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1. Introduction

It is commonly believed that drift waves and drift-wave turbulence play a major role in the
understanding of anomalous transport at the plasma edge of a tokamak fusion reactor. One-
field equation describing the electrostatic potential fluctuations in this regime is Hasegawa-
Mima equation:

∂(Δψ − ψ)
∂t

+
∂ψ

∂x

∂(Δψ − ψ)
∂y

− ∂ψ

∂y

∂(Δψ − ψ)
∂x

= 0, (1.1)

where (x, y) ∈ R
2, ψ describes the electrostatic fluctuation and ψ(x, y) → 0 as |x|+ |y| → +∞.

The derivation of (1.1) can be found in [1].
There are many works about analytical mathematical study for (1.1); see, for example,

[2, 3] and references therein. In [2], Grauer proved that the energy for a perturbed Hasegawa-
Mima equation saturates at a finite level, which was observed by numerical simulations. Guo
and Han in [3] studied the global well-posedness of Cauchy problem for (1.1). One of their
results is that the solution ψ(t) of (1.1)with ψ(0) ∈W2,2(R2)∩W2,∞(R2) exists globally and is
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unique. However, the global well-posedness of (1.1)with ψ(0) ∈W2,q(R2) is still not attacked,
whereW2,q(R2) is the usual Sobolev space with norm ‖ · ‖2,q and 1 < q < 2. A natural problem
is whether the solution of (1.1) with the initial data ψ(0) is close to a steady wave ψ0 for all
time or not, if ψ(0) is sufficiently close to ψ0 inW2,q(R2). The problem is concerned with the
existence and stability of steady waves of (1.1).

Here, we are interested in studying the above problem. ψ0 is a steady wave for (1.1)
if and only if there exists some function f such that ψ0 = f(Δψ0 − ψ0). In order to prove
the existence and nonlinear stability of steady waves for (1.1), we consider the existence and
property of critical points of the so-called energy-Casimir functional:

IR2(ψ) = ΦR2(ψ) + ΨR2(ψ), (1.2)

where

ΦR2(ψ) =
1
2

∫
R2

(|∇ψ|2 + |ψ|2),

ΨR2(ψ) =
∫

R2
F(Δψ − ψ)

(1.3)

are two conserved quantities of (1.1), called the total energy and the generalized enstrophy,
respectively. Here

∫
R2 · dx dy is denoted by

∫
R2 ·, and F is an arbitrary C1 function. The critical

points ψ0 of IR2 are steady waves of (1.1), given by ψ0 = f(Δψ0 − ψ0), where f = F ′.
A usual approach to prove the existence of stable critical points of IR2 is to find

extremum points of it, which is the well-known Liapunov method. If ψ0 is a global or local
extremum point of IR2 in an appropriate defined function space X, then it follows that ψ0 is a
steady nonlinearly stable solutions of (1.1); see, for example, [4]. There are two examples for
F such that IR2 have a global extremum. One is F satisfying that F ′′(x) ≥ 0 for any x ∈ R and
there exists ψ0 such that ψ0 = F ′(Δψ0 − ψ0). In this case,

IR2(ψ) − IR2
(
ψ0

) ≥ 1
2

∫
R2

(∣∣∇(
ψ − ψ0

)∣∣2 + ∣∣ψ − ψ0
∣∣2), (1.4)

which implies that ψ0 is a global minimizer of IR2 . Therefore, the steadywave ψ0 is nonlinearly
stable in the following sense: for any ε > 0, there exists δ > 0 such that if ‖ψ(0) − ψ0‖X < δ
and ψ(t) ∈ C([0, T), X) is a solution of (1.1) with initial data ψ(0), then for any t ∈ [0, T),
‖ψ(t) − ψ0‖1 < ε, where ‖ · ‖1 is the norm of H1(R2) and T > 0. The other example is F,
which has the properties: F ′′(x) ≤ −c for large enough c > 0 and there exists ψ0 such that
F ′(Δψ0 − ψ0) = ψ0. In this example,

IR2(ψ) − IR2
(
ψ0

) ≤ 1
2

∫
R2

(∣∣∇(
ψ − ψ0

)∣∣2 + ∣∣ψ − ψ0
∣∣2) − c

∫
R2

∣∣Δ(
ψ − ψ0

) − (
ψ − ψ0

)∣∣2

≤ −c′
∫

R2

∣∣Δ(
ψ − ψ0

) − (
ψ − ψ0

)∣∣2,
(1.5)

where c′ > 0. So ψ0 is a global maximizer of the functional IR2 and nonlinearly stable in the
above sense.
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However, for some F, all critical points of IR2 are neither global nor local extremum
points of IR2 . Among them, some critical points are saddle points regarded as an unstable
equilibria or transient excited state of (1.1). In the present paper, we consider the existence
and stability defined later of saddle points of IR2 for F(x) = −(1/q)|x|q, where q = p/(p − 1),
2 < p < ∞, and x ∈ R. Since F ′′(x) < 0 and there does not exist a positive constant c > 0
such that F ′′(x) < −c for any x /= 0, F is not within the range of the above two examples. As
shown in Proposition A.1 (Proposition A.1, Definition A.2, Proposition A.3, and Remark A.4
are given in the appendix), the functional (1.2) is neither bounded from above nor from below
inW2,q(R2), that is, it is impossible to prove the existence of critical points by finding global
extremum points of IR2 . However, through studying the constrained variational problem

