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We here investigate the existence and uniqueness of the nontrivial, nonnegative solutions of a
nonlinear ordinary differential equation: (|f ′|p−2f ′)

′
+βrf ′+αf +(fq)′ = 0 satisfying a specific decay

rate: limr→∞rα/βf(r) = 0with α := (p−1)/(pq−2p+2) and β := (q−p+1)/(pq−2p+2). Here p > 2 and
q > p − 1. Such a solution arises naturally when we study a very singular self-similar solution for a
degenerate parabolic equation with nonlinear convection term ut = (|ux|p−2ux)x + (uq)x defined on
the half line [0,+∞).
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1. Introduction

In this paper, we consider a quasilinear degenerate diffusion equation with nonlinear
convection term defined on the half line as

ut = (|ux|p−2ux)x + (uq)x, (x, t) ∈ R
+ × R

+, (1.1)

with homogeneous Neumann boundary condition

ux(0, t) = 0, (1.2)

where p > 2, q > p − 1.
Equation (1.1) (sometimes called the non-Newtonian filtration equation or p-Laplacian

equation) arises in the study of the compressible fluid flows in a homogeneous isotropic rigid
porous medium, combustion of solid fuels and has various other applications; see, [1, 2].
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From a mathematical point of view, we note that (1.1) is a quasilinear equation which is
nonuniform parabolic, and it degenerates on the set {ux = 0} (if q = 1, (1.1) reduces to the
standard p-Laplacian by an easy change of variables).

We are mostly interested in nonnegative solutions of (1.1) having the form

u(x, t) = t−αf
(
xt−β

)
:= t−αf(r), (1.3)

where α, β are positive numbers. We substitute (1.3) into (1.1) and find

α :=

(
p − 1

)
(
pq − 2p + 2

) , β :=

(
q − p + 1

)
(
pq − 2p + 2

) , (1.4)

and f, as a function of r = xt−β, solves an ordinary differential equation

(∣∣f ′∣∣p−2f ′
)′

+ βrf ′ + αf +
(
fq)′ = 0. (1.5)

We observe that if u(x, t) solves (1.1) then the rescaled functions

uρ(x, t) = ρα/βu
(
ρx, ρβt

)
, ρ > 0, (1.6)

define a one parameter family of solutions to (1.1). A solution u(x, t) is said to be self-similar
when uρ(x, t) = u(x, t), for every ρ > 0. It can be easily verified that u(x, t) is a self-similar
solution to (1.1) if and only if u has the form (1.3). We also remark that the self-similar
solutions play an important role in the study of large time behaviors of general solutions
(see [3–5]),and the evolution of interfaces of compactly supported solution of the diffusion-
convection eqaution (see [6, 7]).

Every nonnegative, bounded solution of (1.5) has exactly one critical point and since
we here apply the shooting method, led to solve a more general initial value problem,

(∣∣f ′∣∣p−2f ′
)′

+ βrf ′ + αf +
(
fq)′ = 0, (1.7)

for r > 0 with initial conditions

f ′(0) = 0, f(0) = λ, (1.8)

where λmay be any positive number.
Using Shauder’s fixed point theorem or Banach contraction theorem, we find that initial

value problem has a unique solution which we denote by f(r;λ). In many cases, it turns out
that the limit

L(λ) = lim
r→∞

rα/βf(r), (1.9)
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exists and we distinguish between fast and slow orbits according to whether L(λ) = 0 or not,
respectively. The fast orbit will bring out a very singular solution of (1.1). The very singular
solution has a stronger singularity at the origin than the singular solution of that equation. By
a singular solutionwemean a nonnegative and nontrivial solution which satisfies the equation
and vanishes outside any open neighborhood of the origin as t → 0. A singular solution is
called a very singular solution if the integral of u(x, t) over any open neighborhood of the origin
becomes unbounded as t → 0, which is equivalent to, if u is given by (1.3),

lim
r→∞

rα/βf(r) = 0. (1.10)

Furthermore, if 0 < β < α and a solution f of (1.5) satisfies (1.10), then u(x, t) given
explicitly by (1.3) becomes a very singular self-similar solution of (1.1).

Our goal is to find values of q and initial data λ which insure that f(·, λ) is a fast
decaying solution and to give an exact asymptotic behavior of solutions near infinity. More
precisely, our main results include the following.

(i) If α ≤ β (i.e., q ≥ 2(p − 1)), then there does not exist any fast orbit and indeed, only
exists slow orbits for any λ > 0.

