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We are concerned with the higher-order nonlinear three-point boundary value problems: x(n) =
f(t, x, x′, . . . , x(n−1)), n ≥ 3, with the three point boundary conditions g(x(a), x′(a), . . . , x(n−1)(a)) =
0; x(i)(b) = μi, i = 0, 1, . . . , n − 3;h(x(c), x′(c), . . . , x(n−1)(c)) = 0, where a < b < c, f : [a, c] × R

n →
R = (−∞,+∞) is continuous, g, h : R

n → R are continuous, andμi ∈ R, i = 0, 1, . . . , n − 3 are
arbitrary given constants. The existence and uniqueness results are obtained by using the method
of upper and lower solutions together with Leray-Schauder degree theory. We give two examples
to demonstrate our result.
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1. Introduction

Higher-order boundary value problems were discussed in many papers in recent years; for
instance, see [1–22] and references therein. However, most of all the boundary conditions in
the above-mentioned references are for two-point boundary conditions [2–11, 14, 17–22], and
three-point boundary conditions are rarely seen [1, 12, 13, 16, 18]. Furthermore works for
nonlinear three point boundary conditions are quite rare in literatures.

The purpose of this article is to study the existence and uniqueness of solutions for
higher order nonlinear three point boundary value problem

x(n) = f
(
t, x, x′, . . . , x(n−1)

)
, n ≥ 3, (1.1)
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with nonlinear three point boundary conditions

g
(
x(a), x′(a), . . . , x(n−1)(a)

)
= 0,

x(i)(b) = μi, i = 0, 1, . . . , n − 3,

h
(
x(c), x′(c), . . . , x(n−1)(c)

)
= 0,

(1.2)

where a < b < c, f : [a, c] × R
n → R = (−∞,+∞) is a continuous function, g, h : R

n → R are
continuous functions, and μi ∈ R, i = 0, 1, . . . , n− 3 are arbitrary given constants. The tools we
mainly used are the method of upper and lower solutions and Leray-Schauder degree theory.

Note that for the cases of a = b or b = c in the boundary conditions (1.2), our theorems
hold also true. However, for brevity we exclude such cases in this paper.

2. Preliminary

In this section, we present some definitions and lemmas that are needed to our main results.

Definition 2.1. α(t), β(t) ∈ Cn[a, c] are called lower and upper solutions of BVP (1.1), (1.2),
respectively, if

α(n)(t) ≥ f(t, α(t), α′(t), . . . , α(n−1)(t)), t ∈ [a, c],

g
(
α(a), α′(a), . . . , α(n−1)(a)

) ≤ 0,

α(i)(b) ≤ μi, i = 0, 1, . . . , n − 3,

h
(
α(c), α′(c), . . . , α(n−1)(c)

) ≤ 0,

β(n)(t) ≤ f(t, β(t), β′(t), . . . , β(n−1)(t)), t ∈ [a, c],

g
(
β(a), β′(a), . . . , β(n−1)(a)

) ≥ 0,

β(i)(b) ≥ μi, i = 0, 1, . . . , n − 3,

h
(
β(c), β′(c), . . . , β(n−1)(c)

) ≥ 0.

(2.1)

Definition 2.2. Let E be a subset of [a, c] × R
n. We say that f(t, x0, x1, . . . , xn−1) satisfies the

Nagumo condition on E if there exists a continuous function φ : [0,+∞) → (0,+∞) such that

∣∣f(t, x0, x1, . . . , xn−1)
∣∣ ≤ φ(|xn−1|), (t, x0, x1, . . . , xn−1) ∈ E,
∫+∞

0

sds

φ(s)
= +∞.

(2.2)

Lemma 2.3 (see [10]). Let f : [a, c] × R
n → R be a continuous function satisfying the Nagumo

condition on

E =
{
(t, x0, x1, . . . , xn−1) ∈ [a, c] × R

n : γi(t) ≤ xi ≤ Γi(t), i = 0, 1, . . . , n − 2
}
, (2.3)
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where γi(t),Γi(t) : [a, c] → R are continuous functions such that

γi(t) ≤ Γi(t), i = 0, 1, . . . , n − 2, t ∈ [a, c]. (2.4)

Then there exists a constant r > 0 (depending only on γn−2(t),Γn−2(t) and φ(t)) such that every
solution x(t) of (1.1) with

γi(t) ≤ x(i)(t) ≤ Γi(t), i = 0, 1, . . . , n − 2, t ∈ [a, c] (2.5)

satisfies ‖x(n−1)‖∞ ≤ r.