MR2 = inf
ψ̃∈W2,q(R2),‖ψ̃‖1=1

∫
R2
|Δψ̃ − ψ̃|q, (MR2)

we obtain the existence of critical points of (1.2). In fact, if ψ̃0 is a minimizer for (MR2), then,
according to Lagrange Multiplier Principle, with the transform ψ0 =M

1/(2−q)
R2 ψ̃0, ψ0 is a steady

wave of (1.1) in R
2. With Definition A.2 and Proposition A.3, ψ0 is a ground state and saddle

point of IR2 . Let ZR2 be the set of all minimizers for (MR2), that is,

ZR2 =
{
ψ̃0;

∫
R2

(∣∣∇ψ̃0
∣∣2 + ∣∣ψ̃0

∣∣2) = 1,
∫

R2

(∣∣Δψ̃0 − ψ̃0
∣∣q) =MR2

}
, (1.6)

and let GR2 be the set of steady waves of (1.1) corresponding to minimizers of (MR2), that is,

GR2 =
{
ψ0; ψ0 =M

1/(2−q)
R2 ψ̃0, ψ̃0 ∈ ZR2

}
. (1.7)

As is presented in Remark A.4, GR2 is the set of all ground states of the functional IR2 .
Although the elements of GR2 are saddle points of IR2 regarded as an unstable state of (1.1),
we prove that GR2 is a stable set in the sense of Definition 1.1, that is, a solution ψ(t) of (1.1)
which starts near GR2 will remain near it for all time.

Definition 1.1. Let E be a function space with norm ‖ · ‖E, and T ∈ (0,∞]. A set G ⊂ E is
called E-stable with respect to (1.1) in R

2, if for any ε > 0, there exists a δ > 0 such that if
ψ ∈ C([0, T), E) is a solution to (1.1) with initial data ψ(0) satisfying infψ0∈G‖ψ(0) − ψ0‖E ≤ δ,
then for any t ∈ [0, T), infψ0∈G‖ψ(t, ·) − ψ0‖E ≤ ε.

One gives some explanations for the above definition as follows. If G has only one
element ψ0, then the steady wave ψ0 is nonlinearly stable in the usual sense. But, in general,
the elements of G might not be unique. For example, as shown in Theorem 1.3, GR2 =
{M1/(2−q)

R2 ψ̃0(· + y),−M1/(2−q)
R2 ψ̃0(· + y); y ∈ R

2}. In this case, if ψ(0) is sufficiently close to

GR2 , then, for any t > 0, the form of ψ(t) is almost similar to that ofM1/(2−q)
R2 ψ̃0 or −M1/(2−q)

R2 ψ̃0.
Now one turns to describe his two main results.

Theorem 1.2. If {ψ̃m} is a minimizing sequence for (MR2), then there exist {ymk} ⊂ R
2 and a

subsequence {ψ̃mk} such that {ψ̃mk(· + ymk)} is a convergent sequence inW2,q(R2). In particular, the
minimization problem (MR2) has a minimizer ψ̃0.
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Theorem 1.3. According to Definition 1.1, the ground state set GR2 isW2,q(R2)-stable with respect
to (1.1) in R

2. Moreover, there is a unique, up to translation, positive radially symmetricC2 minimizer
ψ̃0 of (MR2), and

GR2 =
{
M

1/(2−q)
R2 ψ̃0(· + y),−M1/(2−q)

R2 ψ̃0(· + y); y ∈ R
2}. (1.8)

The important step to obtain Theorems 1.2 and 1.3 is to prove that the infimum is
achieved. If {ψ̃m} is a minimizing sequence of (MR2), then

∥∥ψ̃m∥∥1 = 1,
∫

R2

∣∣Δψ̃m − ψ̃m
∣∣q −→MR2 , m −→ +∞. (1.9)

Going if necessary to a subsequence, we may assume ψ̃m → ψ̃0 weakly inW2,q(R2), so that

∫
R2

∣∣Δψ̃0 − ψ̃0
∣∣q ≤ lim inf

∫
R2

∣∣Δψ̃m − ψ̃m
∣∣q =MR2 . (1.10)

Thus ψ̃0 is a minimizer of (MR2) provided ‖ψ̃0‖1 = 1. Since W2,q(R2) ↪→ H1(R2) is not
compact, we cannot derive ‖ψ̃0‖1 = 1 from ‖ψ̃m‖1 = 1 and ψ̃m → ψ̃0 weakly in W2,q(R2).
Therefore, we cannot directly derive the existence of minimizer from any minimizing
sequence. However, if we obtain the result that for any minimizing sequence {ψ̃m} there exist
{ymk} ⊂ R

2 and a subsequence {ψ̃mk} such that {ψ̃mk(· + ymk)} is a convergent sequence in
W2,q(R2), which is the first part of Theorem 1.2, then we prove that the infimum is achieved.