(ii) If α > β (i.e., p − 1 < q < 2(p − 1)), then there exists λ1 such that

(i) f(r;λ) is changing sign for λ ∈ (0, λ1);
(ii) f(r;λ) is a slow orbit having the behavior

f(r;λ) ∼ L(λ)r−α/β, (1.11)

near infinity for λ ∈ (λ1,+∞), with L(λ) > 0;
(iii) f(r;λ1) is the only fast orbit having the compact support with interface

relation

lim
r→R−

(
f (p−2)/(p−1)

)′
(r) = −(p − 2

)
/
(
p − 1

)
β1/(p−1)R1/(p−1), (1.12)

for some 0 < R < ∞.

There have been many works dealing with the existence, uniqueness,and qualitative
behavior of self-similar solutions to a class of parabolic equations with absorption (or source,
convection) term. For instance, it is thoroughly treated on the p-Laplacian equation with
absorption term:

ut = div
(
|∇u|p−2∇u

)
− uq, (x, t) ∈ R

N × R
+, (1.13)

with p > 1, q > 1. For p = 2 (linear diffusion case); see [8–10], for p > 2 (slow diffusion case);
see [11] and for 1 < p < 2 (fast diffusion case); see [3]. Recently some papers have studied
for a class of heat equation with nonlinear convection term. They derived some estimates
and used scaling, convergence of rescaled solutions to self-similar ones and thus obtained the
asymptotic of general solutions; see [9, 12, 13] for details. Similar arguments have been used
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in the case of the porous medium equation; see [4]. In addition, classification of the singular
self-similar solutions is found for the linear diffusion equation with convection on half line
under the homogeneous Neumann boundary condition; see [14–17] and another important
application aries in the problem about the evolution of interfaces of compactly supported
solutions of the fast diffusion equation with absorption which motivated our investigation;
see [6, 7].

The plan of the paper is the following. In Section 2, we derive basic properties of f
which will be useful in the proof of the main results. In Section 3, we show that there does
not exist any fast orbit and thus no very singular solution when q ≥ 2(p − 1). In Section 4, we
find a fast decaying solution when p − 1 < q < 2(p − 1). In Section 5, we prove the uniqueness
of the fast orbit.

2. Preliminary Results

In this section we will derive some properties of f which will be useful in the proof of the
main results.

We first show that the sign of f ′ depends on the sign of α, and f decreases as long as it
is positive.

Lemma 2.1. Assume that α > 0, β > 0, and λ > 0. Let f be a solution to (1.5), (1.8) on
[0, R), the maximal existence interval of positive solution with R possibly infinity. Then f decreases
monotonically in (0, R).

Proof. By (1.5) and (1.8) we obtain (|f ′|p−2f ′)(0) = −αλ < 0. Thus, the function f is strictly
decreasing for r near 0. Suppose that there exists r0 < R such that f ′(r) < 0 on (0, r0) and
f ′(r0) = 0. From (1.5) one sees (|f ′|p−2f ′)

′
(r1) < 0, which is impossible.

By Lemma 2.1, f ′(r) < 0 in (0, R) for any λ > 0, andwe find that ifR < ∞, then f(R) = 0
and f ′(R−) ≤ 0. We next show that if f ′(R−) = 0, then f vanishes identically after R.

Lemma 2.2. Assume that α > 0 and λ > 0. Let f be any solution of (1.5) with f(R) = f ′(R) = 0 for
R > 0. Then f = 0 for all r ≥ R.

Proof. By convention, (1.5) is rewritten as

(∣∣f ′∣∣p−2f ′
)′

+ βrf ′ + αf +
(∣∣f∣∣q−1f

)′
= 0. (2.1)

Thus, without loss of generality, we may assume that f(r) > 0 and f ′(r) > 0 for r near Rwith
r > R. For such r, we find easily from (2.1) that (|f ′|p−2f ′)

′
(r) < 0. Integrating over (R, r), we

see that for r > R, |f ′|p−2f ′(r) < 0, which contradicts to the assumption.