Lemma 2.4. Let φ : [0,+∞) → (0,+∞) be a continuous function. Then boundary value problem

x(n) = x(n−2)φ
(∣∣x(n−1)∣∣), t ∈ [a, c], (2.6)

x(n−2)(a) = x(i)(b) = x(n−2)(c) = 0, i = 0, 1, . . . , n − 3 (2.7)

has only the trivial solution.

Proof. Suppose that x0(t) is a nontrivial solution of BVP (2.6), (2.7). Then there exists t0 ∈
(a, c) such that x(n−2)

0 (t0) > 0 or x(n−2)
0 (t0) < 0. We may assume x(n−2)

0 (t0) > 0. There exists
t1 ∈ (a, c) such that

max
t∈[a,c]

x
(n−2)
0 (t) := x(n−2)

0 (t1) > 0. (2.8)

Then x(n−1)
0 (t1) = 0, x(n)

0 (t1) ≤ 0. From (2.6) we have

0 ≥ x(n)
0 (t1) = x

(n−2)
0 (t1)φ

(∣∣∣x(n−1)
0 (t1)

∣∣∣
)
> 0, (2.9)

which is a contradiction. Hence BVP (2.6), (2.7) has only the trivial solution.

3. Main Results

We may now formulate and prove our main results on the existence and uniqueness of
solutions for nth-order three point boundary value problem (1.1), (1.2).

Theorem 3.1. Assume that

(i) there exist lower and upper solutions α(t), β(t) of BVP (1.1), (1.2), respectively, such that

(−1)n−iα(i)(t) ≤ (−1)n−iβ(i)(t), t ∈ [a, b], i = 0, 1, . . . , n − 2,

α(i)(t) ≤ β(i)(t), t ∈ [b, c], i = 0, 1, . . . , n − 2;
(3.1)
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(ii) f(t, x0, . . . , xn−1) is continuous on [a, c]×R
n, (−1)n−if(t, x0, . . . , xn−1) is nonincreasing in

xi(i = 0, 1, . . . , n−3) onDb
a, and f(t, x0, . . . , xn−1) is nonincreasing in xi (i = 0, 1, . . . , n−

3) on Dc
b
and satisfies the Nagumo condition on Dc

a, where

ϕi(t) = min
{
α(i)(t), β(i)(t)

}
, ψi(t) = max

{
α(i)(t), β(i)(t)

}
, i = 0, . . . , n − 2,

Db
a =

{
(t, x0, . . . , xn−1) ∈ [a, b] × R

n : ϕi(t) ≤ xi ≤ ψi(t), i = 0, . . . , n − 2
}
,

Dc
b
=
{
(t, x0, . . . , xn−1) ∈ [b, c] × R

n : ϕi(t) ≤ xi ≤ ψi(t), i = 0, . . . , n − 2
}
,

Dc
a =

{
(t, x0, . . . , xn−1) ∈ [a, c] × R

n : ϕi(t) ≤ xi ≤ ψi(t), i = 0, . . . , n − 2
}
;

(3.2)

(iii) g(x0, x1, . . . , xn−1) is continuous on R
n, and (−1)n−ig(x0, x1, . . . , xn−1) is nonincreasing

in xi (i = 0, 1, . . . , n − 3) and nondecreasing in xn−1 on
∏n−2

i=0 [ϕi(a), ψi(a)] × R;

(iv) h(x0, x1, . . . , xn−1) is continuous on R
n, and nonincreasing in xi (i = 0, 1, . . . , n − 3) and

nondecreasing in xn−1 on
∏n−2

i=0 [ϕi(c), ψi(c)] × R.

Then BVP (1.1), (1.2) has at least one solution x(t) ∈ Cn[a, c] such that for each i = 0, 1, . . . , n − 2,

(−1)n−iα(i)(t) ≤ (−1)n−ix(i)(t) ≤ (−1)n−iβ(i)(t), t ∈ [a, b],

α(i)(t) ≤ x(i)(t) ≤ β(i)(t), t ∈ [b, c].
(3.3)

Proof. For each i = 0, 1, . . . , n − 2 define

wi(t, x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ψi(t), x > ψi(t),

x, ϕi(t) ≤ x ≤ ψi(t),
ϕi(t), x < ϕi(t),

(3.4)

where ϕi(t) = min{α(i)(t), β(i)(t)}, ψi(t) = max{α(i)(t), β(i)(t)}.
For λ ∈ [0, 1], we consider the auxiliary equation

x(n)(t) = λf
(
t,w0(t, x(t)), . . . , wn−2

(
t, x(n−2)(t)

