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1. Introduction

Population models with stage structure have been investigated by many researchers, and
various methods and techniques have been used to study the existence and qualitative
properties of solutions [1–9]. However, most of the discussions in these works are devoted
to either systems of ODE or weakly coupled systems of reaction-diffusion equations. In this
paper we investigate the global existence and convergence of solutions for a strongly coupled
cross-diffusion predator-prey model with stage structure and nonlinear density restriction.
Nonlinear problems of this kind are quite difficult to deal with since the usual idea to apply
maximum principle arguments to get priori estimates cannot be used here [10].

Consider the following predator-prey model with stage-structure:

X′1 = BX2 − r1X1 − CX1 − η1X
2
1 − η2X

3
1 −

EX2
1X3

1 + FX2
1

,
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X′2 = CX1 − r2X2,

X′3 = −r3X3 − η3X
2
3 +AX3

EX2
1

1 + FX2
1

,

(1.1)

where X1(t), X2(t) denote the density of the immature and mature population of the prey,
respectively, X3(t) is the density of the predator. For the prey, the immature population is
nonlinear density restriction. X3 is assumed to consume X1 with Holling type III functional
response EX2

1/(1 + FX2
1) and contributes to its growth with rate AEX2

1/(1 + FX2
1). For more

details on the backgrounds of this model see references [11, 12].
Using the scaling u =

√
FX1, v = (r2

√
F/C)X2, w = (E/r2

√
F)X3, dτ = r2dt and

redenoting τ by t, we can reduce the system (1.1) to

u′ = βv − au − bu2 − cu3 − u2w

1 + u2
≡ f1,

v′ = u − v ≡ f2,

w′ = −kw − γw2 +
αu2w

1 + u2
≡ f3,

(1.2)

where β = BC/r2
2 , a = (r1 + C)/r2, b = η1/r2

√
F, c = η2/r2F, k = r3/r2, α = AE/r2F, γ =

η3
√
F/E.

To take into account the natural tendency of each species to diffuse, we are led to the
following PDE system of reaction-diffusion type:

ut − d1Δu = βv − au − bu2 − cu3 − u2w

1 + u2
, x ∈ Ω, t > 0,

vt − d2Δv = u − v, x ∈ Ω, t > 0,

wt − d3Δw = −kw − γw2 +
αu2w

1 + u2
, x ∈ Ω, t > 0,

∂ηu = ∂ηv = ∂ηw = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, w(x, 0) = w0(x) ≥ 0, x ∈ Ω,

(1.3)

where Ω is a bounded domain in R
n with smooth boundary ∂Ω, η is the outward unit normal

vector on ∂Ω, and ∂η = ∂/∂η. u0(x), v0(x), w0(x) are nonnegative smooth functions on Ω.
The diffusion coefficients di (i = 1, 2, 3) are positive constants. The homogeneous Neumann
boundary condition indicates that system (1.3) is self-contained with zero population flux
across the boundary. The knowledge for system (1.3) is limited (see [13–17]).

In the recent years there has been considerable interest to investigate the global
behavior for models of interacting populations with linear density restriction by taking into
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account the effect of self-as well as cross-diffusion [18–26]. In this paper we are led to the
following cross-diffusion system:

ut = Δ[(d1 + α11u + α13w)u] + βv − au − bu2 − cu3 − u2w

1 + u2
, x ∈ Ω, t > 0,

vt = Δ[(d2 + α22v)v] + u − v, x ∈ Ω, t > 0,

wt = Δ[(d3 + α33w)w] − kw − γw2 +
αu2w

1 + u2
, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, w(x, 0) = w0(x) ≥ 0, x ∈ Ω,

(1.4)

where d1, d2, d3 are the diffusion rates of the three species, respectively. αii (i = 1, 2, 3) are
referred as self-diffusion pressures, and α13 is cross-diffusion pressure. The term self-diffusion
implies the movement of individuals from a higher to a lower concentration region. Cross-
diffusion expresses the population fluxes of one species due to the presence of the other
species. The value of the cross-diffusion coefficient may be positive, negative, or zero. The
term positive cross-diffusion coefficient denotes the movement of the species in the direction
of lower concentration of another species and negative cross-diffusion coefficient denotes
that one species tends to diffuse in the direction of higher concentration of another species
[27]. For αij /= 0, problem (1.4) becomes strongly coupled with a full diffusion matrix. As far
as the authors are aware, very few results are known for cross-diffusion systems with stage-
structure.

The main purpose of this paper is to study the asymptotic behavior of the solutions for
the reaction-diffusion system (1.3), the global existence, and the convergence of solutions for
the cross-diffusion system (1.4). The paper will be organized as follows. In Section 2 a linear
stability analysis of equilibrium points for the ODE system (1.2) is given. In Section 3 the
uniform bound of the solution and stability of the equilibrium points to the weakly coupled
system (1.3) are proved. Section 4 deals with the existence and the convergence of global
solutions for the strongly coupled system (1.4).

2. Global Stability for System (1.2)

Let E0 = (0, 0, 0). If β > a, then (1.2) has semitrivial equilibria E1(m0, m0, 0), where m0 =

(
√
b2 + 4c(β − a) − b)/2c. To discuss the existence of the positive equilibrium point of (1.2),

we give the following assumptions:

α > k, β > a,

√
k

α − k < m0,
β − a − c

2
+
b2

8c
≤
b
√
p1

24c
+

24
(
β − a

)
c2

3b2 + 4c
(
β − a − c

)
− b√p1

,

(2.1)

where p1 = 9b2 + 24c(β−a− c) ≥ 0. Let one curve l1: g1(u) = ((1+u2)/u)(β−a− bu− cu2), and
the other curve l3: g3(u) = k+γw = αu2/(1+u2). Obviously, l1 passes the point (m0, 0). Noting
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that (β − a − c)u2 − 2bu3 − 3cu4 − β + a attains its maximum at u = (√p1 − 3b)/12c, thus when
(β−a−c)/2+b2/8c ≤ b√p1/24c+24(β−a)c2/(3b2+4c(β−a−c)−b√p1), g ′1(u) < 0 (0 < u < m0).
l3 has the asymptote w = α − k/γ and passes the point (

√
k/α − k, 0). In this case, l1 and

l3 have unique intersection (u∗, w∗), as shown in Figure 1. E∗ = (u∗, v∗, w∗) is the unique
positive equilibrium point of (1.2), where v∗ = u∗, w∗ = ((1 + u∗2)/u∗)(β − a − bu∗ − cu∗2),
k+γw∗ = αu∗2/(1+u∗2). In addition, the restriction of the existence of the positive equilibrium
can be removed, if β < a + c.

The Jacobian matrix of the equilibrium E0 is

J(E0) =

⎛
⎜⎜⎝
−a β 0

1 −1 0

0 0 −k

⎞
⎟⎟⎠. (2.2)

The characteristic equation of J(E0) is (λ + k)[λ2 + (1 + a)λ + a − β] = 0. E0 is a saddle for
β > a. In addition, the dimensions of the local unstable and stable manifold of E0 are 1 and 2,
respectively. E0 is locally asymptotically stable for β < a.