In order to prove Theorem 1.2, we construct Lemma 2.1, which is used to study
the behavior at infinity of the minimizing sequence {ψ̃m} and to overcome the loss of
compactness of (MR2). Theorem 1.2 is proved by two steps. Firstly, using Lemma 2.4, we
prove that for any minimizing sequence {ψ̃m}, there exist a subsequence {ψ̃mk} and {ymk} ⊂
R

2 such that ψ̃mk(· + ymk) → ψ̃0 /= 0 weakly in W2,q(R2), which denotes 0 ≤ α∞ < 1. Here
α∞ is a quantity related to {ψ̃mk(· + ymk)} defined in Lemma 2.1. Secondly, according to
Lemmas 2.1 and 2.3 based on Ekeland Principle, we know that if α∞ > 0, then α∞ ≥ 1.
Therefore, putting together the results of the above steps, we obtain α∞ = 0, which implies
that there exists a sequence ymk ⊂ R

2 such that the sequence {ψ̃mk(· + ymk)} is convergent
in W2,q(R2). Applying Theorem 1.2, we prove that GR2 is a stable set with respect to (1.1),
which is the first part of Theorem 1.3. The second part about the structure of GR2 is obtained
by studying the properties of the elliptic equation satisfied by M

1/(2−q)
R2 ψ̃0. Our method in

proving the existence and stability of steady waves for (1.1) is different from that in [5].
In [5], Albert considered constrained variational problems with concentration-compactness
Lemma introduced by Lions [6, 7] and proved the existence and stability of solitary waves to
Kdv equation and some nonlocal equations.

The paper is organized as follows. In Section 2, we establish three lemmas for proving
Theorem 1.2. In Section 3, we give the proofs of Theorems 1.2 and 1.3. In Section 4, we
consider the existence and stability of steady waves for Hasegawa-Mima equation in general
periodic domains and give the application of Lemmas 2.1 and 2.3 to study the existence
and stability of steady waves for two-dimensional incompressible fluid in an infinite strip
channel. Two propositions about the properties of the functional IR2 for F(x) = −(1/q)|x|q
and the definition of the ground state of IR2 are presented in the appendix.
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2. Three Lemmas

At first, we give some notations used later. Let Lq(Ω) be the usual Lebesgue space with norm
| · |q, whereΩ is an unbounded domain in R

2 and q = p/(p−1), 2 < p <∞. The spaceW2,q
0 (Ω)

is the completion of D(Ω) with respect to ‖ · ‖2,q, where D(Ω) is the set of all C∞-functions
with compact support inΩ. The spaceH1

0(Ω) is the completion ofD(Ω)with respect to ‖ · ‖1.
Nowwe give Lemma 2.1, which is used to study the behavior at infinity of minimizing

sequence {ψ̃m} for (MR2).

Lemma 2.1 (compactness lemma). Let {ψ̃m} ⊂ W2,q
0 (Ω) be a sequence such that ψ̃m → ψ̃ weakly

inW2,q
0 (Ω) and define

α∞ := lim
R→∞

lim sup
m→∞

∫
Ω∩{|x|>R}

(∣∣∇ψ̃m∣∣2 + ∣∣ψ̃m∣∣2),

β∞ := lim
R→∞

lim sup
m→∞

∫
Ω∩{|x|>R}

∣∣Δψ̃m − ψ̃m
∣∣q.

(2.1)

Then one has

(1) lim supm→∞
∫
Ω(|∇ψ̃m|2 + |ψ̃m|2) =

∫
Ω(|∇ψ̃|2 + |ψ̃|2) + α∞,

(2) lim supm→∞
∫
Ω|Δψ̃m − ψ̃m|q ≥

∫
Ω|Δψ̃ − ψ̃|q + β∞,

(3) (α∞)
q/2MΩ ≤ β∞, where

MΩ = inf
ψ̃∈W2,q

0 (Ω),‖ψ̃‖1=1

∫
Ω

∣∣Δψ̃ − ψ̃∣∣q. (MΩ)

Proof. (i) For any R > 0, let BR = {x; |x| < R}, BcR = {x; |x| ≥ R}:

lim sup
m→∞

∫
Ω

(∣∣∇ψ̃m∣∣2 + ∣∣ψ̃m∣∣2)

= lim sup
m→∞

[∫
Ω∩BR

(∣∣∇ψ̃m∣∣2 + ∣∣ψ̃m∣∣2) +
∫
Ω∩BcR

(∣∣∇ψ̃m∣∣2 + ∣∣ψ̃m∣∣2)
]
.

(2.2)

Since the imbeddingW2,q(Ω∩BR) ↪→ H1(Ω∩BR) is compact and ψ̃m → ψ̃ weakly inW2,q
0 (Ω),

lim
m→∞

∫
Ω∩BR

(∣∣∇ψ̃m∣∣2 + ∣∣ψ̃m∣∣2) =
∫
Ω∩BR

(∣∣∇ψ̃∣∣2 + ∣∣ψ̃∣∣2). (2.3)
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Combining (2.2) with (2.3), we get

lim sup
m→∞

∫
Ω

(∣∣∇ψ̃m∣∣2 + ∣∣ψ̃m∣∣2)

=
∫
Ω∩BR

(∣∣∇ψ̃∣∣2 + ∣∣ψ̃∣∣2) + lim sup
m→∞

∫
Ω∩BcR

(∣∣∇ψ̃m∣∣2 + ∣∣ψ̃m∣∣2).
(2.4)

Letting R → ∞ in the above formula, we obtain (1).
(ii) Using the weakly lower semicontinuity of a norm, we have

lim inf
m→∞

∫
Ω∩BR

∣∣Δψ̃m − ψ̃m
∣∣q ≥

∫
Ω∩BR

∣∣Δψ̃ − ψ̃∣∣q, for any R > 0. (2.5)

Applying (2.5), we have

lim sup
m→∞

∫
Ω

∣∣Δψ̃m − ψ̃m
∣∣q

≥ lim inf
m→∞

∫
Ω∩BR

∣∣Δψ̃m − ψ̃m
∣∣q + lim sup

m→∞

∫
Ω∩BcR

∣∣Δψ̃m − ψ̃m
∣∣q

≥
∫
Ω∩BR

∣∣Δψ̃ − ψ̃∣∣q + lim sup
m→∞

∫
Ω∩BcR

∣∣Δψ̃m − ψ̃m
∣∣q.