)
, x(n−1)(t)

)

+
[
x(n−2)(t) − λwn−2

(
t, x(n−2)(t)

)]
φ
(∣∣∣x(n−1)(t)

∣∣∣
)
,

(3.5)

where φ is given by the Nagumo condition, with the boundary conditions

x(n−2)(a) = λ
[
wn−2

(
a, x(n−2)(a)

)
− g

(
w0(a, x(a)), . . . , wn−2

(
a, x(n−2)(a)

)
, x(n−1)(a)

)]
,

x(i)(b) = λμi, i = 0, 1, . . . , n − 3,

x(n−2)(c) = λ
[
wn−2

(
c, x(n−2)(c)

)
− h

(
w0(c, x(c)), . . . , wn−2

(
c, x(n−2)(c)

)
, x(n−1)(c)

)]
.

(3.6)
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Then we can choose a constantMn−2 > 0 such that

−Mn−2 < α(n−2)(t) ≤ β(n−2)(t) < Mn−2, t ∈ [a, c], (3.7)

f
(
t, α(t), . . . , α(n−2)(t), 0

)
−
[
Mn−2 + α(n−2)(t)

]
φ(0) < 0, t ∈ [a, c],

f
(
t, β(t), . . . , β(n−2)(t), 0

)
+
[
Mn−2 − β(n−2)(t)

]
φ(0) > 0, t ∈ [a, c],

(3.8)

∣∣∣α(n−2)(a) − g
(
α(a), . . . , α(n−2)(a), 0

)∣∣∣ < Mn−2,

∣∣∣β(n−2)(a) − g
(
β(a), . . . , β(n−2)(a), 0

)∣∣∣ < Mn−2,
(3.9)

∣∣∣α(n−2)(c) − h
(
α(c), . . . , α(n−2)(c), 0

)∣∣∣ < Mn−2,

∣∣∣β(n−2)(c) − h
(
β(c), . . . , β(n−2)(c), 0

)∣∣∣ < Mn−2.
(3.10)

In the following, we will complete the proof in four steps.

Step 1. Show that every solution x(t) of BVP (3.5), (3.6) satisfies

∣∣∣x(n−2)(t)
∣∣∣ < Mn−2, t ∈ [a, c], (3.11)

independently of λ ∈ [0, 1].
Suppose that the estimate |x(n−2)(t)| < Mn−2 is not true. Then there exists t0 ∈ [a, c]

such that x(n−2)(t0) ≥ Mn−2 or x(n−2)(t0) ≤ −Mn−2. We may assume x(n−2)(t0) ≥ Mn−2 . There
exists t1 ∈ [a, c] such that

max
t∈[a,c]

x(n−2)(t) := x(n−2)(t1)(≥Mn−2 > 0). (3.12)

There are three cases to consider.

Case 1 (t1 ∈ (a, c)). In this case, x(n−1)(t1) = 0 and x(n)(t1) ≤ 0. For λ ∈ (0, 1], by (3.8), we get
the following contradiction:

0 ≥ x(n)(t1)

= λf
(
t1, w0(t1, x(t1)), . . . , wn−2

(
t1, x

(n−2)(t1)
)
, x(n−1)(t1)

)

+
[
x(n−2)(t1) − λwn−2

(
t1, x

(n−2)(t1)
)]
φ
(∣∣∣x(n−1)(t1)

∣∣∣
)

= λf
(
t1, w0(t1, x(t1)), . . . , wn−3

(
t1, x

(n−3)(t1)
)
, β(n−2)(t1), 0

)

+
[
x(n−2)(t1) − λβ(n−2)(t1)

]
φ(0)

≥ λ
{
f
(
t1, β(t1), . . . , β(n−2)(t1), 0

)
+
[
Mn−2 − β(n−2)(t1)

]
φ(0)

}
> 0,

(3.13)
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and for λ = 0, we have the following contradiction:

0 ≥ x(n)(t1) = x(n−2)(t1)φ(0) ≥Mn−2φ(0) > 0. (3.14)

Case 2 (t1 = a). In this case,

max
t∈[a,c]

x(n−2)(t) := x(n−2)(a)(≥Mn−2 > 0), (3.15)

and x(n−1)(a) ≤ 0. For λ = 0, by (3.6)we have the following contradiction:

0 < Mn−2 ≤ x(n−2)(a) = 0. (3.16)

For λ ∈ (0, 1], by (3.9) and condition (iii)we can get the following contradiction:

Mn−2 ≤ x(n−2)(a),

= λ
[
wn−2

(
a, x(n−2)(a)

)
− g

(
w0(a, x(a)), . . . , wn−2

(
a, x(n−2)(a)

)
, x(n−1)(a)

)]
,

≤ λ
[
β(n−2)(a) − g

(
β(a), . . . , β(n−2)(a), 0

)]
< Mn−2.

(3.17)

Case 3 (t1 = c). In this case,

max
t∈[a,c]

x(n−2)(t) := x(n−2)(c)(≥Mn−2 > 0), (3.18)

and x(n−1)(c) ≥ 0. For λ = 0, by (3.6)we have the following contradiction:

0 < Mn−2 ≤ x(n−2)(c) = 0. (3.19)

For λ ∈ (0, 1], by (3.10) and condition (iv) we can get the following contradiction:

Mn−2 ≤ x(n−2)(c),

= λ
[
wn−2

(
c, x(n−2)(c)

)
− h

(
w0(c, x(c)), . . . , wn−2

(
c, x(n−2)(c)

)
, x(n−1)(c)

)]

≤ λ
[
β(n−2)(c) − h

(
β(c), . . . , β(n−2)(c), 0

)]
< Mn−2.

(3.20)

By (3.6), the estimates

∣∣∣x(i)(t)
∣∣∣ < Mi := (c − a)Mi+1 +

∣∣μi
∣∣, i = 0, 1, . . . , n − 3, t ∈ [a, c] (3.21)

are obtained by integration.
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Step 2. Show that there exists Mn−1 > 0 such that every solution x(t) of BVP (3.5), (3.6)
satisfies

∣∣∣x(n−1)(t)
∣∣∣ < Mn−1, t ∈ [a, c], (3.22)

independently of λ ∈ [0, 1].
Let

E = {(t, x0, . . . , xn−1) ∈ [a, c] × R
n : |xi| ≤Mi, i = 0, 1, . . . , n − 2}, (3.23)

and define the function Fλ : [a, c] × R
n → R as follows:

Fλ(t, x0, . . . , xn−1) = λf(t,w0(t, x0), . . . , wn−2(t, xn−2), xn−1)

+ [xn−2 − λwn−2(t, xn−2)]φ(|xn−1|).
(3.24)

In the following, we show that Fλ(t, x0, . . . , xn−1) satisfies the Nagumo condition on E,
independently of λ ∈ [0, 1]. In fact, since f satisfies the Nagumo condition on Dc

a, we have

|Fλ(t, x0, . . . , xn−1)| =
∣∣λf(t,w0(t, x0), . . . , wn−2(t, xn−2), xn−1)

+ [xn−2 − λwn−2(t, xn−2)]φ(|xn−1|)
∣∣

≤ [1 + 2Mn−2]φ(|xn−1|) := φE(|xn−1|).
(3.25)

Furthermore, we obtain

∫+∞

0

s

φE(s)
ds =

∫+∞

0

s

(1 + 2Mn−2)φ(s)
ds = +∞. (3.26)

Thus, Fλ satisfies the Nagumo condition on E, independently of λ ∈ [0, 1]. Let

γi(t) = −Mi, Γi(t) =Mi, i = 0, 1, . . . , n − 2, t ∈ [a, c]. (3.27)

By Step 1 and Lemma 2.3, there existsMn−1 > 0 such that |x(n−1)(t)| < Mn−1 for t ∈ [a, c]. Since
Mn−2 and φE do not depend on λ, the estimate |x(n−1)(t)| < Mn−1 on [a, c] is also independent
of λ.

Step 3. Show that for λ = 1, BVP (3.5), (3.6) has at least one solution x1(t).
Define the operators as follows:

L : Cn[a, c] ⊂ Cn−1[a, c] −→ C[a, c] × R
n, (3.28)
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by

Lx =
(
x(n)(t), x(n−2)(a), x(b), . . . , x(n−3)(b), x(n−2)(c)

)
,

Nλ : Cn−1[a, c] −→ C[a, c] × R
n,

(3.29)

by

Nλx =
(
Fλ

(
t, x(t), . . . , x(n−1)(t)

)
, Aλ, λμ0, . . . , λμn−3, Cλ

)
, (3.30)

with

Aλ := λ
[
wn−2

(
a, x(n−2)(a)

) − g(w0(a, x(a)), . . . , wn−2
(
a, x(n−2)(a)

)
, x(n−1)(a)

)]

Cλ := λ
[
wn−2

(
c, x(n−2)(c)

) − h(w0(c, x(c)), . . . , wn−2
(
c, x(n−2)(c)

)
, x(n−1)(c)

)]
.