The Jacobian matrix of the equilibrium E1 is

J(E1) =

⎛
⎜⎜⎜⎜⎝

a11 β −
m2

0

1 +m2
0

1 −1 0

0 0 a33

⎞
⎟⎟⎟⎟⎠
, (2.3)

where a11 = −a − 2bm0 − 3cm2
0, a33 = −k + αm2

0/(1 +m2
0). The characteristic equation of J(E1)

is λ3 +A1λ
2 + B1λ + C1 = 0, where

A1 = −a11 − a33 + 1,

B1 = a11a33 − a33 −
(
a11 + β

)
,

C1 = a33
(
a11 + β

)
,

H1 = A1B1 − C1 = (a11 + a33)
[
a33 − a11a33 +

(
a11 + β

)]
− a33

(
1 + β

)
−
(
a11 + β

)
.

(2.4)

According to Routh-Hurwitz criterion, E1 is locally asymptotically stable for a11 + β < 0 and

a33 < 0, that is, m2
0(α − k) < k and m0 > (

√
b2 + 3c(β − a) − b)/3c.

The Jacobian matrix of the equilibrium E∗ is

J(E∗) =

⎛
⎜⎜⎝
a11 β a13

1 −1 0

a31 0 a33

⎞
⎟⎟⎠, (2.5)
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√
k

α − k

m0O u

α − k
γ

w

l3

E∗

l1

Figure 1

where

a11 = −a − 2bu∗ − 3cu∗2 − 2u∗w∗

(1 + u∗2)2
, a13 = − u∗2

1 + u∗2
,

a31 =
2αu∗w∗

(1 + u∗2)2
, a33 = −γw∗.

(2.6)

The characteristic equation of J(E∗) is λ3 +A2λ
2 + B2λ + C2 = 0, where

A2 = −a11 − a33 + 1,

B2 = a11a33 − a13a31 − a33 −
(
a11 + β

)
,

C2 = a33
(
a11 + β

)
− a13a31,

H2 = A2B2 − C2 = (a11 + a33)
[
a13a31 + a33 − a11a33 +

(
a11 + β

)]
− a33

(
1 + β

)
−
(
a11 + β

)
.

(2.7)

According to Routh-Hurwitz criterion, E∗ is locally asymptotically stable for a11 + β < 0.
Obviously, a11 + β < 0 can be checked by (2.1).

Now we discuss the global stability of equilibrium points for (1.2).

Theorem 2.1. (i) Assume that (2.1),

b + cu∗ −
u∗
(
β − a − bu∗

)

2 + 2
√

1 + u∗2
>

(√
u∗2 + 1 + u∗

)2

8(u∗2 + 1)2
+

1
8
,

γ

α
>

1
2
,

(2.8)

hold, then the equilibrium point E∗ of (1.2) is globally asymptotically stable.
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(ii) Assume that β > a,m2
0(α − k) < k, and (

√
b2 + 3c(β − a) − b)/3c < m0 < 2k/α hold,

then the equilibrium point E1 of (1.2) is globally asymptotically stable.
(iii) Assume that β ≤ a holds, then the equilibrium point E0 of (1.2) is globally asymptotically

stable.

Proof. (i) Define the Lyapunov function

E(t) =
(
u − u∗ − u∗ ln

u

u∗

)
+ β
(
v − v∗ − v∗ ln

v

v∗

)

+
1
α

(
w −w∗ −w∗ ln

w

w∗

)
.

(2.9)

Calculating the derivative of E(t) along the positive solution of (1.2), we have

E′(t) = −
β

u∗

[√
v

u
(u − u∗) −

√
u

v
(v − v∗)

]2

− (u − u∗)2
[
b + cu + cu∗ +

w∗(1 − u∗u)
(1 + u∗2)(1 + u2)

]

− c
α
(w −w∗)2 + (u − u∗)(w −w∗)

[
u∗ + u

(1 + u∗2)(1 + u2)
− u

1 + u2

]

≤ −(u − u∗)2

[
b + cu + cu∗ +

w∗(1 − u∗u)
(1 + u∗2)(1 + u2)

− u2

2(1 + u2)2
− (u + u∗)2

2(1 + u∗2)2(1 + u2)2

+
u(u + u∗)

(1 + u∗2)(1 + u2)2

]
−
(
γ

α
− 1

2

)
(w −w∗)2.

(2.10)

When u ∈ [0,∞), the minimum of (1 − u∗u)/(1 + u2) and u(u + u∗)/(1 + u2)2 is −u∗2/(2 +
2
√

1 + u∗2) and 0, respectively; the maximum of (u + u∗)/(1 + u2) is u/(1 + u2) are (u∗ +√
1 + u∗2)/2 and 1/2, respectively. Thus, when (2.8) hold, E′(t) ≤ 0. According to the

Lyapunov-LaSalle invariance principle [28], E∗ is globally asymptotically stable if (2.1)–(2.3)
hold.

(ii) Let

E(t) =
(
u −m0 −m0 ln

u

m0

)
+ β
(
v −m0 −m0 ln

v

m0

)
+

1
α
w. (2.11)

Then

E′(t) = −
β

m0

[√
v

u
(u −m0) −

√
u

v
(v −m0)

]2

−
[
(b + cu + cm0)(u −m0)2 +

c

α
w2 −w

(
m0u

1 + u2
− k
α

)]
.

(2.12)

Noting that the maximum of u/(1+u2) is 1/2, andm0 < 2k/α, we findm0u/(1+u2)−k/α < 0.
Therefore, E′(t) ≤ 0.
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(iii) Let

E(t) = u + βv +
1
α
w, (2.13)

then

E′(t) =
(
β − a

)
u − bu2 − cu3 − k

α
w −

γ

α
w2. (2.14)

Thus, E′(t) ≤ 0 for β ≤ a. This completes the proof of Theorem 2.1.

3. Global Behavior of System (1.3)

In this section we discuss the existence, uniform boundedness of global solutions, and the
stability of constant equilibrium solutions for the weakly coupled reaction-diffusion system
(1.3). In particular, the unstability results in Section 2 also hold for system (1.3) because
solutions of (1.2) are also solutions of (1.3).

Theorem 3.1. Let u0(x), v0(x), w0(x) be nonnegative smooth functions on Ω. Then system (1.3)

has a unique nonnegative solution (u(x, t), v(x, t), w(x, t)) ∈ [C(Ω × [0,∞))
⋂
C2,1(Ω × (0,∞))]

3
,

and

0 ≤ u ≤ M̂1 = max

⎧
⎪⎨
⎪⎩

sup
Ω

u0, sup
Ω

v0,

√
b2 + 4c

(
β − a

)
− b

2c

⎫
⎪⎬
⎪⎭
,

0 ≤ v ≤ M̂2 = M̂1,

0 ≤ w ≤ M̂3 = max

⎧
⎪⎨
⎪⎩

sup
Ω

w0,
αM̂1

2

γ
(

1 + M̂1
2) −

k

γ

⎫
⎪⎬
⎪⎭

(3.1)

on Ω × [0,∞). In particular, if u0, v0, w0 ≥ (/≡ )0, then u, v,w > 0 for all t > 0, x ∈ Ω.

