

+
1

2πi

∫

Γ

h2(ζ)eik(ζ−z)

ζ − z dζ = ie−ikz on Γ.

(3.25)

Proof. It is clear that we can only discuss the case of h1. If g(z, k) is a solution of (3.24), then
gz = −JAg − ekJAg. On the basis of the Pompeiu formula

g(z, k) =
1

2πi

∫

Γ

g(ζ, k)
ζ − z dζ − T[g(ζ, k)]ζ

=
1

2πi

∫

Γ

g(ζ, k)
ζ − z dζ − T[JAg + ekJAg

]
in D

(3.26)

(see [10, Chapters I and III]), we have

g(z, k) + TJAg + TekJAg = 1 =
1

2πi

∫

Γ

g(ζ, k)
ζ − z dζ in D, (3.27)
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where g(ζ, k) = eikζh1(ζ) on Γ. Moreover by using the Plemelj-Sokhotzki formula for Cauchy
type integral (see [12, 13])

1 =
1

2πi

∫

Γ

g(ζ, k)
ζ − z dζ +

1
2
g(z, k), g(ζ, k) = eikζh1(ζ) on Γ, (3.28)

which is the formula (3.25).
On the contrary if (3.25) is true, then there exists a solution of equation gz = −AJg −

ekJAg inDwith the boundary values g(ζ, k) = eikζh1(ζ) on Γ, thus we have (3.26), where the
integral (1/2πi)

∫
Γ(g(ζ, k)/(ζ − z))dζ in D is analytic, whose boundary value on Γ is

lim
z′(∈D)→ z(∈Γ)

1
2πi

∫

Γ

g(ζ, k)
ζ − z′ dζ =

1
2
g(z, k) +

1
2πi

∫

Γ

g(ζ, k)
ζ − z dζ = 1, (3.29)

hence

1
2πi

∫

Γ

g(ζ, k)
ζ − z dζ = 1 in D, (3.30)

and the formula (3.24) is true.

Proof of Lemma 3.3. On the basis of the theory of integral equations (see [12, 13]), we can
obtain the solutions h1(z) and h2(z) of (3.23). From Lemma 3.4, we define the functions

W1(z, k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e−ikz − 1
2πi

∫

Γ

h1(ζ)eik(ζ−z)

ζ − z dζ, z ∈ C \D,

e−ikz +
1
π

∫∫

C

C(ζ)W1(ζ, k)
ζ − z dσζ, z ∈ D,

W2(z, k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ie−ikz − 1
2πi

∫

Γ

h2(ζ)eik(ζ−z)

ζ − z dζ, z ∈ C \D,

ie−ikz +
1
π

∫∫

C

C(ζ)W2(ζ, k)
ζ − z dσζ, z ∈ D,

(3.31)

which are analytic in C \ D with the boundary values h1(z), h2(z) on Γ respectively, and
satisfy the complex equation (3.1).

Moreover according to [6, 7], we can obtain the following two lemmas.

Lemma 3.5. Under the above conditions, one has

∥∥eikzW1(z, k) − 1
∥∥
W1

p,2(C(z))
≤M1,

∥∥ − ieikzW2(z, k) − 1
∥∥
W1

p,2(C(z))
≤M1, for |k| ≥ R,

(3.32)
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where p > 2, the positive constant M1 = M1(k, p, R) is only dependent on k, p and R, and R is a
sufficiently large positive number. Moreover the function T(k) in (3.6) satisfies T(k) ∈ L∞(C(k)). In
particular, T(k) ∈ Lp1,2(C(k)), where p1 (0 < p1 <∞) is a non-negative number.

Proof. From Lemma 3.1, noting that φj(z, k) → 1, z → ∞, j = 1, 2, we have

φ1(z, k) = eikzW1(z, k) = 1 +
1
π

∫∫

C

C(ζ)ek(ζ)φ1(ζ, k)
z − ζ dσζ,

φ2(z, k) = −ieikzW2(z, k) = 1 − 1
π

∫∫

C

C(ζ)ek(ζ)φ2(ζ, k)
z − ζ dσζ.