(3.31)

Since L−1 is compact, we have the following compact operator:

Tλ : Cn−1[a, c] −→ Cn−1[a, c], (3.32)

defined by

Tλ(x) = L−1Nλ(x). (3.33)

Consider the set Ω = {x ∈ Cn−1[a, c] : ‖x(i)‖∞ < Mi, i = 0, 1, . . . , n − 1}.
By Steps 1 and 2, the degree deg(I − Tλ,Ω, 0) is well defined for every λ ∈ [0, 1], and

by homotopy invariance, we get

deg(I − T0,Ω, 0) = deg(I − T1,Ω, 0). (3.34)

Since the equation x = T0(x) has only the trivial solution from Lemma 2.4, by the degree
theory we have

deg(I − T1,Ω, 0) = deg(I − T0,Ω, 0) = ±1. (3.35)

Hence, the equation x = T1(x) has at least one solution. That is, the boundary value problem

x(n)(t) = f
(
t,w0(t, x(t)), . . . , wn−2

(
t, x(n−2)(t)

)
, x(n−1)(t)

)

+
[
x(n−2)(t) −wn−2

(
t, x(n−2)(t)

)]
φ
(∣∣∣x(n−1)(t)

∣∣∣
)
,

(3.36)
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with the boundary conditions

x(n−2)(a) = wn−2
(
a, x(n−2)(a)

)
− g

(
w0(a, x(a)), . . . , wn−2

(
a, x(n−2)(a)

)
, x(n−1)(a)

)
,

x(i)(b) = μi, i = 0, 1, . . . , n − 3,

x(n−2)(c)= wn−2
(
c, x(n−2)(c)

)
− h

(
w0(c, x(c)), . . . , wn−2

(
c, x(n−2)(c)

)
, x(n−1)(c)

)
,

(3.37)

has at least one solution x1(t) in Ω.

Step 4. Show that x1(t) is a solution of BVP (1.1), (1.2).
In fact, the solution x1(t) of BVP (3.36), (3.37)will be a solution of BVP (1.1), (1.2), if it

satisfies

ϕi(t) ≤ x(i)
1 (t) ≤ ψi(t), i = 0, 1, . . . , n − 2, t ∈ [a, c]. (3.38)

By contradiction, suppose that there exists t0 ∈ [a, c] such that x(n−2)
1 (t0) > ψn−2(t0). There

exists t1 ∈ [a, c] such that

max
t∈[a,c]

[
x
(n−2)
1 (t) − ψn−2(t)

]
:= x(n−2)

1 (t1) − ψn−2(t1) > 0. (3.39)

Now there are three cases to consider.

Case 1 (t1 ∈ (a, c)). In this case, since ψn−2(t) = β(n−2)(t) on [a, c], we have x(n−1)
1 (t1) = β(n−1)(t1)

and x(n)
1 (t1) ≤ β(n)(t1). By conditions (i) and (ii), we get the following contradiction:

0 ≥ x(n)
1 (t1) − β(n)(t1)

≥ f
(
t1, w0(t1, x1(t1)), . . . , wn−2

(
t1, x

(n−2)
1 (t1)

)
, x

(n−1)
1 (t1)

)

+
[
x
(n−2)
1 (t1) −wn−2

(
t1, x

(n−2)
1 (t1)

)]
φ
(∣∣∣x(n−1)

1 (t1)
∣∣∣
)
− f

(
t1, β(t1), . . . , β(n−1)(t1)

)

≥ f
(
t1, β(t1), . . . , β(n−1)(t1)

)
+
[
x
(n−2)
1 (t1) − β(n−2)(t1)

]
φ
(∣∣∣x(n−1)

1 (t1)
∣∣∣
)

− f
(
t1, β(t1), · · · , β(n−1)(t1)

)

=
[
x
(n−2)
1 (t1) − β(n−2)(t1)

]
φ
(∣∣∣x(n−1)

1 (t1)
∣∣∣
)
> 0.