(2.6)

Letting R → ∞ in (2.6), we deduce (2).
(iii) Applying elementary inequalities, we can prove that the norm |(Δ − 1) · |q is

equivalent to ‖ · ‖2,q inW2,q
0 (Ω). Let ϕR ∈ C∞(R2) such that

ϕR(x) =

{
0 |x| < R,
1 |x| > R + 1

(2.7)

and 0 ≤ ϕR(x) ≤ 1 on R
2. It follows from the definition of MΩ and the convexity of the

function g(x) = |x|q (x ∈ R) that

MΩ

[∫
Ω

(∣∣∇ψ̃mϕR∣∣2 + ∣∣ψ̃mϕR∣∣2)
]q/2

≤
∫
Ω

∣∣Δ(
ψ̃mϕR

) − ψ̃mϕR∣∣q

=
∫
Ω

∣∣ϕR(Δψ̃m − ψ̃m
)
+ ψ̃mΔϕR + 2∇ψ̃m · ∇ϕR

∣∣q

=
∫
Ω

∣∣∣∣(1 − ε) ϕR
1 − ε

(
Δψ̃m − ψ̃m

)
+ ε

(
ψ̃mΔ

ϕR
ε

+ 2∇ψ̃m · ∇ϕR
ε

)∣∣∣∣
q

≤ (1 − ε)
∫
Ω

(
ϕR
1 − ε

)q∣∣Δψ̃m − ψ̃m
∣∣q + ε

∫
Ω

∣∣∣∣ψ̃mΔϕRε + 2∇ψ̃m · ∇ϕR
ε

∣∣∣∣
q

,

(2.8)
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where 0 < ε < 1. Since ψ̃m → ψ̃ weakly in W2,q
0 (Ω) and the embedding W2,q(Ω ∩ {x : R <

|x| < R + 1}) ↪→ H1(Ω ∩ {x : R < |x| < R + 1}) is compact,

ψ̃mΔ
ϕR
ε

−→ ψ̃Δ
ϕR
ε
, ∇ψ̃m∇

ϕR
ε

−→ ∇ψ̃∇ϕR
ε

in Lq
(
Ω ∩ {

x : R < |x| < R + 1
})
, (2.9)

which implies

lim
R→∞

lim sup
m→∞

∫
Ω

∣∣∣∣ψ̃mΔϕRε + 2∇ψ̃m · ∇ϕR
ε

∣∣∣∣
q

= 0. (2.10)

With the definitions of α∞, β∞,

lim
R→∞

lim sup
m→∞

[∫
Ω

(∣∣∇ψ̃mϕR∣∣2 + ∣∣ψ̃mϕR∣∣2)
]q/2

=
(
α∞

)q/2
,

lim
R→∞

lim sup
m→∞

∫
Ω
ϕ
q

R

∣∣Δψ̃m − ψ̃m
∣∣q = β∞.

(2.11)

We derive from (2.8)–(2.11)

MΩ
(
α∞

)q/2 ≤ (1 − ε)1−qβ∞. (2.12)

Since ε is arbitrary, we have

MΩ
(
α∞

)q/2 ≤ β∞. (2.13)

Remark 2.2. In [8], Huang and Li have used a concentration-compactness principle at infinity,
similar to Lemma 2.1, to study the existence of positive solutions for some quasilinear
equations on unbounded domains in R

N .
In the following, we give Lemma 2.3, which is used to find a Palais-Smale sequence

{ψ̃1
m} of IR2 through theminimizing sequence {ψ̃m} for (MR2). Firstly, we give some notations.

Let

IΩ(ψ) =
1
2

∫
Ω

(|∇ψ|2 + |ψ|2) − 1
q

∫
Ω
|Δψ − ψ|q,

JΩ
(
ψ̃
)
=

∫
Ω

∣∣Δψ̃ − ψ̃∣∣q
[∫

Ω

(∣∣∇ψ̃∣∣2 + ∣∣ψ̃∣∣2)]q/2
.

(2.14)
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By the definition of Fréchet derivative, it is easy to verify that IΩ ∈ C1(W2,q
0 (Ω),R), JΩ ∈

C1(W2,q
0 (Ω) \ {0},R) and

〈
I ′Ω(ψ), h

〉
=
∫
Ω
(∇ψ∇h + ψh) −

∫
Ω
|Δψ − ψ|q−2(Δψ − ψ)(Δh − h),

〈
J ′Ω(ψ̃), h

〉
=
q
∥∥ψ̃∥∥q−21

[∥∥ψ̃∥∥2
1

∫
Ω

∣∣Aψ̃∣∣q−2Aψ̃Ah − ∥∥ψ̃∥∥q2,q
∫
Ω

(∇ψ̃∇h + ψ̃h
)]

[∫
Ω

(∣∣∇ψ̃∣∣2 + ∣∣ψ̃∣∣2)]q ,

(2.15)

where ψ, ψ̃, h ∈W2,q
0 (Ω) and Aψ̃ = Δψ̃ − ψ̃.