(3.33)

On the basis of the result in [10], we can get

∥∥φ1(z, k) − 1
∥∥
W1

p,2(C(z))
=

∥∥∥∥∥
1
π

∫∫

C

Cek(ζ)φ1(ζ, k)
z − ζ dσζ

∥∥∥∥∥
W1

p,2(C(z))

≤M2
∥∥Cek(ζ)φ1(ζ, k)

∥∥
Lp,2(C(z))

≤M3‖C‖Lp,2(C(z))

≤M1(k, p, R)

(3.34)

in which |k| ≥ R and Mj = Mj(k, p, R) (j = 2, 3) are positive constants only dependent on
k, p and R. Similarly, we can obtain the second estimate in (3.32).

In addition, for

T(k) = − i

2π

∫∫

C
e−ikζC

(
W1 − iW2

)
dσζ = − i

2π

∫∫

C
e−k(ζ)C

(
φ1 + φ2

)
dσζ, (3.35)

we have

∥∥T(k)
∥∥
L∞(C) ≤

∥∥∥∥∥
i

2π

∫∫

C
e−k(ζ)C(φ1 + φ2)dσζ

∥∥∥∥∥
L∞(C(k))

≤
∥∥∥∥∥
i

π

∫∫

C
e−k(ζ)Cm1(ζ, k)dσζ

∥∥∥∥∥
L∞(C(k))

≤ 1
π
‖C‖Lp,2(C(z))

∥∥∥∥m1(ζ, k)
∥∥
Lq,2(C(z))

‖L∞(C(k)),

(3.36)

in which q = p/(p − 1), 1 < q < 2. It is not difficult to see that T(k) ∈ Lp1,2(C(k)), where
p1 (0 < p1 <∞) is a non-negative constant.
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Lemma 3.6. Under the above conditions, one can find the coefficientsQ = Q(z) of the complex system
of first-order equations Dkm2 = m2z − ikm2 = Qm1(Q = C) in D as follows

Q(z) = lim
k0 →∞

1
πr2

∫∫

|k−k0|≤r
Dkm2(z, k)dσk

= lim
k0 →∞

1
πr2

∫∫

|k−k0|≤r
Qm1(z, k)dσk,

(3.37)

in which dσk = dRe k dIm k.

Proof. From the formula (3.4), we can get

lim
k0 →∞

∫∫

|k−k0|≤r
Dkm2(z, k)dσk = Q lim

k0 →∞

∫∫

|k−k0|≤r
m1(z, k)dσk

= πr2Q(z),

(3.38)

wherem1(z, k) → 1 as k → ∞, hence the the formula (3.37) is true.

Theorem 3.7. For the inverse problem of Problem DN for (1.3) with Condition C, one can
reconstruct the coefficients a(ζ) and b(ζ).

Proof. Similarly to [9], we will use the generalized Cauchy formula

F(z) =
1

2πi

∫

Γ
Ω1(z, ζ)Fdζ − 1

2πi

∫

Γ
Ω2(z, ζ)Fdζ in D, (3.39)

for the complex equation

Fz =
[
e−TAJ

]
z = e

−TAJ(−AJ) = −C
(
J

J

)
e−TAJ = −CF J

J
(3.40)

to find the function F = F(z) = e−TAJ inD, in whichΩ1(z, ζ), Ω2(z, ζ) are the standard kernels
of equation (3.40) (see [10, Chapter III]). In fact, denote F = e−TAJ in D, and F = e−TAJ on
Γ is known from Theorem 2.5, then according to (3.39), we can find the function F(z) in D.
Moreover from

[ − lnF
]
z = CFJ/FJ = C

(
J

J

)
eTAJ−TAJ = AJ in D, (3.41)

thus the coefficient A = [a(ζ) + ib(ζ)]/4 in G is obtained.
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4. The Global Uniqueness Result for Inverse Problem of First-Order
Elliptic Complex Equations from Dirichlet to Neumann Map

For the elliptic equation of second-order

ujξξ + ujηη + ajujξ + bjujη = 0 in G, j = 1, 2, (4.1)

in which aj = aj(ζ), bj = bj(ζ) are real functions of ζ = ξ + iη (∈ G, j = 1, 2), and aj , bj ∈
Lp(G), j = 1, 2, p(> 2) is a positive constant. Moreover define aj = bj = 0 (j = 1, 2) in C \ G.
Denote