Proof. It is easily seen that (f1, f2, f3) is sufficiently smooth in R
3
+ and possesses a mixed

quasimonotone property in R
3
+. In addition, (0, 0, 0) and (M̂1, M̂2, M̂3) are a pair of lower-

upper solutions of problem (1.3) (cf. (M̂1, M̂2, M̂3) in (3.1)). From [29, Theorem 5.3.4], we
conclude that (1.3) exists a unique classical solution (u, v,w) satisfying (3.1). According to
strong maximum principle, it follows that u(x, t), v(x, t), w(x, t) > 0, ∀t > 0, x ∈ Ω. So the
proof of the Theorem is completed.
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Remark 3.2. When c = 0 (namely η2 = 0), system (1.3) reduces to a system in which
the immature population of the prey is linear density restriction. Similar to the proof of
Theorem 3.1, we have

M̂1 = M̂2 = max

{
sup
Ω

u0, sup
Ω

v0,
β − a
b

}
,

M̂3 = max

⎧
⎪⎨
⎪⎩

sup
Ω

w0,
αM̂1

2

γ
(

1 + M̂1
2) −

k

γ

⎫
⎪⎬
⎪⎭
.

(3.2)

Now we show the local and global stability of constant equilibrium solutions E0, E1, E
∗

for (1.3), respectively.

Theorem 3.3. (i) Assume that (2.1) holds, then the equilibrium point E∗ of (1.3) is locally
asymptotically stable.

(ii) Assume that β > a, m2
0(α − k) < k, and m0 >

√
b2 + 3c(β − a) − b/3c hold, then the

equilibrium point E1 of (1.3) is locally asymptotically stable.
(iii) Assume that β < a holds, then the equilibrium point E0 of (1.3) is locally asymptotically

stable.

Proof. Let 0 = μ1 < μ2 < μ3 < · · · be the eigenvalues of the operator −Δ on Ω with Neumann
boundary condition, and let E(μi) be the eigenspace corresponding to μi in C1(Ω). Let

X =
{
U ∈

[
C1
(
Ω
)]3

, ∂ηU = 0, x ∈ ∂Ω
}
, Xij =

{
c · φij : c ∈ R

3
}
, (3.3)

where {φij ; j = 1, . . . ,dimE(μi)} is an orthonormal basis of E(μi), then

X = ⊕∞i=1Xi, Xi = ⊕
dimE(μi)
j=1 Xij . (3.4)

(i) Let D = diag(d1, d2, d3), L = DΔ + FU(E∗) = DΔ + {aij}, where

a11 = −a − 2bu∗ − 3cu∗2 − 2u∗w∗

(1 + u∗2)2
, a12 = β, a13 = − u∗2

1 + u∗2
,

a21 = 1, a22 = −1, a23 = 0,

a31 =
2αu∗w∗

(1 + u∗2)2
, a32 = 0, a33 = −γw∗.

(3.5)
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The linearization of (1.3) is Ut = LU at E∗. For each i ≥ 1, Xi is invariant under the
operator L, and λ is an eigenvalue of L on Xi, if and only if λ is an eigenvalue of the matrix
−μiD + FU(E∗). The characteristic equation is ϕi(λ) = λ3 +Aiλ

2 + Biλ + Ci = 0, where

Ai = μi(d1 + d2 + d3) − a11 − a33 + 1,

Bi = μ2
i (d1d2 + d1d3 + d2d3)

+ μi[d1(1 − a33) − d2(a11 + a33) + d3(1 − a11)]

+ a11a33 − a13a31 − a33 −
(
a11 + β

)
,

Ci = μ3
i d1d2d3 + μ2

i (d1d3 − a33d1d2 − a11d2d3)

− μi
[
d1a33 − d2(a11a33 − a13a31) + d3

(
a11 + β

)]

+ a33
(
a11 + β

)
− a13a31,

Hi = AiBi − Ci = P3μ
3
i + P2μ

2
i + P1μi + P0,

P3 = (d1 + d2)(d1d2 + d1d3 + d2d3) + d2
3(d1 + d2),

P2 = (d1 + d2 + d3)[d1(1 − a33) − d2(a11 + a33) + d3(1 − a11)]

− a11d1(d2 + d3) + d2(d1 + d3) − a33d3(d1 + d2),

P1 = d1
[
a11a33 − a13a31 −

(
a11 + β

)]
− d2
[(
a11 + β

)
+ a33

]

+ d3(a11a33 − a33 − a13a31)

− (a11 + a33 − 1)[d1(1 − a33) − d2(a11 + a33) + d3(1 − a11)],

P0 = (a11 + a33)
[
a13a31 + a33 − a11a33 +

(
a11 + β

)]

− a33
(
1 + β

)
−
(
a11 + β

)
.

(3.6)

From Routh-Hurwitz criterion, we can see that three eigenvalues (denoted by λi,1, λi,2, λi,3) all
have negative real parts if and only if Ai > 0, Ci > 0,Hi > 0. Noting that a11, a13, a33 < 0, a31 >
0, we must have a11 + β < 0. It is easy to check that a11 + β < 0 if g ′1(u1) < 0 (see Section 2).

We can conclude that there exists a positive constant δ, such that

Re{λi,1},Re{λi,2},Re{λi,3} ≤ −δ, i ≥ 1. (3.7)

In fact, let λ = μiξ, then

ϕi(λ) = μ3
i ξ

3
i +Aiμ

2
i ξ

2
i + Biμiξ + Ci � ϕ̃i(ξ). (3.8)

Since μi → ∞ as i → ∞, it follows that

lim
i→∞

ϕ̃i(ξ)

μ3
i

= ξ3 + (d1 + d2 + d3)ξ2 + (d1d2 + d2d3 + d1d3)ξ + d1d2d3 � ϕ̃(ξ). (3.9)
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Clearly, ϕ̃(ξ) has the three roots −d1,−d2,−d3. Let d = min{d1, d2, d3}. By continuity, there
exists i0 such that the three roots ξi1, ξi2, ξi3 of ϕ̃i(ξ) = 0 satisfy

Re{ξi1},Re{ξi2},Re{ξi3} ≤ −
d

2
, i ≥ i0. (3.10)

Let −δ̃ = max0≤i≤i0{Re{λi1},Re{λi2},Re{λi3}}, then δ̃ > 0. Let δ = min{δ̃, d/2}, then (3.7)
holds. According to [30, Theorem 5.1.1], we have the locally asymptotically stability of E∗.

(ii) The linearization of (1.4) is Ut = LU at E1, where L = DΔ + FU(E1) = DΔ + {aij},
and

a11 = −a − 2bm0 − 3cm2
0, a12 = β, a13 = −

m2
0

1 +m2
0

,

a21 = 1, a22 = −1, a23 = 0,

a31 = 0, a32 = 0, a33 = −k +
αm2

0

1 +m2
0

.