Lemma 2.3. If {ψ̃m} is a minimizing sequence of (MΩ), then there is a minimizing sequence {ψ̃1
m}

such that ‖ψ̃1
m − ψ̃m‖2,q < 1/m, JΩ(ψ̃1

m) → MΩ, J ′Ω(ψ̃
1
m) → 0 inW−2,q′(Ω) asm → ∞, and

IΩ
(
ψm

) −→
(
1
2
− 1
q

)
M

2/(2−q)
Ω , I ′Ω

(
ψm

) −→ 0 in W−2, q′(Ω), as m −→ ∞, (2.16)

where ψm = M
1/(2−q)
Ω ψ̃1

m, and W
−2,q′(Ω) is the dual space ofW2,q

0 (Ω), 1/q + 1/q′ = 1. Moreover, if
α∞, β∞ are quantities related to ψ̃1

m in Lemma 2.1, then

MΩ · α∞ = β∞. (2.17)

Proof. Using the definitions ofMΩ and JΩ, we have

MΩ = inf
0/= ψ̃∈W2, q

0 (Ω)
JΩ

(
ψ̃
)
= lim

m→∞
JΩ

(
ψ̃m

)
. (2.18)

Applying the Ekeland Variational Principle (cf. [9, page 51]) to (2.18), we get a Palais-Smale
sequence {ψ̃1

m}, which satisfies

∥∥ψ̃1
m − ψ̃m

∥∥
2, q <

1
m
, JΩ

(
ψ̃1
m

) −→MΩ,

J ′Ω
(
ψ̃1
m

) −→ 0 in W−2,q′(Ω), as m −→ ∞.

(2.19)
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Then, according to the definitions of IΩ and ψm, for any h ∈W2,q
0 (Ω), we get

IΩ
(
ψm

)
=

1
2
M

2/(2−q)
Ω

∫
Ω

(∣∣∇ψ̃1
m

∣∣2 + ∣∣ψ̃1
m

∣∣2) − 1
q
M

q/(2−q)
Ω

∫
Ω

∣∣Δψ̃1
m − ψ̃1

m

∣∣q

−→ 1
2
M

2/(2−q)
Ω − 1

q
M

q/(2−q)+1
Ω

=
(
1
2
− 1
q

)
M

2/(2−q)
Ω ,

〈
I ′Ω(ψm), h

〉
=M1/(2−q)

Ω

∫
Ω

(∇ψ̃1
m∇h + ψ̃1

mh
) −M(q−1)/(2−q)

Ω

∫
Ω

∣∣Aψ̃1
m

∣∣q−2Aψ̃1
mAh

=M(q−1)/(2−q)
Ω

[
MΩ

∫
Ω

(∇ψ̃1
m∇h + ψ̃1

mh
) −

∫
Ω

∣∣Aψ̃1
m

∣∣q−2Aψ̃1
mAh

]

−→ 0
(
because of

〈
J ′Ω

(
ψ̃1
m

)
, h
〉 −→ 0

)
, as m −→ ∞.

(2.20)

Since (2.20) implies

I ′Ω
(
M

1/(2−q)
Ω ψ̃1

m

) −→ 0 in W−2,q′(Ω), as m −→ ∞, (2.21)

it follows that

〈
I ′Ω

(
M

1/(2−q)
Ω ψ̃1

m

)
,M

1/(2−q)
Ω ψ̃1

mϕR
〉 −→ 0, as m −→ ∞ uniformly for R ≥ 1, (2.22)

where ϕR is the function defined in the proof of Lemma 2.1. With the definition of IΩ, we have

〈
I ′Ω

(
M

1/(2−q)
Ω ψ̃1

m

)
,M

1/(2−q)
Ω ψ̃1

mϕR
〉

=M2/(2−q)
Ω

∫
Ω

(∇ψ̃1
m∇

(
ψ̃1
mϕR

)
+ ψ̃1

mψ̃
1
mϕR

)

−Mq/(2−q)
Ω

∫
Ω

∣∣Δψ̃1
m − ψ̃1

m

∣∣q−2(Δψ̃1
m − ψ̃1

m

)[
Δ
(
ψ̃1
mϕR

) − ψ̃1
mϕR

]
.

(2.23)

Using (2.22), and letting R → ∞ afterm → ∞ in (2.23), we obtain

MΩ · α∞ = β∞. (2.24)

At last, we give another lemma for proving Theorem 1.2.

Lemma 2.4. If {ψ̃m} is bounded inW2,q(R2), and

sup
y∈R2

∫
B(y,R)

∣∣ψ̃m∣∣q −→ 0, for some R > 0, (2.25)

then ψ̃m → 0 inH1(R2).
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Proof. Applying interpolation inequalities, for ψ̃ ∈W2,q(R2), we have

∥∥∇ψ̃∥∥2
L2(B(y,R)) ≤ c

∥∥ψ̃∥∥2(1−γ1)
Lq(B(y,R))

∥∥ψ̃∥∥2γ1
W2,q(B(y,R)), (2.26)

∥∥ψ̃∥∥2
L2(B(y,R)) ≤ c

∥∥ψ̃∥∥2(1−γ2)
Lq(B(y,R))

∥∥ψ̃∥∥2γ2
W2,q(B(y,R)), (2.27)

where γ1 = 1/q, γ2 = 1/q−1/2, and c is a positive constant. Letting B1 = B(0, R), B2 = B(y2, R)
where y2 ∈ ∂B(0, R), B3 = B(y3, R), B4 = B(y4, R) where {y3, y4} = ∂B1 ∩ ∂B2, . . . , we cover
R

2 by the above balls of radius R such that each point of R
2 is contained in at most 3 balls.