Wj(ζ) = Uj + iVj =

[
ujξ − iujη

]

2
= ujζ = ujζ in G, j = 1, 2, (4.2)

and we can get

Wjζ =

[
Wjξ + iWjη

]

2

= −1
4
[
ajujξ + bjujη

]

= −Aj(ζ)Wj − Bj(ζ)Wj

= −2Re[AjWj

]
in G, j = 1, 2,

(4.3)

where Aj = Aj(ζ) = Bj(ζ) = [aj + ibj]/4, j = 1, 2. As stated in Section 1, suppose that the
above equations satisfy ConditionC, and through a conformalmapping z = z(ζ), the complex
equations in (4.3) can be reduced to the following form

Wjz = −ζ′(z){Aj

[
ζ(z)
]
Wj + Bj

[
ζ(z)
]
Wj

}
,

wjz = −2Re{Aj

[
ζ(z)
]
ζ′(z)ujz

}

= −2Re{Aj

[
ζ(z)
]
J(z)wj

}
in D, j = 1, 2,

(4.4)

where D is a circular domain, and J(z) = ζ′(z).
If wj(z) = ujz (j = 1, 2) are the corresponding solutions of (4.4) from the Dirichlet

to Neumann maps Λj (j = 1, 2), and Λ1 = Λ2 = Λ, then the boundary conditions of the
inverse boundary value problem for second-order elliptic equations in (4.1) from Dirichlet to
Neumann map can be reduced to

wj(z) = ujz = h(z) on Γ, j = 1, 2, (4.5)

where h(z) (∈ Cα(Γ), 0 < α ≤ (p − 2)/p) is a known complex function. In the following we
will prove the uniqueness theorem as follows.
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Theorem 4.1. For the inverse problem of ProblemDN for (1.1) (or (1.3)) with Condition C, one can
uniquely determine the coefficients a, b. In other words, if Λ1 = Λ2 for (4.1), then a1 = a2, b1 = b2.

We first prove the Carleman estimate (see [7]).

Lemma 4.2. If the complex function u(z) ∈ W1
p(D) with the condition u(z) = 0 on Γ, and the real

function φ(z) ∈W2
p(D) (p > 2) then one has the Carleman estimate

∫∫

D

Δφ|u|2eφ dσz ≤ 4
∫∫

D

∣∣uz
∣∣2eφ dσz. (4.6)

Proof. It is sufficient to prove the equality

∫∫

D

Δφ|u|2eφ dσz + 4
∫∫

D

∣∣uz + uφz
∣∣2eφ dσz = 4

∫∫

D

∣∣uz
∣∣2eφ dσz, (4.7)

in which φ(z) ∈W2
p(D), and u(z) ∈W1

p(D)with the condition u(z) = 0 on Γ. We first consider
the complex form of the Green formula about v = uz

1
4

∫∫

D

[
uxx + uyy

]
dx dy =

∫∫

D

uzz dx dy =
1
4

∫

D

[
uxdy − uy dx

]
=

1
2i

∫

Γ
uz dz,

∫∫

D

vz dx dy =
1
2i

∫

Γ
v dz, or

∫∫

D

vz dx dy = − 1
2i

∫

Γ
v dz,

(4.8)

with u ∈ C2(D).
If u(z), φ(z) are the above functions, by using the Green formula, we have