Lemma 2.3. Assume that α > 0, β > 0, and λ > 0. Let f be a solution of (1.5), (1.8) for all r > 0.
Then

(i) limr→∞f(r) = 0,

(ii) limr→∞f ′(r) = 0.
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Proof. Since f is strictly decreasing and bounded below by 0, there exists

lim
r→∞

f(r) = l ∈ [0, λ). (2.2)

If we define the energy function E(r) = (p − 1)/p|f ′|p + α/2f2, then we obtain

d

dr
E(r) = −(f ′)2(βr + qfq−1

)
≤ 0, (2.3)

for r ≥ 0. Thus, E(r) decreases monotonically to a limit and there also exists the limit

lim
r→∞

f ′(r) = −l1, l1 ∈ [0,∞). (2.4)

In particular l1 must be zero. Otherwise f becomes negative for some positive r.
We now prove that l = 0. Suppose to the contrary that l > 0.We find that αf → αl and

(fq)′ → 0. From (1.5), one gets

(∣∣f ′∣∣p−2f ′
)′

+ βrf ′ ≤ −α
2
l (2.5)

at near infinity. Let w = |f ′|p−2f ′, then f ′ = −|w|1/(p−1) and we have from (2.5) that

w′ + βr|w|(2−p)/(p−1)w ≤ −α
2
l. (2.6)

Multiplying this by an integrating factor

ρ(x) = e
∫r
0βs|w(s)|(2−p)/(p−1)ds, (2.7)

and integrating from 0 to r, we obtain

(
rf ′)p−1 ≤ −α

2
l
rp−1

∫ r
0ρ(r)dτ
ρ(r)

, (2.8)

which in turn implies with the use of L’Hopital theorem

lim sup
r→∞

rf ′ ≤ −
(
p − 1

)
α

2β
l. (2.9)

This leads to a contradiction.
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3. The case β ≥ α (q ≥ 2(p − 1))

In this section, we show that there does not exist any fast orbit for the problem (1.5) and (1.8)
and thus there is no very singular solution for (1.1) when 0 < α ≤ β.

Theorem 3.1. Assume that β ≥ α (q ≥ 2(p − 1)). For each λ > 0, let f(r;λ) be the solution of (1.5),
(1.8). Then R = ∞, and lim infr→∞rα/βf(r;λ) > 0.

Proof. We assume that R < ∞, on the contrary, and integrate (1.5) over (0, R) to get

∣∣f ′∣∣p−2f ′(R) +
(
α − β

)∫R

0
f(r)dr − λq = 0, (3.1)

which is impossible. Thus f is positive for all r ≥ 0 and R = ∞.

Moreover, we have for r > 0,

{
rα/β−1

∣∣f ′∣∣p−2f ′ + βrα/βf
}′

= rα/β−1
{(∣∣f ′∣∣p−2f ′

)′
+
α/β − 1

r

∣∣f ′∣∣p−2f ′ + αf + βrf ′
}
. (3.2)

By (1.5), we get

{
rα/β−1

∣∣f ′∣∣p−2f ′ + βrα/βf
}′

= rα/β−1
{
α/β − 1

r

∣∣f ′∣∣p−2f ′ − (
fq)′

}
> 0, (3.3)

by the condition β ≥ α and f ′ < 0. If we define the function F(r) := rα/β−1|f ′|p−2f ′ + βrα/βf,
then we see that F(0) = 0 and F(r) is strictly increasing for all r > 0. Since f is a decreasing
function, one must have lim infr→∞rα/βf(r;λ) > 0.

We will see later that the limit limr→∞rα/βf(r;λ) exists for each λ > 0. Thus we may
conclude together with Theorem 3.1 that there exist slow orbits only.

4. The Case α > β (p − 1 < q < 2(p − 1))

In this section, we first show that the solution changes sign for small λ and we next show that
the solution becomes a slow orbit for suitably large λ.We then find a fast orbit between them.
The slow orbits will be shown to be ordered, and the minimal one becomes the fast orbit as
we have seen in many cases; see [10, 16].

Define the following three sets for any initial value λ > 0,

S2 =
{
λ > 0; R < ∞, f ′(R−, λ

)
< 0

}
,

S2 =
{
λ > 0; R < ∞, f ′(R−, λ

)
= 0

}
,

S3 =
{
λ > 0; R = ∞, f(r, λ) > 0

}
.

(4.1)

Obviously, these sets are disjoint and S1 ∪ S2 ∪ S3 = (0,∞).
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We first show that the problem (1.5), (1.8) has changed sign for “small” λ > 0.

Theorem 4.1. The set S1 /= ∅ and open.