(3.11)

The characteristic equation of −μiD + FU(E1) is ϕi(λ) = λ3 +Aiλ
2 + Biλ + Ci = 0, where

Ai = μi(d1 + d2 + d3) − a11 − a33 + 1,

Bi = μ2
i (d1d2 + d1d3 + d2d3)

+ μi[d1(1 − a33) − d2(a11 + a33) + d3(1 − a11)]

+ a11a33 − a33 −
(
a11 + β

)
,

Ci = μ3
i d1d2d3 + μ2

i (d1d3 − a33d1d2 − a11d2d3)

− μi
[
d1a33 − d2a11a33 + d3

(
a11 + β

)]
+ a33

(
a11 + β

)
,

Hi = AiBi − Ci = P3μ
3
i + P2μ

2
i + P1μi + P0,

P3 = (d1 + d2)(d1d2 + d1d3 + d2d3) + d2
3(d1 + d2),

P2 = (d1 + d2 + d3)[d1(1 − a33) − d2(a11 + a33) + d3(1 − a11)]

− a11d1(d2 + d3) + d2(d1 + d3) − a33d3(d1 + d2),

P1 = d1
[
a11a33 −

(
a11 + β

)]
− d2
[(
a11 + β

)
+ a33

]
+ d3(a11a33 − a33)

− (a11 + a33 − 1)[d1(1 − a33) − d2(a11 + a33) + d3(1 − a11)],

P0 = (a11 + a33)
[
a33 − a11a33 +

(
a11 + β

)]
− a33

(
1 + β

)
−
(
a11 + β

)
.

(3.12)

The three roots of ϕi(λ) = 0 all have negative real parts for a11 + β < 0 and a33 < 0. Namely, E1

is the locally asymptotically stable, if m2
0(α − k) < k and m0 > (

√
b2 + 3c(β − a) − b)/3c.
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(iii) The linearization of (1.3) is Ut = LU at E0, where L = DΔ + FU(E0) = DΔ + {aij},
and

a11 = −a, a12 = β, a13 = 0,

a21 = 1, a22 = −1, a23 = 0,

a31 = 0, a32 = 0, a33 = −k.

(3.13)

Similar to (i), E1 is locally asymptotically stable, when β < a.

Remark 3.4. When c = 0, denote E0 = (0, 0, 0). If β > a, then (1.3) has the semitrivial
equilibrium point E1 = (m0, m0, 0), wherem0 = (β−a)/b. If α > k, β > a, kb2 < (α−k)(β − a)2 <
27b2(α − k), then (1.3) has a unique positive equilibrium point E∗ = (u∗, v∗, w∗). Similar as
Theorem 3.3, we have the following.

(i) If β > a, α > k, and kb2 < (α − k)(β − a)2 < 27b2(α − k) (namely, α > k, β > a,√
k/(α − k) < (β − a)/b < 3

√
3), then E∗ is locally asymptotically stable.

(ii) If β > a and (α − k)(β − a)2 < kb2, then E1 is locally asymptotically stable.

(iii) If β < a, then E0 is locally asymptotically stable.

Before discussing the global stability, we give an important lemma which has been
proved in [31, Lemma 4.1] or in [32, Lemma 2.5.3].

Lemma 3.5. Let a, b be positive constants. Assume that φ, ψ ∈ C1([a,∞)), ψ(t) ≥ 0, and φ is
bounded from below. If φ′(t) ≤ −bψ(t) and ψ ′(t) ≤ K (∀t ≥ a) for some positive constant K, then
limt→∞ψ(t) = 0.

Theorem 3.6. (i) Assume that (2.1),

b + cu∗ −
u∗
(
β − a − bu∗

)

2 + 2
√

1 + u∗2
>

(√
u∗2 + 1 + u∗

)2

8(u∗2 + 1)2
+

1
8
,

γ

α
>

1
2
,

(3.14)

hold, then the equilibrium point E∗ of system (1.3) is globally asymptotically stable.

(ii) Assume that β > a,m2
0(α − k) < k, and (

√
b2 + 3c(β − a) − b)/3c < m0 < 2k/α hold,

then the equilibrium point E1 of system (1.3) is globally asymptotically stable.
(iii) Assume that β < a and k > α hold, then the equilibrium point E0 of system (1.3) is

globally asymptotically stable.
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Proof. Let (u, v,w) be the unique positive solution of (1.3). By Theorem 3.1, there exists a
positive constant C which is independent of x ∈ Ω and t ≥ 0 such that ‖u(·, t)‖∞, ‖v(·, t)‖∞,
‖w(·, t)‖∞ ≤ C, for t ≥ 0. By [33, Theorem A2],

‖u(·, t)‖C2+α(Ω), ‖v(·, t)‖C2+α(Ω), ‖w(·, t)‖C2+α(Ω) ≤ C, ∀t ≥ t0, ∀t0 > 0. (3.15)

(i) Define the Lyapunov function

E(t) =
∫

Ω

(
u − u∗ − u∗ ln

u

u∗

)
dx + β

∫

Ω

(
v − v∗ − v∗ ln

v

v∗

)
dx

+
1
α

∫

Ω

(
w −w∗ −w∗ ln

w

w∗

)
dx.

(3.16)

By Theorem 3.1, E(t) (t > 0) is defined well for all solutions of (1.3) with the initial functions
u0, v0, w0 ≥ (/≡ )0. It is easily see that E(t) ≥ 0 and E(t) = 0 if and only if u = u∗.

Calculating the derivative of E(t) along positive solution of (1.3) by integration by
parts and the Cauchy inequality, we have

E′(t) = −
∫

Ω

(
d1u

∗

u2 |∇u|
2 + β

d2v
∗

v2 |∇v|
2 +

d3w
∗

αw2 |∇w|
2
)

dx

+
∫

Ω

[
(u − u∗)

f1(u, v,w)
u

+ β(v − v∗)
f2(u, v,w)

v
+

1
α
(w −w∗)

f3(u, v,w)
w

]
dx

≤ −
∫

Ω
(u − u∗)2

[
b + cu + cu∗ +

w∗(1 − u∗u)
(1 + u∗2)(1 + u2)

− u2

2(1 + u2)2
− (u + u∗)2

2(1 + u∗2)2(1 + u2)2

+
u(u + u∗)

(1 + u∗2)(1 + u2)2

]
dx −

(
γ

α
− 1

2

)∫

Ω
(w −w∗)2dx.

(3.17)

It is not hard to verify that

E′(t) ≤ −l1
∫

Ω
(u − u∗)2dx − l3

∫

Ω
(w −w∗)2dx, (3.18)

if (3.14) hold. Applying Lemma 3.5, we can obtain

lim
t→∞

∫

Ω
(u − u∗)2dx = 0, lim

t→∞

∫

Ω
(w −w∗)2dx = 0. (3.19)
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Recomputing E′(t), we find

E′(t) ≤ −
∫

Ω

(
d1u

∗

u2 |∇u|
2 + β

d2v
∗

v2 |∇v|
2 +

d3w
∗

αw2 |∇w|
2
)

dx

≤ −C
∫

Ω

(
|∇u|2 + |∇v|2 + |∇w|2

)
dx � −g(t).