Therefore, combining (2.26)with (2.27), we obtain

∥∥∇ψ̃m∥∥2
L2(R2) ≤ 3c

(
sup
y∈R2

∫
B(y,R)

∣∣ψ̃m∣∣q
)2(1−γ1)∥∥ψ̃m∥∥2γ1

W2,q(R2),

∥∥ψ̃m∥∥2
L2(R2) ≤ 3c

(
sup
y∈R2

∫
B(y,R)

∣∣ψ̃m∣∣q
)2(1−γ2)∥∥ψ̃m∥∥2γ2

W2,q(R2).

(2.28)

According to the assumptions of Lemma 2.4 and the above two inequalities, ψ̃m → 0 in
H1(R2).

3. Proof of Theorems 1.2 and 1.3

Now we turn to prove our main results.

Proof of Theorem 1.2. Using Lemma 2.3 and IR2 ∈ C1(W2,q(R2),R), for any minimizing
sequence {ψ̃m} of (MR2), we have

IR2
(
M

1/(2−q)
R2 ψ̃m

) −→
(
1
2
− 1
q

)
M

2/(2−q)
R2 ,

I ′
R2

(
M

1/(2−q)
R2 ψ̃m

) −→ 0 in W−2,q′(
R

2) as m −→ ∞.

(3.1)

Moreover, {ψ̃m} is bounded inW2,q(R2).
Lemma 2.4 implies that there exists {ymk} ⊂ R

2 such that

ψ̃1
mk

:= ψ̃mk

( · +ymk

) −→ ψ̃0 /= 0 weakly in W2, q(
R

2). (3.2)

In fact, since ‖ψ̃m‖1 = 1, by Lemma 2.4, there exists ν > 0 such that

lim inf
m→∞

sup
y∈R2

∫
B(y,R)

∣∣ψ̃m∣∣q > ν. (3.3)
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Then, the above inequality and the boundedness of {ψ̃m} inW2,q(R2) imply that there exist a
subsequence {ψ̃mk} and ymk ∈ R

2 such that

∫
B(ymk ,R)

∣∣ψ̃mk

∣∣q > ν

2
(3.4)

and ψ̃mk(· + ymk) → ψ̃0 weakly in W2, q(R2). Letting ψ̃1
mk

:= ψ̃mk(· + ymk), we know that
{ψ̃1

mk
} is a minimizing sequence of (MR2) and

∫
B(0,R)|ψ̃1

mk
|q > ν/2. Since the embedding

W2,q(B(0, R)) ↪→ Lq(B(0, R)) is compact, ψ̃1
mk

→ ψ̃0 inLq(B(0, R)), which implies ‖ψ̃0‖qLq(B(0,R))
≥ ν/2. So ψ̃1

mk
→ ψ̃0 /= 0 weakly in W2,q(R2).

LetΩ = R
2 and α∞, β∞ be quantities related to ψ̃1

mk
in Lemma 2.1. With Lemma 2.1, we

have

∫
R2

(∣∣∇ψ̃0
∣∣2 + ∣∣ψ̃0

∣∣2) + α∞ = 1. (3.5)

In order to prove Theorem 1.2, we have to show α∞ = 0. Since ψ̃0 /= 0 inW2,q(R2) implies
0 ≤ α∞ < 1, arguing by contradiction, we assume 0 < α∞ < 1. Using Lemmas 2.1 and 2.3, we
have

MR2
(
α∞

)q/2 ≤ β∞ =MR2α∞. (3.6)

Since Sobolev Theorem impliesMR2 > 0, we derive from (3.6) α∞ ≥ 1, which contradicts the
assumption that 0 < α∞ < 1. Thus ψ̃0 is a minimizer for the minimization problem (MR2).
Since W2,q(R2) is a uniformly convex space, ‖ψ̃1

mk
‖2,q → ‖ψ̃0‖2,q and ψ̃1

mk
→ ψ̃0 weakly in

W2,q(R2), we know that ψ̃1
mk

→ ψ̃0 inW2,q(R2).

Proof of Theorem 1.3. We divide the proof into two steps.
Step 1. We prove that GR2 is a stable set. Assume that the ground state set GR2 is notW2,q(R2)-
stable. Then there exist ε0 > 0, ψ0

m ⊂W2,q(R2) and tm ∈ [0, T) such that

inf
ψ0∈GR2

∥∥ψ0
m − ψ0

∥∥
E ≤ 1

m
, (3.7)

inf
ψ0∈GR2

∥∥ψm(tm) − ψ0
∥∥
E ≥ ε0, (3.8)

where ψm ∈ C([0, T), E) is a solution to (1.1)with ψm(0) = ψ0
m. Let ψ̃m =M−1/(2−q)

R2 ψ0
m. Equation

(3.7) implies that

∫
R2

(∣∣∇ψ̃m∣∣2 + ∣∣ψ̃m∣∣2) −→ 1,
∫

R2

∣∣Δψ̃m − ψ̃m
∣∣q −→MR2 . (3.9)