Proof. By integrating (1.5), one has

∣∣f ′∣∣p−2f ′ + βrf = φ(r) := −(α − β
)∫ r

0
fdr − fq + λq. (4.2)

One easily finds that φ(0) = 0, φ′(r) = −(α − β)f − qfq−1f ′, and φ′(0) = −(α − β)λ < 0.
Suppose that φ(r) < 0 and thus

∣∣f ′∣∣p−2f ′ + βrf < 0, 0 < r < r0, (4.3)

for some r0 to be determined later. An integration of (4.3) yields

f (p−2)/(p−1)(r) < λ(p−2)/(p−1) −
(
p − 1

)2
β1/(p−1)

p
(
p − 2

) rp/(p−1). (4.4)

Thus if r0 > R0 := ((p(p − 2)/(p − 1)2β1/(p−1))λ(p−2)/(p−1))
(p−1)/p

, then f must change sign and
we are done. Otherwise, we may assume that φ(r0) = 0 for some r0 ≤ R0. From definition, we
obtain f ′(r0) = −β1/(p−1)r01/(p−1)f1/(p−1)(r0) and

φ′(r0) = −(α − β
)
f(r0) − qfq−1f ′(r0) ≥ 0. (4.5)

Combining these, we have

0 < α − β ≤ qβ1/(p−1)r1/(p−1)0 fq−1−(p−2)/(p−1). (4.6)

Since f is a decreasing solution, we also have f(r0) ≤ λ and

α − β ≤ qβ1/(p−1)
(

p(p − 2)

(p − 1)2β1/(p−1)

)1/p

λ(p−2)/[p(p−1)]+q−1−(p−2)/(p−1). (4.7)

The inequality (4.7) does not hold for all sufficiently small λ, which proves the first part of
the theorem. The continuous dependence of solutions on the initial values implies that S1 is
an open set.

We next prove that the problem (1.5), (1.8) has a global positive decaying solution for
all suitably large λ.

Lemma 4.2. Let α > β, then for any R0 there exists λ0 such that f(r) = f(r, λ) > 0 for 0 < r < R0

and f(R0) + |f ′(R0)|p−2f ′(R0) > 0 for all λ ≥ λ0.
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Proof. We define fλ(t) = (1/λ)f(r, λ), t = rλδ with δ = (q − p + 1)/(p − 1) > 0. Then fλ satisfies
f ′
λ
(0) = 0, fλ(0) = 1, and the following equation:

(∣∣f ′
λ

∣∣p−2f ′
λ

)′
+ λ−qp−2(p−1)/p−1

(
βtf ′

λ + αfλ
)
+
(
f
q

λ

)′
= 0. (4.8)

By integrating the above equality over (0, t), we obtain

∣∣f ′
λ

∣∣p−2f ′
λ + λ−(qp−2(p−1))/(p−1)

(
α − β

)∫ t

0
fλdτ + λ−(qp−2(p−1))/(p−1)βtfλ +

(
f
q

λ
− 1

)
= 0. (4.9)

Since fλ is bounded by 1, for any ε > 0 there is λ0 such that whenever λ ≥ λ0,

1 − ε <
∣∣f ′

λ

∣∣p−2f ′
λ + f

q

λ
< 1 + ε, (4.10)

for t ∈ [0, [qp − 2(p − 1)]/(p − 1) − ε],which implies the lemma.

We also prove the next key observation.

Proposition 4.3. Assume that α > 0, β > 0, μ > 0 and f be any globally positive solution to (1.5),
(1.8). Consider the function Ec(r) := cf + rf ′ for c > 0. Then

(i) if c > α/β, then Ec(r) is eventually positive;

(ii) if c < α/β, then Ec(r) is eventually negative.

Proof. By direct calculation and (1.5), we obtain

(
p − 1

)∣∣f ′∣∣p−2 E′
c(r) = (c + 1)

(
p − 1

)∣∣f ′∣∣p−2f ′ − βr2f ′ − αrf − qrfq−1f ′, (4.11)

and at any r = r0 for which Ec(r0) = 0, we have

(
p − 1

)∣∣f ′∣∣p−2 E′
c(r0) = −(c + 1)

(
p − 1

)
cp−1

(
f/r0

)p−1 + (
βc − α

)
r0f + qcfq. (4.12)

Since the middle term on the right-hand side of (4.12) dominates the others for all sufficiently
large r0, the sign of E′

c(r0) is only decided by the sign of cβ − α and thus Ec(r) becomes of the
same sign eventually.