(3.20)

From (3.15), we can see that g ′(t) is bounded in [t0,∞), t0 > 0. It follows from Lemma 3.5 and
(3.15) that g(t) → 0 as t → ∞. Namely,

lim
t→∞

∫

Ω

(
|∇u|2 + |∇v|2 + |∇w|2

)
dx = 0. (3.21)

Using the Pioncaré inequality, we have

lim
t→∞

∫

Ω
(u − u)2dx = lim

t→∞

∫

Ω
(v − v)2dx = lim

t→∞

∫

Ω
(w −w)2dx = 0, (3.22)

where u(t) = (1/|Ω|)
∫
Ωu dx, v(t) = (1/|Ω|)

∫
Ωv dx,w(t) = (1/|Ω|)

∫
Ωw dx. Noting that

|Ω||u(t) − u∗|2 =
∫

Ω
(u − u∗)2dx ≤ 2

∫

Ω
(u − u)2dx + 2

∫

Ω
(u − u∗)2dx,

|Ω||w(t) −w∗|2 =
∫

Ω
(w −w∗)2dx ≤ 2

∫

Ω
(w −w)2dx + 2

∫

Ω
(w −w∗)2dx,

(3.23)

according to (3.19) and (3.22), we can see

u(t) → u∗, w(t) → w∗ (t → ∞). (3.24)

Thus, there exists {tm}, u′(tm) → 0 as tm → ∞. Applying the boundness of {v(tm)}, there
exists a subsequence of {v(tm)}, denoted still by {v(tm)}, such that v(tm) → v̂. On the one
hand

∫

Ω
ut dx

∣∣∣∣
tm

= |Ω|u′(tm) −→ 0, tm −→ ∞. (3.25)

On the other hand

∫

Ω
utdx

∣∣∣∣
tm

=
∫

Ω

(
d1Δu + f1(u, v,w)

)
dx
∣∣∣∣
tm

=
∫

Ω
f1(u, v,w)dx

∣∣∣∣
tm

=
∫

Ω

[
β(v − v∗)−

(
a + b(u + u∗)+c

(
u2 + uu∗ + u∗2

))
(u − u∗)−du(w −w∗)

]
dx
∣∣∣∣
tm

.

(3.26)
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According to (3.19) to compute the limit of the previous equation and using the uniqueness
of the limit, we have v̂ = v∗, and

lim
tm→∞

v(tm) = v∗. (3.27)

It follows from (3.15) that there exists a subsequence of {tm}, denoted still by {tm}, and
nonnegative functions gi ∈ C2(Ω), i = 1, 2, 3, such that

u(·, tm) −→ g1(·), v(·, tm) −→ g2(·), w(·, tm) −→ g3(·) in C2
(
Ω
)
. (3.28)

Applying (3.19)–(3.27), we obtain that g1 = u∗, g2 = v∗, g3 = w∗, and

u(·, tm) −→ u∗, v(·, tm) −→ v∗, w(·, tm) −→ w∗ in C2
(
Ω
)
. (3.29)

In view of Theorem 3.3, we can conclude that E∗ is globally asymptotically stable.
(ii) Let

E(t) =
∫

Ω

(
u −m0 −m0 ln

u

m0

)
dx + β

∫

Ω

(
v −m0 −m0 ln

v

m0

)
dx +

1
α

∫

Ω
w dx. (3.30)

Then

E′(t) = −m0

∫

Ω

(
d1

u2 |∇u|
2 + β

d2

v2 |∇v|
2
)

dx

+
∫

Ω

[
(u − u∗)

f1(u, v,w)
u

+ β(v − v∗)
f2(u, v,w)

v
+

1
α
f3(u, v,w)

]
dx

≤ −
∫

Ω

β

m0

[√
v

u
(u −m0) −

√
u

v
(v −m0)

]2

−
∫

Ω

[
(b + cu + cm0)(u −m0)2 +

γ

α
w2 −w

(
m0u

1 + u2
− k
α

)]
dx.

(3.31)

Therefore, E′(t) ≤ −(b + cm0)
∫
Ω(u −m0)

2dx −
γ

α

∫
Ωw

2dx. It follows that the equilibrium point

E1 of (1.3) is globally asymptotically stable.
(iii) Define

E(t) =
1
2

∫

Ω

(
u2 + βv2 +w2

)
dx. (3.32)
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Then

E′(t) = −
∫

Ω

(
d1|∇u|2 + βd2|∇v|2 + d3|∇w|2

)
dx

+
∫

Ω

(
uf1(u, v,w) + βvf2(u, v,w) +wf3(u, v,w)

)
dx.

(3.33)

When a > β, k > α,

E′(t) ≤ −
∫

Ω

[
au2 + βv2 + (k − α)w2

]
dx. (3.34)

The following proof is similar to (i).

Remark 3.7. When c = 0, Theorem 3.6 shows the following.
(i) Assume that β > a, α > k,

√
k/(α − k) < (β − a)/b < 3

√
3,

b −
u∗
(
β − a − bu∗

)

2 + 2
√

1 + u∗2
>

(√
u∗2 + 1 + u∗2

)2

8(u∗2 + 1)2
+

1
8
,

γ

α
>

1
2
, (3.35)

hold, then the equilibrium point E∗ of (1.3) is globally asymptotically stable.
(ii) Assume that β > a and b2k/(β − a) > max{(α − k)(β − a), bα/2} hold, then the

equilibrium point E1 of (1.3) is globally asymptotically stable.
(iii) Assume that β < a and k > α hold, then the equilibrium point E0 of (1.3) is globally

asymptotically stable.

Example 3.8. Consider the following system:

X1t −D1ΔX1 = 5X2 − 0.6X1 − 1.4X1 − 2X2
1 − 6X3

1 −X3
2X2

1

1 + 2X2
1

, x ∈ Ω, t > 0,

X2t −D2ΔX2 = 1.4X1 −X2, x ∈ Ω, t > 0,

X3t −D3ΔX3 = −X3 −
√

2X2
3 +X3

2X2
1

1 + 2X2
1

, x ∈ Ω, t > 0,

∂ηXi = 0, i = 1, 2, 3, x ∈ ∂Ω, t > 0,

Xi(x, 0) = Xi0(x) ≥ 0, i = 1, 2, 3, x ∈ Ω.

(3.36)

Using the software Matlab, one can obtain u∗ = v∗ = 1.1274, w∗ = 0.1199. It is easy to see that
the previous system satisfies the all conditions of Theorem 3.6(i). So the positive equilibrium
point (0.5637,0.5637,0.1199) of the previous system is globally asymptotically stable.
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4. Global Existence and Stability of Solutions for the System (1.4)

By [34–36], we have the following result.

Theorem 4.1. If u0, v0, w0 ∈W1
p(Ω), p > n, then (1.4) has a unique nonnegative solution u, v,w ∈

C([0, T),W1
p(Ω))

⋂
C∞((0, T), C∞(Ω)), where T ≤ +∞ is the maximal existence time of the solution.