(3.40)

Case 2 (t1 = a). In this case, we have

max
t∈[a,c]

[
x
(n−2)
1 (t) − ψn−2(t)

]
:= x(n−2)

1 (a) − β(n−2)(a) > 0, (3.41)
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and x
(n−1)
1 (a) ≤ β(n−1)(a). By (3.37) and conditions (i) and (iii) we can get the following

contradiction:

β(n−2)(a) < x(n−2)
1 (a),

= wn−2
(
a, x

(n−2)
1 (a)

)
− g

(
w0(a, x1(a)), . . . , wn−2

(
a, x

(n−2)
1 (a)

)
, x

(n−1)
1 (a)

)

≤ β(n−2)(a) − g
(
β(a), . . . , β(n−2)(a), β(n−1)(a)

)
≤ β(n−2)(a).

(3.42)

Case 3 (t1 = c). In this case, we have

max
t∈[a,c]

[
x
(n−2)
1 (t) − ψn−2(t)

]
:= x(n−2)

1 (c) − β(n−2)(c) > 0, (3.43)

and x
(n−1)
1 (c) ≥ β(n−1)(c). By (3.37) and conditions (i) and (iv) we can get the following

contradiction:

β(n−2)(c) < x(n−2)
1 (c)

= wn−2
(
c, x

(n−2)
1 (c)

)
− h

(
w0(c, x1(c)), . . . , wn−2

(
c, x

(n−2)
1 (c)

)
, x

(n−1)
1 (c)

)

≤ β(n−2)(c) − h
(
β(c), . . . , β(n−2)(c), β(n−1)(c)

)
≤ β(n−2)(c).

(3.44)

Similarly, we can show that ϕn−2(t) ≤ x(n−2)
1 (t) on [a, c]. Hence

α(n−2)(t) = ϕn−2(t) ≤ x(n−2)
1 (t) ≤ ψn−2(t) = β(n−2)(t), t ∈ [a, c]. (3.45)

Also, by boundary condition (3.37) and condition (i), we have

α(i)(b) = x(i)
1 (b) = β(i)(b), i = n − 1 − 2j, j = 1, 2, . . . ,

[
n − 1
2

]
,

α(i)(b) ≤ x(i)
1 (b) ≤ β(i)(b), i = n − 2 − 2j, j = 1, 2, . . . ,

[
n − 2
2

]
.

(3.46)

Therefore by integration we have for each i = 0, 1, . . . , n − 2,

(−1)n−iα(i)(t) ≤ (−1)n−ix(i)
1 (t) ≤ (−1)n−iβ(i)(t), t ∈ [a, b],

α(i)(t) ≤ x(i)
1 (t) ≤ β(i)(t), t ∈ [b, c],

(3.47)
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that is,

ϕi(t) ≤ x(i)
1 (t) ≤ ψi(t), i = 0, 1, . . . , n − 2, t ∈ [a, c]. (3.48)

Hence x1(t) is a solution of BVP (1.1), (1.2) and satisfies (3.3).

Now we give a uniqueness theorem by assuming additionally the differentiability for
functions f , g and h, and a kind of estimating condition in Theorem 3.1.

Theorem 3.2. Assume that

(i) there exist lower and upper solutions α(t), β(t) of BVP (1.1), (1.2), respectively, such that

(−1)n−iα(i)(t) ≤ (−1)n−iβ(i)(t), t ∈ [a, b], i = 0, 1, . . . , n − 2,

α(i)(t) ≤ β(i)(t), t ∈ [b, c], i = 0, 1, . . . , n − 2;
(3.49)

(ii) f(t, x0, . . . , xn−1) and its first-order partial derivatives in xi (i = 0, 1, . . . , n − 1) are
continuous on [a, c] × R

n, (−1)n−i(∂f/∂xi) ≤ 0 (i = 0, 1, . . . , n − 3) on Db
a, ∂f/∂xi ≤

0 (i = 0, 1, . . . , n − 3) on Dc
b
and satisfy the Nagumo condition on Dc

a;

(iii) g(x0, x1, . . . , xn−1) is continuous on R
n and continuously partially differentiable on∏n−2

i=0 [ϕi(a), ψi(a)] × R, and

(−1)n−i ∂g
∂xi

≤ 0, i = 0, 1, . . . , n − 3,

∂g

∂xn−1
≤ 0, on

n−2∏
i=0

[
ϕi(a), ψi(a)