In order to prove (i), we suppose that there exists r1 such that Ec(r) < 0 for all r ≥ r1.
From (1.5) and Lemma 2.1 we deduce that

(∣∣f ′∣∣p−2f ′
)′ − (

βc − α
)
f = −βEc(r) −

(
fq)′ > 0, (4.13)

for r ≥ r1. Multiplying the previous inequality by f ′ and integrating from r to τ with r1 ≤ r ≤
τ, we have

(
p − 1

)

p
∣∣f ′∣∣p(τ) − c1f

2(τ) ≤
(
p − 1

)

p
∣∣f ′∣∣p(r) − c1f

2(r), (4.14)
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where c1 := (βc − α)/2. Letting τ → ∞ and using Lemmas 2.1 and 2.3, we get the following
inequality:

−f ′f−2/p ≥ c2 > 0, r ≥ r1. (4.15)

Integrating the previous inequality from r1 to r ≥ r1, we obtain

p/
(
p − 2

)
f(p−2)/p(r1) − p/

(
p − 2

)
f (p−2)/p(r) ≥ c2(r − r1). (4.16)

Letting r → ∞,we get a contradiction.
We prove (ii) similarly. Suppose that there exists r2 such that Ec(r) > 0 for all r ≥ r2.

From (1.5) and assumption,

(∣∣f ′∣∣p−2f ′
)′

+ αf = −βrf ′ + αf − qfq−1f ′ ≤ βcf + qc/rfq. (4.17)

Since f decreases, we may rewrite this as

(∣∣f ′∣∣p−2f ′
)′ ≤ −c2f < c2

rf ′

c
, (4.18)

where we define c2 = α − cβ + (cq/r2)λq−1 and assume it to be positive by retaking r2. The
inequality (4.18) is rewritten as (p − 1)/(p − 2)(|f ′|p−2f ′)

′ ≤ −c3r for some positive constant c3
and an integration from r = r2 to r = ∞ yields a contradiction, which completes the proof. We
rewrite the problem (1.5), (1.8) as the following system:

f ′ = |h|−(p−2)/(p−1)h,

h′ = −βr|h|−(p−2)/(p−1)h − αf − qfq−1|h|−(p−2)/(p−1)h.
(4.19)

Given any δ > 0, we denote

Lδ :=
{(

f, h
)
: 0 < f ≤ 1, 0 > h > −δf}, (4.20)

then we obtain the following lemma.

Lemma 4.4. For given δ > 0 there exists a rδ := [δ + αδ−1/(p−1)]/β such that Lδ is positively
invariant for r ≥ rδ. That is, (f(r0), h(r0)) ∈ Lδ for r0 ≥ rδ implies that the orbit (f(r), h(r)) of
(4.19) remains in triangle region Lδ for all r ≥ rδ.

Proof. We will show that given δ > 0 there exists rδ > 0 such that if r ≥ rδ then the vector field
determined by (4.19) points into Lδ, except at the critical point (0, 0). It is easy to see this fact
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on the top h = 0 and the line f = 1, and it is enough to verify this only on the line h = −δf. By
the system (4.19), we have

h′

f ′ =
−βr|h|−(p−2)/(p−1)h − αf − qfq−1|h|−(p−2)/(p−1)h

|h|−(p−2)/(p−1)h

= −βr + α

δ
|h|(p−2)/(p−1) − qfq−1 < −βr + αδ−1/(p−1)f (p−2)/(p−1) ≤ −δ,

(4.21)

if r ≥ rδ := [δ + αδ−1/(p−1)]/β.

As a consequence, we can prove the existence of globally positive solutions.

Theorem 4.5. The set S3 /= ∅ and open.

Proof. From Lemma 4.2, we can find r0 such that f > 0 for 0 ≤ r ≤ r0 and f(r0) +
|f ′(r0)|p−2f ′(r0) > 0 for all sufficiently large λ. Thus (f(r0), |f ′|p−2f ′(r0)) ∈ L1 and by
Lemma 4.4, f is positive for all r > 0, which proves the first part of the theorem.

We next prove that S3 is an open set. Set λ0 ∈ S3 and then by Proposition 4.3,
E1(r) = f + rf ′ becomes positive for all large r. Thus there exists sufficiently large r0 such that
(f(r0), |f ′|p−2f ′(r0)) ∈ L1. Then by continuous dependence of solutions on the initial value
there is a neighborhood N of λ0 such that f(r;λ) > 0 and (f(r0;λ), |f ′|p−2f ′(r0;λ)) ∈ L1 for
any (r, λ) ∈ [0, r0] ×N. By Lemma 4.4, we deduce that the orbits remain in L1 for any r > r0,
which implies in particular that f(r, λ) > 0 for any r > r0 and λ ∈ N. Therefore, f(r;λ) > 0 for
any r > 0 and λ ∈ N and S3 is open.

We are now going to find exact decay-rates for globally positive solutions.

Theorem 4.6. For any given λ > 0, let f be any solution to (1.5), (1.8) such that f > 0 for any r > 0.
Then limr→∞rα/βf(r;λ) = L(λ) > 0 exists.

Proof.