Then there exists {rm} ⊂ R, rm → 1 asm → +∞ such that

{
rmψ̃m

}
is a minimizing sequence for (MR2). (3.10)



12 Boundary Value Problems

Using (1.3), we have

∥∥ψ0
m

∥∥
1 =

∥∥ψm(tm)∥∥1,
∥∥ψ0

m

∥∥
2, q =

∥∥ψm(tm)∥∥2, q. (3.11)

With (3.10) and (3.11), we know that {rmM−1/(2−q)
R2 ψm(tm)} is a minimizing sequence for

(MR2). By Theorem 1.2, there exist ymk ∈ R
2 and ψ̃1

mk
∈ ZR2 such that

∥∥rmkM
−1/(2−q)
R2 ψmk

(
tmk

)( · +ymk

) − ψ̃1
mk

∥∥
2, q

=
∥∥rmkM

−1/(2−q)
R2 ψmk

(
tmk

) − ψ̃1
mk

( · −ymk

)∥∥
2, q

≤ ε0

2M1/(2−q)
R2

,

(3.12)

for sufficiently largemk. Since rm → 1 and ‖ψm(tm)‖2,q is bounded, we derive from (3.8) and
(3.12)

ε0 ≤
∥∥ψmk

(
tmk

) −M1/(2−q)
R2 ψ̃1

mk

( · −ymk

)∥∥
2, q

≤ ∥∥ψmk

(
tmk

) − rmkψmk

(
tmk

)∥∥
2,q +

∥∥rmkψmk

(
tmk

) −M1/(2−q)
R2 ψ̃1

mk

( · −ymk

)∥∥
2, q

≤ ∥∥ψmk

(
tmk

) − rmkψmk

(
tmk

)∥∥
2, q +M

1/(2−q)
R2

∥∥rmkM
−1/(2−q)
R2 ψmk

(
tmk

) − ψ̃1
mk

( · −ymk

)∥∥
2, q

≤ 3
4
ε0,

(3.13)

for sufficiently large mk. Equation (3.13) is a contradiction. Therefore, the ground state set
GR2 isW2,q(R2)-stable with respect to (1.1).
Step 2. Show the structure of GR2 . If ψ̃0 is a minimizer for (MR2), then |ψ̃0| is also a minimizer
for (MR2). We can assume that ψ̃0 is a nonnegative minimizer for (MR2). Let ψ0 =M

1/(2−q)
R2 ψ̃0,

then I ′
R2(ψ0) = 0 inW−2,q′(R2), that is,

−Δψ0 + ψ0 = ψ
p−1
0 , ψ0(x) −→ 0 as |x| −→ +∞, (3.14)

where p > 2 is given in Section 2. In fact, using the implicit function theorem, we know that
M = {ψ̃ : ψ̃ ∈W2,q(R2),

∫
R2 |∇ψ̃|2 + |ψ̃|2 = 1} is a C1-submanifold ofW2,q(R2). Then, according

to the Lagrange Multiplier Principle, there exists λ ∈ R such that

−qΨ′
R2
(
ψ̃0

)
= 2λΦ′

R2
(
ψ̃0

)
in W−2,q′(

R
2), (3.15)

where ΨR2(ψ̃0) = −(1/q)∫
R2 |Δψ̃0 − ψ̃0|q, ΦR2(ψ̃0) = (1/2)

∫
R2(|∇ψ̃0|2 + |ψ̃0|2). Since ψ̃0 is a

minimizer for (MR2), with the definition of MR2 , we obtain λ = (q/2)MR2 . So, we conclude
I ′
R2(ψ0) = 0.
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Applying elliptic regularity theory (cf., e.g., [10], Lemma 1.30), we prove that ψ0 ∈
C2(R2). According to the strong maximum principle, ψ0 is positive. Using the moving plane
method (cf. [11]), we show that ψ0 is radially symmetric. Moreover, by the uniqueness result
in [12], ψ0 is unique up to translations. Therefore, ψ̃0 is a unique, up to translation, positive
radially symmetric C2 minimizer of (MR2), and

GR2 =
{
M

1/(2−q)
R2 ψ̃0(· + y),−M1/(2−q)

R2 ψ̃0(· + y); y ∈ R
2}. (3.16)

Remark 3.1. The existence of nontrivial critical points of (1.2) for F(x) = −(1/q)|x|q can
also be proved by the following method. Since W

2,q
r (R2) ↪→ H1

r (R
2) is compact, where

W
2,q
r (R2) and H1

r (R
2) are the set of the radially symmetric functions of W2,q(R2) and

H1(R2), respectively, with Principle of Symmetric Criticality proposed by Palais (cf. [13])
and Fountain Theorem (cf. [10], Chapter 3), we can prove that there are infinitely many
solutions to (1.2). However, we do not know how to consider the stability of these solutions.
So, we cannot study the existence of nontrivial critical points of (1.2) with this method.
Through considering the constrained variational problem (MR2), we obtain the existence of
a set GR2 of steady waves for (1.1) and know that GR2 is W2,q(R2)-stable with respect to
(1.1).

4. Hasegawa-Mima Equation in Periodic Domains

In this section, we consider the existence and stability of steady waves for Hasegawa-Mima
equation in periodic domains:

∂(Δψ − ψ)
∂t

+
∂ψ

∂x

∂(Δψ − ψ)
∂y

− ∂ψ

∂y

∂(Δψ − ψ)
∂x

= 0, (4.1)

where (x, y) ∈ Ω, Ω is a periodic domain defined later, ψ(x, y) → 0 as |x| + |y| → +∞,
and ψ|(x,y)∈∂Ω = 0. Moreover, as a byproduct, we prove the existence and stability of steady
two-dimensional incompressible flows in infinite strip channel.