] × R;

(3.50)

(iv) h(x0, x1, . . . , xn−1) is continuous on R
n and continuously partially differentiable on∏n−2

i=0 [ϕi(c), ψi(c)] × R, and

∂h

∂xi
≤ 0, i = 0, 1, . . . , n − 3,

∂h

∂xn−1
≥ 0, on

n−2∏
i=0

[
ϕi(c), ψi(c)

] × R;

(3.51)



12 Boundary Value Problems

(v) there exists a function γ(t) ∈ Cn[a, c] such that γ (n−2)(t) > 0 on [a, c], and

γ (n)(t) <
n−1∑
i=0

∂f

∂xi
· γ (i)(t), on Dc

a

n−1∑
i=0

∂g

∂xi
· γ (i)(a) > 0, on

n−2∏
i=0

[
ϕi(a), ψi(a)

] × R,

n−1∑
i=0

∂h

∂xi
· γ (i)(c) > 0, on

n−2∏
i=0

[
ϕi(c), ψi(c)

] × R,

γ (i)(b) = 0, if n − i : odd, i = 0, 1, . . . , n − 3,

γ (i)(b) ≥ 0, if n − i : even, i = 0, 1, . . . , n − 3.

(3.52)

Then BVP (1.1), (1.2) has a unique solution x(t) satisfying (3.3).

Proof. The existence of a solution for BVP (1.1), (1.2) satisfying (3.3) follows from
Theorem 3.1.

Now, we prove the uniqueness of solution for BVP (1.1), (1.2). To do this, we let x1(t)
and x2(t) are any two solutions of BVP (1.1), (1.2) satisfying (3.3). Let z(t) = x2(t) − x1(t). It
is easy to show that z(t) is a solution of the following boundary value problem

z(n)(t) =
n−1∑
i=0

di(t)z(i)(t), (3.53)

n−1∑
i=0

aiz
(i)(a) = 0,

n−1∑
i=0

ciz
(i)(c) = 0, (3.54)

z(i)(b) = 0, i = 0, 1, . . . , n − 3, (3.55)

where for each i = 0, 1, . . . , n − 1,

di(t) =
∫1

0

∂

∂xi
f
(
t, x1(t) + θz(t), x′

1(t) + θz
′(t), . . . , x(n−1)

1 (t) + θz(n−1)(t)
)
dθ,

ai =
∫1

0

∂

∂xi
g
(
x1(a) + θz(a), x′

1(a) + θz
′(a), . . . , x(n−1)

1 (a) + θz(n−1)(a)
)
dθ,

ci =
∫1

0

∂

∂xi
h
(
x1(c) + θz(c), x′

1(c) + θz
′(c), . . . , x(n−1)

1 (c) + θz(n−1)(c)
)
dθ.

(3.56)
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By conditions (ii), (iii), and (iv), we have that di(t) ∈ C[a, c], i = 0, 1, . . . , n − 3, and

(−1)n−idi(t) ≤ 0, i = 0, 1, . . . , n − 3, t ∈ [a, b],

di(t) ≤ 0, i = 0, 1, . . . , n − 3, t ∈ [b, c],

(−1)n−iai ≤ 0, i = 0, 1, . . . , n − 3, an−1 ≤ 0,

ci ≤ 0, i = 0, 1, . . . , n − 3, cn−1 ≥ 0.

(3.57)

Now suppose that there exists t0 ∈ [a, c] such that z(n−2)(t0)/= 0. Without loss of
generality assume z(n−2)(t0) > 0, and let

Ω =
{
M :Mz(n−2)(t) < γ (n−2)(t), t ∈ [a, c]

}
. (3.58)

It is easy to see that 0 ∈ Ω by condition (v), hence Ω/= ∅. Let M0 = sup Ω. We have that
0 < M0 < +∞, M0z

(n−2)(t) ≤ γ (n−2)(t) on [a, c], and there exists a point t1 ∈ [a, c] such that
M0z

(n−2)(t1) = γ (n−2)(t1). Furthermore t1 /=a, c. In fact, if t1 = a, then M0z
(n−1)(a) ≤ γ (n−1)(a).