Step 1. By Lemmas 2.1 and 2.3 we know that f ′(r) < 0 for r > 0 and limr→∞f(r) =
0, limr→∞f ′(r) = 0. Moreover,we have seen that if c < β/α, then Ec(r) = cf + rf ′ < 0 for
all sufficiently large r; say, r > r0.We easily find that

f(r) ≤ f(r0)r−c, r > r0. (4.22)

We also recall that if d > α/β, then Ed(r) = df + rf ′ > 0 and thus

−f ′(r) <
df(r)
r

, r > r1, (4.23)

for some r1 > 0.
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Step 2. From (1.5), we get

{
rα/β−1

∣∣f ′∣∣p−2f ′ + βrα/βf
}′

= rα/β−1
{(

α/β − 1
)
/r

∣∣f ′∣∣p−2f ′ − (
fq)′}, (4.24)

and integrating over (0, r), we see that

rα/β−1
∣∣f ′∣∣p−2f ′ + βrα/βf =

(
α/β − 1

)∫ r

0

∣∣f ′∣∣p−2f ′sα/β−2ds + q

∫ r

0
fq−1∣∣f ′∣∣sα/β−1ds. (4.25)

Using (4.22) and (4.23), we find that two integrals of the right hand side of (4.25) converge
and limr→∞rα/β−1|f ′|p−2f ′ = 0. Therefore, the limit L(λ) = limr→∞rα/βf(r, λ) exists and finite.

Step 3. We now show that L(λ) > 0. Assume that L(λ) = 0. Integrating (4.24) over (r,∞), we
have

rα/β−1
∣∣f ′∣∣p−2f ′ + βrα/βf

=
(
1 − α/β

)∫∞

r

∣∣f ′∣∣p−2f ′sα/β−2ds − q

∫∞

r

fq−1∣∣f ′∣∣sα/β−1ds.
(4.26)

Again using (4.23), we see that L(λ) = limr→∞rα/βf(r, λ) exists and finite. On the other hand,
by (4.23),

f(r) ≥ f(r1)r−d, r > r1. (4.27)

These conflictions implies that L(λ) > 0.

Remark 4.7. Obviously, the limit value L(λ) = 0 is achieved only when f has the compact
support and Proposition 4.3 and Theorem 4.6 remain true for the case α ≤ β.

We finally show that there exists a fast orbit.

Theorem 4.8. The set S2 /= ∅ and closed. Moreover, the interface relation holds

lim
r→R−

(
f(p−2)/(p−1)

)′
(r) = −

(
p − 2

)
(
p − 1

) β1/(p−1)R1/(p−1), (4.28)

for any λ ∈ S2.

Proof. By Theorems 4.1 and 4.5, we immediately see that S2 is nonempty and closed set. From
Lemma 2.2, any solution f = f(r, λ) with λ ∈ S2 has a compact support; say, [0, R] and f
satisfies condition f(R) = 0, f ′(R) = 0. Integrating the equation (1.5) from r to R, we get

∣∣f ′∣∣p−2f ′(r) = −βrf(r) + (
α − β

)∫R

r

f(s)ds − fq(r). (4.29)



12 Boundary Value Problems

Dividing by f, we have

∣∣f ′∣∣p−2f ′(r)/f(r) = −βr + (
α − β

)∫R

r

f(s)ds/f(r) − fq−1(r). (4.30)

Since f is strictly decreasing, we find that

0 ≤
∫R

r

f(s)ds ≤ f(r)(R − r). (4.31)

Hence

lim
r→R−

∫R

r

f(s)ds/f(r) = 0. (4.32)

Letting r → R− in (4.30), then we obtain

lim
r→R−

∣∣f ′∣∣p−2f ′(r)/f(r) = −βR, (4.33)

and which is equivalent to the second result of the theorem.

In addition, we show the monotonicity of the solutions of the problem (1.5), (1.8)with
respect to λ in the sense that two positive orbits do not intersect each other.