If the solution (u, v,w) satisfies the estimate

sup
{
‖u(·, t)‖W1

p(Ω), ‖v(·, t)‖W1
p(Ω), ‖w(·, t)‖W1

p(Ω) : 0 < t < T
}
<∞, (4.1)

then T = +∞. If, in addition, u0, v0, w0 ∈W2
p(Ω), then u, v,w ∈ C([0,∞),W2

p(Ω)).

In this section, we consider the existence and the convergence of global solutions to
the system (1.4).

Theorem 4.2. Let α11, α22 > 0 and the space dimension n < 6. Suppose that u0, v0, w0 ∈
C2+λ(Ω) (0 < λ < 1) are nonnegative functions and satisfy zero Neumann boundary conditions.
Then (1.4) has a unique nonnegative solution u, v,w ∈ C2+λ,1+λ/2(Ω × [0,∞)).

In order to prove Theorem 4.2, some preparations are collected firstly.

Lemma 4.3. Let (u, v,w) be a solution of (1.4). Then

u, v ≥ 0, 0 ≤ w ≤M1, in QT ≡ Ω × (0, T),

sup
0<t<T

‖u(·, t)‖L1(Ω), sup
0<t<T

‖v(·, t)‖L1(Ω) ≤ C1(T),

‖u‖L2(QT ), ‖v‖L2(QT ) ≤ C2(T),

(4.2)

whereM1 = max{α/γ, ‖w0‖L∞(Ω)}.

Proof. From the maximum principle for parabolic equations, it is not hard to verify that
u, v,w ≥ 0 and w is bounded.

Multiplying the second equation of (1.4) by (a + β), adding up the first equation of
(1.4), and integrating the result over Ω, we obtain

d

dt

∫

Ω

[
u +
(
a + β

)
v
]
dx ≤ −a

∫

Ω
v dx +

∫

Ω

(
βu − bu2

)
dx. (4.3)

Using Young inequality and Hölder inequality, we have

∫

Ω

(
βu − bu2

)
dx ≤ C2,1 −

a

a + β

∫

Ω
udx, (4.4)
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where C2,1 = (1/4b)(β + a/(a + β))2|Ω|. It follows from (4.3) and (4.4) that

d

dt

∫

Ω

[
u +
(
a + β

)
v
]
dx ≤ C2,1 −

a

a + β

∫

Ω

[
u +
(
a + β

)
v
]
dx. (4.5)

Thus,

‖u(·, t)‖L1(Ω), ‖v(·, t)‖L1(Ω) ≤ C2,2, (4.6)

where C2,2 depends on ‖v0‖L1(Ω), ‖u0‖L1(Ω) and coefficients of (1.4). In addition, there exists a
positive constant C1(T), such that

sup
0<t<T

‖u(·, t)‖L1(Ω), sup
0<t<T

‖v(·, t)‖L1(Ω) ≤ C1(T). (4.7)

Integrating the first equation of (1.4) over Ω, we have

d

dt

∫

Ω
udx ≤ β

∫

Ω
v dx − b

∫

Ω
u2dx. (4.8)

Integrating (4.8) from 0 to T , we have
∫

Ω
u(x, T)dx −

∫

Ω
u(x, 0)dx ≤ β

∫T
0

∫

Ω
v dx dt − b

∫T
0

∫

Ω
u2dx dt. (4.9)

According to (4.7), there exists a positive constant C2(T), such that

‖u‖L2(QT ) ≤ C2(T). (4.10)

Multiplying the second equation of (1.4) by v and integrating it over Ω, we obtain

1
2
d

dt

∫

Ω
v2dx = −

∫

Ω
(d2 + 2α22v)|∇v|2dx +

∫

Ω

(
uv − v2

)
dx

≤ 1
2

∫

Ω
u2dx − 1

2

∫

Ω
v2dx.

(4.11)

Integrating the previous inequation from 0 to T , we have

‖v‖L2(QT ) ≤ C2(T). (4.12)

Lemma 4.4. Let (u, v,w) be a solution of (1.4),w1 = (d3 + α33w)w, and τ < T . Then there exists a
positive constant C3(τ) depending on ‖w0‖W1

2 (Ω) and ‖w0‖L∞(Ω), such that

‖w1‖W2,1
2 (Qτ ) ≤ C3(τ). (4.13)

Furthermore ∇w1 ∈ V2(Qτ) and ∇w1 ∈ L2(n+2)/n(Qτ).
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Proof. w1 satisfies the equation

w1t = (d3 + 2α33w)Δw1 + c1 + c2
u2

1 + u2
, (4.14)

where c1, c2 are functions of w and so are bounded because of Lemma 4.3.
Multiply the second equation of (1.4) by −Δw1 and integrate it over Qτ to obtain

1
2

∫

Ω
|∇w1|2(x, τ)dx −

1
2

∫

Ω
|∇w1|2(x, 0)dx + d3

∫

Qτ

|∇w1|2dx ds

≤
∫

Qτ

|Δw1|
∣∣∣∣∣c1 + c2

u2

1 + u2

∣∣∣∣∣dx ds

≤ m1‖Δw1‖L2(Qτ )

≤ d3

2
‖Δw1‖2

L2(Qτ ) +
m1

2d3
.

(4.15)

Then

∫

Ω
|∇w1|2(x, τ)dx + d3

∫

Qτ

|∇w1|2dx ds

≤
∫

Ω
|∇w1|2(x, 0)dx +

m1

2d3
,

(4.16)

and w1 ∈ W2,1
2 (QT ). From a disposal similar to the proof of Lemma 2.2 in [23], we have

∇w1 ∈ V2(Qτ). Using a standard embedding result, we obtain ∇w1 ∈ L2(n+2)/n(Qτ).

Lemma 4.5 (see [23, Lemmas 2.3 and 2.4]). Let q > 1, q̃ = 2 + 4q/n(q + 1), β̃ ∈ (0, 1), and let
CT > 0 be any number which may depend on T . Then there is a constantM2 depending on n, q,Ω, β̃,
and CT such that

∥∥g∥∥
L
q̃

(QT )
≤M2

⎧
⎨
⎩1 +

(
sup
0≤t≤T

∥∥g(·, t)∥∥L2q/(q+1) (Ω)

)4q/n(q+1)q̃∥∥∇g∥∥2/q̃
L2(QT )

⎫
⎬
⎭, (4.17)

for any g ∈ C([0, T),W1
2 (Ω)) with (

∫
Ω|g(·, t)|

β̃dx)
1/β̃
≤ CT for all t ∈ [0, T].

To obtain L∞-estimates of u, v, we establish Lq-estimates of u, v in the following
lemma.

Lemma 4.6. Let α11, α22 > 0, 1 < q < 2(n + 1)/(n − 2), then there exist positive constants C(q, T)
and C(T), such that

‖u‖Lq(QT ), ‖v‖Lq(QT ) ≤ C
(
q, T
)
, ‖u‖V2(QT ), ‖v‖V2(QT ) ≤ C(T). (4.18)
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Proof. Multiply the first equation of (1.4) by quq−1 for q > 1 and integrate by parts over Ω to
obtain

d

dt

∫

Ω
uqdx ≤ −q

(
q − 1

)∫

Ω
uq−2(d1 + 2α11u)|∇u|2dx

− α13
(
q − 1

)∫

Ω
∇(uq) · ∇wdx + qβ

∫

Ω
uq−1v dx.