∫∫

D

[
uuze

φ]
zdx dy =

∫∫

D

uzuze
φ dx dy +

∫∫

D

u
[
uze

φ]
zdx dy =

1
2i

∫

Γ
uuze

φ dz = 0,
∫∫

D

∣∣uz
∣∣2eφ dx dy =

∫∫

D

uzuze
φ dx dy = −

∫∫

D

u
[
uze

φ]
zdx dy

= −
∫∫

D

u
[
uzz + uzφz

]
eφ dx dy,

∫∫

D

∣∣uz + uφz
∣∣2eφ dx dy =

∫∫

D

[
uz + uφz

][
uz + uφz

]
eφdx dy

= −
∫∫

D

u
[
uze

φ + uφzeφ
]
zdx dy +

∫∫

D

uφz
[
uz + uφz

]
eφdx dy

= −
∫∫

D

u
[
uzz + uzφz + uφzz

]
eφdx dy −

∫∫

D

u
[
uz + uφz

]
φze

φdx dy

+
∫∫

D

uφz
[
uz + uφz

]
eφdx dy

= −
∫∫

D

u
[
uzz + uzφz + uφzz

]
eφdx dy,

(4.9)
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thus
∫∫

D

∣∣uz
∣∣2eφ dx dy −

∫∫

D

∣∣uz + uφz
∣∣2eφ dx dy =

∫∫

D

uuφzze
φ dx dy

=
∫∫

D

1
4
|u|2Δφeφ dx dy.

(4.10)

This is just the formula (4.7) for u(z) ∈ C2(D). Due to the density of C2(D) inW1
p(D)(p > 2),

it is known that (4.7) is also true for u(z) ∈W1
p(D)with the condition u(z) = 0 on Γ.

Lemma 4.3. Under the above conditions, one can derive

C1 = C2, z ∈ D. (4.11)

Proof. On the basis of h1(z) = h2(z) on Γ, and the results of Lemmas 3.1 and 3.2, it follows
that the corresponding coefficients T1(k) = T2(k), and then C1(z) = C2(z) in D. This shows
that the formula (4.11) is true.

Proof of Theorem 4.1. Similarly to [7], we can prove

A1 = A2 in D. (4.12)

From (4.11), we have

C1 = A1Je
TJA1−TJA1 = A2Je

TJA2−TJA2 = C2, z ∈ D. (4.13)

If we define Aj(z) = 0, z ∈ C \D, then C1 = C2, z ∈ C, and denote

E(z) = TJ
(
A2 −A1

)
, Ez = J

(
A2 −A1

)
, F(z) = eTJ(A2−A1)−TJ(A2−A1), (4.14)

one gets

JA1 = F(z)JA2, E(z) = TJ(A2 −A1) = T(1 − F(z))JA2 in C. (4.15)

Setting that iθ(z) = TJ(A2 −A1) − TJ(A2 −A1), obviously θ(z) is a real function, and

∣∣1 − F(z)∣∣ = ∣∣eiθ − 1
∣∣ =
∣∣eiθ/2 − e−iθ/2∣∣ = 2

∣∣∣∣ sin
(
θ

2

)∣∣∣∣ ≤ |θ|

=
∣∣TJ
(
A2 −A1

) − TJ(A2 −A1
)∣∣ ≤ 2

∣∣TJ
(
A2 −A1

)∣∣ = 2
∣∣E(z)

∣∣,
[
E(z)

]
z = J

(
A2 −A1

)
,

∣∣[E(z)
]
z

∣∣ ≤ ∣∣JA2
∣∣∣∣1 − F(z)∣∣ ≤ 2

∣∣JA2
∣∣∣∣E(z)

∣∣,

(4.16)

where E(z) = TJ(A2 −A1) = 0 on Γ is derived from Theorem 2.5.
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Finally we use the Carleman estimate for u(z) = E(z) and (4.16), and can get

∫∫

D

Δφ
∣∣E(z)

∣∣2eφdσz ≤ 4
∫∫

D

∣∣Ez
∣∣2eφ dσz

≤ 16
∫∫

D

∣∣JA2
∣∣2∣∣E(z)

∣∣2eφ dσz.
(4.17)

Taking into account A2 ∈ Lp(D), p > 2, and choosing

φ(z) =
9
π

∫∫

D

|JA|2 ln |ζ − z|dσζ for A(z) = max
(
1,
∣∣A2
∣∣), (4.18)

it is easy to see that Δφ = 4φzz = 18|JA|2 in D, and then

2
∫∫

D

∣∣JA(z)
∣∣2∣∣E(z)

∣∣2eφ dσz ≤ 0, E(z) = 0 in D. (4.19)

Consequently

J
(
A2 −A1

)
= 0, A2 −A1 = 0 in D, (4.20)

this shows the coefficients a1 = a2, b1 = b2 of equations in (4.1) in G.
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