Theorem 4.9. Assume that α > 0, β > 0 and fi are solutions of problem (1.5), (1.8) on [0, Ri) with
initial data fi(0) = λi > 0, i = 1, 2; where [0, Ri) denote the maximal existence interval of fi and Ri

are possible infinity. Then

λ2 > λ1 =⇒ f2(r) > f1(r), ∀0 ≤ r ≤ R := min{R1, R2}. (4.34)

Proof. Suppose contrarily that there exists R0 ∈ [0, R] such that f1(r) < f2(r) for r ∈ [0, R0)
and f1(R0) = f2(R0).We define

gk(r) := k−p/(p−2)f1(kr), r ∈ [0, R1/k) (4.35)

for k > 0 and then gk(r) solves

(∣∣g ′
k

∣∣p−2g ′
k

)′
+ βrg ′

k + αgk + k[pq−2(p−1)]/(p−2)
(
g
q

k

)′
= 0. (4.36)

By Lemma 2.1 we know that f1 is strictly decreasing on [0, R1) and so gk is strictly decreasing
with respect to k. In particular, limk→ 0gk(r) = +∞ for any r ∈ [0, R]. Thus there exists a small
k0 > 0 such that

gk(r) > f2(r), for r ∈ [0, R], k ∈ [0, k0], (4.37)
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and the set

I :=
{
k ∈ (0, k0); gk(r) > f2(r), for r ∈ [0, R0]

}
(4.38)

is nonempty and open. Setting l := sup I, we see that l < 1, l /∈ I and there exists r0 ∈ [0, R0]
such that gl(r0) = f2(r0).

If r0 = R0, then gl(R0) = l−p/(p−2)f1(lR0) = f2(R0). Since f1(R0) = f2(R0) and gl is strictly
decreasing with respect to l, we conclude that l = 1 and which contradicts to the hypothesis.
If r0 ∈ (0, R0), then gl must touch f2 at r = r0 from the above. But in this case we deduce from
(1.5) that

(∣∣g ′
l

∣∣p−2g ′
l

)′′

(r0) −
(∣∣f ′

2

∣∣p−2f ′
2

)′′

(r0) =
(
1 − l[pq−2(p−1)]/(p−2)

)(
f
q

2

)′
(r0) < 0, (4.39)

which obviously violates the strong maximum principle. Thus gl must touch f2 at r = 0 from

the above. But also from (1.5), we find (|f ′
2|p−2f ′

2)
′
(0) = −αλ2 and (|f ′

2|p−2f ′
2)

′′
(0) = −(fq

2 )
′′
(0) =

−qλq−12 f
′′
2(0). Similarly for gl, we obtain,

(∣∣g ′
l

∣∣p−2g ′
l

)′′

(0) −
(∣∣f ′

2

∣∣p−2f ′
2

)′′

(0) =
(
l[pq−2(p−1)]/(p−2) − 1

)
qλ

q−1
2 f

′′
2(0) < 0, (4.40)

which leads to another contradiction and completes all the proofs.

5. Uniqueness

In this section, we show that there exists only one fast decaying solution for the problem (1.5),
(1.8).

Recall that such a solution has compact support [0, R] and has an interface relation

lim
r→R−

(
f(p−2)/(p−1)

)′
(r) = −

(
p − 2

)
(
p − 1

)β1/(p−1)R1/(p−1), (5.1)

by Theorem 4.8.

Theorem 5.1. The set S2 consists of only one element.

Proof. Let F and f be any two fast orbits with compact supports [0, Ri], for i = 1, 2,
respectively and satisfy F(0) > f(0). We define

fk(r) = kf
(
k−γ r

)
, γ =

(
p − 2

)
/p, (5.2)

and then fk will be larger than F on [0, R2] for sufficiently large k. We now define

τ = min
{
k ≥ 1; fk(r) ≥ F(r), 0 ≤ r ≤ R2

}
. (5.3)
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The uniqueness proof is now reduced to showing that τ is not greater than 1. Suppose that
τ > 1, on the contrary. We will show that there exists an ε > 0 such that fτ−ε(r) ≥ F(r) for
every r ∈ [0, R2]. Indeed, we are going to show that fτ(r) does not touch F(r) in compact
support [0, R2] by dividing into three cases:

(i) in the interior of the support;

(ii) at the origin;

(iii) at R2.

In fact, fτ(r) solves

(∣∣f ′
τ

∣∣p−2f ′
τ

)′
+ βrf ′

τ + αfτ +
(
f
q
τ

)′
= −τ

(
1 − τq−γ−1

)(
fq)′. (5.4)

(i) If fτ touches F at r0 ∈ (0, R2), then fτ(r0) = F(r0), f ′
τ(r0) = F ′(r0) < 0 and

(∣∣f ′
τ

∣∣p−2f ′
τ

)′
(r0) <

(∣∣F ′∣∣p−2F ′
)′

(r0), (5.5)

but fτ(r) ≥ F(r) near r = r0,which obviously violates the strong maximum principle.