(4.19)

Integrating (4.19) from 0 to t, we have

∫

Ω
uq(x, t)dx −

∫

Ω
u
q

0(x)dx + q
(
q − 1

)∫

Qt

uq−2(d1 + 2α11u)|∇u|2dx ds

≤ −α13
(
q − 1

)∫

Qt

∇(uq) · ∇wdxds + qβ
∫

Qt

uq−1v dx ds.

(4.20)

Then substitution of uq−2|∇u|2 = (4/q2)|∇(uq/2)|2, uq−1|∇u|2 = (4/(q + 1)2)|∇(u(q+1)/2)|
2

into
(4.20) leads to

∫

Ω
uq(x, t)dx +

4
(
q − 1

)
d1

q

∫

Qt

∣∣∣∇
(
uq/2
)∣∣∣

2
dx ds +

8α11q
(
q − 1

)
(
q + 1

)2

∫

Qt

∣∣∣∇
(
u(q+1)/2

)∣∣∣
2
dx ds

≤
∫

Ω
u
q

0(x)dx − α13
(
q − 1

)∫

Qt

∇(uq) · ∇wdxds + qβ
∫

Qt

uq−1v.

(4.21)

It follows from Hölder inequality and Lemma 4.3 that

qβ

∫

Qt

uq−1v ≤ qβ‖u(q−1)/2‖Ln+2(QT )‖u(
q−1)/2‖L2(n+2)/n(QT )‖v‖L2(QT )

≤ C3,1‖u‖
q−1

L(q−1)(n+2)/2(QT )
.

(4.22)

Note that 1/2 + 1/(n + 2) + n/2(n + 2) = 1, and n + 2 ≥ 2(n + 2)/n for n ≥ 2. From Hölder
inequality, Young inequality, and Lemma 4.4, we have

∣∣∣∣∣
∫

QT

∇(uq) · ∇wdxdt

∣∣∣∣∣ =
2q
q + 1

∣∣∣∣∣
∫

QT

u(q−1)/2∇w · ∇
(
u(q+1)/2

)
dx dt

∣∣∣∣∣

≤
2q
q + 1

‖u‖(q−1)/2

L(q−1)(n+2)/2(QT )
‖∇w‖L2(n+2)/n(QT )

∥∥∥∇
(
u(q+1)/2

)∥∥∥
L2(QT )

≤ C3,2‖u‖
(q−1)/2

L(q−1)(n+2)/2(QT )

∥∥∥∇
(
u(q+1)/2

)∥∥∥
L2(QT )

≤
C3,2ε1

2

∥∥∥∇
(
u(q+1)/2

)∥∥∥
2

L2(QT )
+
C3,2

2ε1
‖u‖q−1

L(q−1)(n+2)/2(QT )
.

(4.23)
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Substitution of (4.22) and (4.23) into (4.21) leads to

∫

Ω
u

2q/(q+1)
1 (x, t)dx +

4
(
q − 1

)
d1

q

∫

Qt

∣∣∣∇
(
uq/2
)∣∣∣

2
dx dt +

8α11q
(
q − 1

)
(
q + 1

)2

∫

Qt

|∇u1|2dx dt

≤
∫

Ω
u
q

0(x)dx + εC3,3‖∇u1‖2
L2(QT ) +

C3,4

ε
‖u1‖

2(q−1)/(q+1)
L(q−1)(n+2)/(q+1)(QT )

,

(4.24)

where ε > 0 is arbitrary and u1 = u(q+1)/2.
Choose ε such that

εα13C3,3 <
4α11q(
q + 1

)2
, (4.25)

then it follows from (4.24) that

sup
0<t<T

∫

Ω
u

2q/(q+1)
1 (x, t)dx +

∫

QT

|∇u1|2dx dt ≤ C3,5

(
1 + ‖u1‖

2(q−1)/(q+1)
L(q−1)(n+2)/(q+1)(QT )

)
. (4.26)

Let

E ≡ sup
0<t<T

∫

Ω
u

2q/(q+1)
1 (x, t)dx +

∫

QT

|∇u1|2dx dt. (4.27)

Then (q − 1)(n + 2)/(q + 1) < q̃ for

1 < q <
n(n + 4)
n2 − 4

. (4.28)

According to Lemma 4.5 and the definition of E, we can see

‖u1‖Lq̃(QT ) ≤M3

(
1 + E2/nq̃E1/q̃

)
. (4.29)

Combining (4.26) and (4.29), we have

E ≤ C3,5

(
1 + ‖u1‖

2(q−1)/(q+1)
Lq̃(QT )

)

≤ C3,5

{
1 +
[
M3

(
1 + E2/nq̃E1/q̃

)]2(q−1)/(q+1)}

≤ C3,6(1 + Eμ),

(4.30)

where μ = (2(q − 1)/q̃(q + 1))(2/n + 1) < 1/q̃[4q/n(q + 1) + 2] = 1. Therefore E is bounded
from (4.30).
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From (4.29), we have u1 ∈ Lq̃(QT ). Namely, u ∈ Lr(QT ), r = q̃(q + 1)/2 = q + 1 + 2q/n.
Combining (4.28), we have u ∈ Lr(QT ), where r < 2(n + 1)/(n − 2).

Setting q = 2 in (4.20) (it is easily checked that q = 2 < n(n+4)/(n2−4), i.e., n = 2, 3, 4, 5),
we have ‖u‖V2(QT ) ≤ CT .

Multiplying the second equation of (1.4) by qvq−1 and integrating it over Ω, we have

d

dt

∫

Ω
vqdx = −q

(
q − 1

)∫

Ω
vq−2(d2 + 2α22v)|∇v|2dx + q

∫

Ω
vq−1(u − v)dx. (4.31)

The result of v can be obtained from an analogue of the previous proof of u’s.

Lemma 4.7. Let n = 2, 3, 4, 5, then there exists a positive constantM4 such that

‖u‖L∞(QT ), ‖v‖L∞(QT ) ≤M4. (4.32)

Proof. We will prove this lemma by [37, Theorem 7.1, page 181]. At first, we rewrite the first
two equations of (1.4) as

∂u

∂t
−

n∑
i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
−

n∑
i=1

∂

∂xi
(aiu) + u

(
a + bu + cu2 +

uw

1 + u2

)
= βv,

∂v

∂t
−

n∑
i,j=1

∂

∂xi

(
bij

∂v

∂xj

)
+ v = u,

(4.33)

where aij(x, t) = (d1 + 2α11u + α13w)δij , ai(x, t) = α13(∂w/∂xi), bij(x, t) = (d2 + 2α22v)δij , δij is
Kronecker symbol. It follows from Lemma 4.6 that u ∈ Lq(QT ), 1 < q < 2(n + 1)/(n − 2).