By condition (v) and (3.55)we can easily show that

(−1)n−i
[
M0z

(i)(t) − γ (i)(t)
]
≤ 0, i = 0, 1, . . . , n − 3, t ∈ [a, b]. (3.59)

In particular

(−1)n−i
[
M0z

(i)(a) − γ (i)(a)
]
≤ 0, i = 0, 1, . . . , n − 3. (3.60)

Hence

n−1∑
i=0

M0aiz
(i)(a) ≥

n−1∑
i=0

aiγ
(i)(a) > 0, (3.61)

which contradicts to (3.54). Thus t1 /=a. Similarly we can show that t1 /= c. Consequently
M0z

(n−1)(t1) = γ (n−1)(t1).
Now, there are two cases to consider, that is

t1 ∈ (a, b] or t1 ∈ [b, c). (3.62)

If t1 ∈ (a, b], then by (3.59) we have

(−1)n−i
[
M0z

(i)(t1) − γ (i)(t1)
]
≤ 0, i = 0, 1, . . . , n − 3. (3.63)
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Thus, by (3.53) and condition (v)we have

M0z
(n)(t1) =

n−1∑
i=0

M0di(t1)z(i)(t1) ≥
n−1∑
i=0

di(t1)γ (i)(t1) > γ (n)(t1). (3.64)

Consequently, by Taylor’s theorem there exists t2 ∈ (t1, c) such that

M0z
(n−2)(t) > γ (n−2)(t), ∀t ∈ (t1, t2], (3.65)

which is a contradiction.
A similar contradiction can be obtained if t1 ∈ [b, c). Hence z(n−2)(t) ≡ 0 on [a, c]. By

(3.55), we obtain z(t) ≡ 0 on [a, c]. This completes the proof of the theorem.

Next we give two examples to demonstrate the application of Theorem 3.2.

Example 3.3. Consider the following third-order three point BVP:

x′′′ = −tx +
(
2t2 + 1

)
x′ +

1
3
(x′)3 − t4 sin(t + x′′), t ∈ [−1, 1], (3.66)

1 + 3x′(−1) + (
x′(−1))3 − (

x′′(−1) + 1
)3 = 0,

x(0) = 0,

−1 − x(1) + 2x′(1) +
(
x′(1)

)3 + (
x′′(1) + 1

)3 = 0.

(3.67)

Let

f(t, x0, x1, x2) = −tx0 +
(
2t2 + 1

)
x1 +

1
3
x3
1 − t4 sin(t + x2),

g(x0, x1, x2) = 1 + 3x1 + x3
1 − (x2 + 1)3,

h(x0, x1, x2) = −1 − x0 + 2x1 + x3
1 + (x2 + 1)3.

(3.68)

Choose α(t) = −t, β(t) = t and γ(t) = t. It is easy to check that α(t) = −t, and β(t) = t
are lower and upper solutions of BVP (3.66), (3.67) respectively, and all the assumptions in
Theorem 3.2 are satisfied. Therefore by Theorem 3.2 BVP (3.66), (3.67) has a unique solution
x = x(t) satisfying

t ≤ x(t) ≤ −t, t ∈ [−1, 0], −t ≤ x(t) ≤ t, t ∈ [0, 1],

−1 ≤ x′(t) ≤ 1, t ∈ [−1, 1].
(3.69)
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Example 3.4. Consider the following fourth-order three point BVP:

x(4) = −t2x + x′′ +
(
x′′)3, t ∈ [−1, 1], (3.70)

−x(−1) + (
x′(−1))3 + 13x′′(−1) = 0,

x(0) = 0, x′(0) = 0,

−x(1) − 4x′(1) +
(
x′(1)

)2 + 9x′′(1) = 0.

(3.71)

Let

f(t, x0, x1, x2, x3) = −t2x0 + x2 + x3
2,

g(x0, x1, x2, x3) = −x0 + x3
1 + 13x2,

h(x0, x1, x2, x3) = −x0 − 4x1 + x2
1 + 9x2.

(3.72)

Choose α(t) = −t2, β(t) = t2 and γ(t) = t2. It is easy to check that α(t) = −t2, and β(t) = t2

are lower and upper solutions of BVP (3.70), (3.71), respectively, and all the assumptions in
Theorem 3.2 are satisfied. Therefore by Theorem 3.2 BVP (3.70), (3.71) has a unique solution
x = x(t) satisfying

−2 ≤ x(t) ≤ 2, t ∈ [−1, 1],
2t ≤ x′(t) ≤ −2t, t ∈ [−1, 0], −2t ≤ x′(t) ≤ 2t, t ∈ [0, 1],

−t2 ≤ x′′(t) ≤ t2, t ∈ [−1, 1].

(3.73)
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