(ii) If fτ touches F at r0 = 0, then fτ(0) = F(0) > 0, f ′
τ(0) = F ′(0) = 0 and (|f ′

τ |p−2f ′
τ)

′
=

−αfτ(0) = (|F ′|p−2F ′)
′
(0) < 0.Differentiating the equations (1.5) and (5.4), we reduce

that

(∣∣f ′
τ

∣∣p−2f ′
τ

)′′

(0) −
(∣∣F ′∣∣p−2F ′

)′′

(0) = −τ
(
1 − τq−γ−1

)(
fq)′′

(0) < 0. (5.6)

Thus, we have

(∣∣f ′
τ

∣∣p−2f ′
τ

)′′

(r) −
(∣∣F ′∣∣p−2F ′

)′′

(r) ≤ 0 (5.7)

near r0 = 0, which leads to a contradiction.

(iii) For the final case, we define the functions u, Uτ corresponding to F and fτ by

u(x, t) =: t−αF(r),

Uτ(x, t) =: t−αfτ(r) =: τt−αf
(
τ−γ r

)
,

(5.8)

where γ = (p−2)/p, r = rt−β as defined before. Then u(x, t) is a solution of (1.1) and
Uτ is a supersolution . Indeed, a straightforward computation shows that

(Uτ)t −
(
|(Uτ)x|p−2x

)
(Uτ)x −

(
(Uτ)q

)
x = τ

(
τq−γ−1 − 1

)∣∣∣(fq)′∣∣∣ ≥ 0, for τ > 1. (5.9)
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Following directly the proof of Lemma 10 in [18], we can show that for fixed t > 0 and
all sufficiently small δ′ > 0, there exists a θ = θ(δ′) ∈ (0, 1) such thatUτ(x, t) ≤ Uτ(x, t + δ′), if
x satisfies θR2 ≤ xt−βτ−γ ≤ R2 and limδ′↓0 θ(δ′) = θ0 ∈ (0, 1). In the proof, we use the interface
relation (5.1) crucially (see [18] for details). In particular, we have

Uτ(x, 1) ≤ Uτ

(
x, 1 + δ′), (5.10)

for θR2τ
γ ≤ x < R2τ

γ(1 + δ′)β. In other words, we found a separation near the right end
r = R2.

On the other hand, as previously proved, fτ cannot touch F at r0 ∈ [0, R2), which
implies for any ε1 > 0, there exists κ = κ(ε1) ∈ (0, 1) such that F(x) ≤ κfτ(x), that is,

u(x, 1) ≤ κUτ(x, 1). (5.11)

We choose ε1 > 0 so that 0 < ε1 < 1 − θ0 and find δ0 = δ0(ε1) such that

1 − ε1 > θ
(
δ′), (5.12)

for δ′ ∈ (0, δ0). By continuity ofUτ, there exists δ1 = δ1(ε1) ∈ (0, δ0) such that

κUτ(x, 1) ≤ Uτ

(
x, 1 + δ′), (5.13)

for any δ′ ∈ (0, δ1) and 0 ≤ x < (1 − ε1)R2τ
γ . Combining (5.10), (5.11), and (5.13) and using

again the continuity of Uτ, we deduce that for δ ∈ (δ′, δ1), which δ − δ′ small enough, we
have

F(x) < Uτ(x, 1 + δ) = τ(1 + δ)−αf
(
x(1 + δ)−βτ−γ

)
, (5.14)

for any x ≥ 0. Furthermore, from the continuity with respect to τ, there exists τ1 ∈ (0, τ) such
that

u(x, 1) = F(x) ≤ τ1(1 + δ)−αf
(
x(1 + δ)−βτ−γ1

)
= Uτ1(x, 1 + δ), (5.15)

for any x ≥ 0. By parabolic maximum principle, we have u(x, t) ≤ Uτ1(x, t + δ), that is,

t−αF
(
xt−β

)
≤ τ1(t + δ)−αf

(
x(t + δ)−βτ−γ1

)
, (5.16)

for any t ≥ 1 and x ≥ 0. Rewriting (5.16) of the form

F(r) ≤ τ1[t/(t + δ)]−αf
(
r[t/(t + δ)]−βτ−γ1

)
, (5.17)



16 Boundary Value Problems

and letting t → ∞,we find that

F(r) ≤ τ1f
(
rτ

−γ
1

)
, (5.18)

which contradicts the fact that τ is the smallest constant with that property. Thus fτ does not
meet at r0 = R2.

Hence we may find ε > 0 so that

fτ−ε(r) ≥ F(r), for every r ∈ [0, R2], (5.19)

which means that we can slightly reduce the factor τ. Hence we may conclude that τ = 1 but
it is obviously impossible.
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