By the third equation of (1.4), we have

wt = ∇[(d3 + 2α33w)∇w] − kw − γw2 +
αu2w

1 + u2
. (4.34)

It follows from Lemma 4.3 that d3 + 2α33w,−kw − γw2 + αu2w/(1 + u2) is bounded in QT .
Applying Theorem 10.1 [37, Page 204] to (4.34), we have

w ∈ Cλ1,λ1/2
(
QT

)
, λ1 > 0. (4.35)

Recall that w1 = (d3 + α33w)w satisfy (4.14) in Lemma 4.4, that is,

w1t = (d3 + α33w)Δw1 + c1 + c2
u2

1 + u2
, (4.36)

where c1 + c2(u2/(1 + u2)) is bounded. Since d3 + 2α33w ∈ Cλ1,λ1/2(QT ) by (4.35), applying
Theorem 9.1 [37, page 341-342] to (4.36), we have

w1 ∈W2,1
q (QT ). (4.37)
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It follows from [37, Lemma 3.3, page 80] that ∇w1 ∈ L(n+2)q/(n+2−q)(QT ) and so ∇w =
∇w1/(d3 + 2α33w) ∈ L(n+2)q/(n+2−q)(QT ). Recall from Lemma 4.6 that u, v ∈ V2(QT ), so that
u, v ∈ L∞(QT ) by applying Theorem 7.1 [37, Page 181] to (4.33).

Proof of Theorem 4.2. Firstly, Theorem 4.2 can be proved in a similar way as Theorem 2 in [21,
25] when the space dimension n = 1.

Secondly, for 2 ≤ n < 6, applying Lemma 3.3 [37, Page 80] to (4.36), we have

w1 ∈ C1+λ2,(1+λ2)/2
(
QT

)
, 0 < λ2 < 1. (4.38)

Since w = (−d3 +
√
d2

3 + 4α33w1)/2α33, we obtain

w ∈ C1+λ2,(1+λ2)/2
(
QT

)
, 0 < λ2 < 1. (4.39)

The first two equations can be written in the divergence form as

ut = ∇[(d1 + 2α11u + α13w)∇u + α13u∇w] + g1(x, t),

vt = ∇[(d2 + 2α22v)∇v] + g2(x, t),
(4.40)

where g1 = βv − au− bu2 − cu3 − u2w/(1+ u2) ∈ L∞(QT ), g2 = u− v ∈ L∞(QT ). It follows from
Lemmas 4.1, 4.5, and (4.39) that u, v,w,∇w are bounded. Thus applying Theorem 10.1 [37,
Page 204] to (4.40) leads to

u, v ∈ Cλ3,λ3/2
(
QT

)
, 0 < λ3 < 1. (4.41)

We rewrite the third equation of (1.4) as

wt = (d3 + 2α33w)Δw + g3(x, t), (4.42)

where g3 = 2α33|∇w|2−kw−γw2 +αu2w/(1+u2) ∈ Cλ3,λ3/2(QT ). Applying Schauder estimate
[29, Theorem 3.2.6, page 114] to (4.42) gives

w ∈ C2+λ4,(2+λ4)/2
(
QT

)
, where λ4 = min{λ, λ3}. (4.43)

Let

u2 = (d1 + α11u + α13w)u, v2 = (d2 + α22v)v, (4.44)

then

u2t = (d1 + 2α11u + α13w)Δu2 + g4(x, t),

v2t = (d2 + 2α22v)Δv2 + g5(x, t),
(4.45)
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where g4 = (d1+2α11u+α13w)(βv−au−bu2−cu3−u2w/(1+u2))+α13uwt, g5 = (d2+2α22v)(u−v).
From (4.41), we have d1 + 2α11u + α13w,d2 + 2α22v ∈ Cλ3,λ3/2(QT ). It follows from (4.41) and
(4.43) that g4(x, t), g5(x, t) ∈ Cλ4,λ4/2(QT ). Applying Schauder estimate to (4.45) gives

u2, v2 ∈ C2+λ4,(2+λ4)/2
(
QT

)
. (4.46)

Solving equations (4.44) for u, v, respectively, we have

u, v ∈ C2+λ4,(2+λ4)/2
(
QT

)
. (4.47)

In particular, to conclude u, v,w ∈ C2+λ,(2+λ)/2(QT ), we need to repeat the above
bootstrap technique. Since T is arbitrary, so the classical solution (u, v,w) of (1.4) exists
globally in time.

Now we discuss the global stability of the positive equilibrium E∗(u∗, v∗, w∗) (see
Section 2) for (1.4).

Theorem 4.8. Assume that the all conditions in Theorem 4.2, (2.1), and

1
β

(
a + bu∗ + cu∗2

)
> 2 +

(
u∗ +

√
1 + u∗2

)2

8
+
u∗4

2β2
,

γ

α
>

1

2(1 + u∗2)2
(4.48)

hold. Let (u∗, v∗, w∗) be the unique positive equilibrium point of (1.4), and let (u, v,w) be a positive
solution for (1.4). Then

‖u(·, t) − u∗‖L2(Ω) −→ 0, ‖v(·, t) − v∗‖L2(Ω) −→ 0, ‖w(·, t) −w∗‖L2(Ω) −→ 0 (t −→ ∞),
(4.49)

provided that d1 · d2 · d3 is large enough.

Proof. Define the Lyapunov function

H(u, v,w) =
1

2β

∫

Ω
(u − u∗)2dx +

1
2

∫

Ω
(v − v∗)2dx +

1
α

∫

Ω

(
w −w∗ −w∗ ln

w

w∗

)
dx. (4.50)
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Let (u, v,w) be a positive solution of (1.4), Then

dH

dt
≤ −
∫

Ω

[
1
β
(d1 + 2α11u + α13w)|∇u|2 + (d2 + 2α22v)|∇v|2

+
1
α
(d3 + 2α33w)

w∗

w2 |∇w|
2 +

1
β
α13u∇u∇w

]
dx

−
∫

Ω

⎧
⎨
⎩(u − u∗)2 1

β

[
a + b(u + u∗) + c

(
u2 + uu∗ + u∗2

)
+

w(u + u∗)
(1 + u2)(1 + u∗2)

]
− 2

−1
2

(
u + u∗

1 + u2
− u

∗2

β

)2
⎫
⎬
⎭dx −

1
2

∫

Ω
(v − v∗)2dx

−
∫

Ω
(w −w∗)2

[
γ

α
− 1

2(1 + u∗2)2

]
dx.

(4.51)

The first integrand in the right hand of the previous inequality is positive definite if

4β
α
w∗(d1 + 2α11u + α13w)(d2 + 2α22v)(d3 + 2α33w) > α2

13u
2w2(d2 + 2α22v). (4.52)

Therefore, when the all conditions in Theorem 4.8 hold, there exists a positive constant δ such
that

dH(u, v,w)
dt

≤ −δ
∫

Ω

[
(u − u∗)2 + (v − v∗)2 + (w −w∗)2

]
dx. (4.53)

This implies that ‖u(·, t) − u∗‖L2(Ω), ‖v(·, t) − v∗‖L2(Ω), ‖w(·, t) −w∗‖L2(Ω) → 0 as t → ∞. So
the proof of Theorem 4.8 is completed.
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