At first, we give the definition and two examples of periodic domain.

Definition 4.1 (periodic domain). If Ω is a domain in R
2, and there are a partition {Ωn} of Ω

and points {yn} in R
2 satisfying the following conditions: (1) {yn} forms a subgroup of R

2,
(2) Ω0 is a bounded domain in R

2, (3) Ωn = yn + Ω0, then Ω is called a periodic domain.
It is clear that R

2 is a periodic domain. The other example of periodic domain is Q =
{(x, y) ∈ R × R : |y| < 1}.

Similarly to the method used in studying (1.1), in order to prove the existence and
stability of steady waves for (4.1), we consider the following minimization problem:

MΩ = inf
ψ̃∈W2,q

0 (Ω),‖ψ̃‖1=1

∫
Ω

∣∣Δψ̃ − ψ̃∣∣q. (MΩ)
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Let

ZΩ =
{
ψ̃0;

∫
Ω

(∣∣∇ψ̃0
∣∣2 + ∣∣ψ̃0

∣∣2) = 1,
∫
Ω

(∣∣Δψ̃0 − ψ̃0
∣∣q) =MΩ

}
,

GΩ =
{
ψ0; ψ0 =M

1/(2−q)
Ω ψ̃0, ψ̃0 ∈ ZΩ

}
.

(4.2)

If ψ̃0 ∈ ZΩ, then, according to Lagrange Multiplier Principle, ψ0 =M
1/(2−q)
Ω ψ̃0 is a steady wave

for (4.1). Moreover, as presented in Proposition A.3, ψ0 is a ground state and saddle point of
IΩ.

Through considering the above minimization problem (MΩ), we obtain the following
result similar to Theorems 1.2 and 1.3.

Theorem 4.2. If {ψ̃m} is a minimizing sequence for (MΩ), then there exist a subsequence {ψ̃mk} and
{ynmk } such that ψ̃mk(· + ynmk ) → ψ̃ /= 0 weakly in W2,q

0 (Ω). Moreover, the ground state set GΩ is

W
2,q
0 (Ω)-stable with respect to (4.1).

Proof. Without loss of generality, we assume that Ω =
⋃
n∈Z

Ωn, where Ωi and Ωj are disjoint
if i /= j, and there exists Ω0 ⊂ R

2 such that Ωn = yn + Ω0. Similar to Lemma 2.3, using IΩ ∈
C1(W2,q

0 (Ω),R), we know that the minimizing sequence {ψ̃m} satisfies

IΩ
(
M

1/(2−q)
Ω ψ̃m

) −→
(
1
2
− 1
q

)
M

2/(2−q)
Ω ,

I ′Ω
(
M

1/(2−q)
Ω ψ̃m

) −→ 0 in W−2,q′(Ω), as m −→ ∞.

(4.3)

If we let ψm =M1/(2−q)
Ω ψ̃m, then (4.3) implies

∫
Ω

(∣∣∇ψm∣∣2 + ∣∣ψm∣∣2) =
∫
Ω

∣∣Δψm − ψm
∣∣q + o(1). (4.4)

Letting dm = maxn∈Z[
∫
Ωn
(|∇ψm|2 + |ψm|2)]1/2, applying Sobolev inequality, (4.3) and (4.4), we

have

o(1) + IΩ
(
ψm

)
=
(
1
2
− 1
q

)∑
n∈Z

∫
Ωn

(∣∣∇ψm∣∣2 + ∣∣ψm∣∣2)

≥
(
1
2
− 1
q

)
max
n∈Z

[∫
Ωn

(∣∣∇ψm∣∣2 + ∣∣ψm∣∣2)
](2−q)/2∑

n∈Z

[∫
Ωn

(∣∣∇ψm∣∣2 + ∣∣ψm∣∣2)
]q/2

≥
(
1
2
− 1
q

)
d
2−q
m C

∑
n∈Z

∫
Ωn

∣∣Δψm − ψm
∣∣q

≥
(
1
2
− 1
q

)
d
2−q
m C

∑
n∈Z

∫
Ωn

(∣∣∇ψm∣∣2 + ∣∣ψm∣∣2) + o(1),
(4.5)
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for some constant C > 0 independent ofm. Since
∫
Ω(|∇ψ̃m|2+ |ψ̃m|2) = 1 for allm, (4.5) implies

that there exists μ > 0 such that dm ≥ μ for m = 1, 2, . . . . Therefore, for each m, there exists
Ωnm such that

[∫
Ωnm

(∣∣∇ψm∣∣2 + ∣∣ψm∣∣2)
]1/2

≥ μ

2
. (4.6)

Equation (4.6)means that there exists a point ynm such that

[∫
Ωnm

(∣∣∇ψm∣∣2 + ∣∣ψm∣∣2)
]1/2

=
[∫

Ω0

(∣∣∇ψm(x + ynm
)∣∣2 + ∣∣ψm(x + ynm

)∣∣2)]1/2 ≥ μ

2
. (4.7)

Since {ψm(x + ynm)} is bounded inW2,q
0 (Ω), there exists a subsequence {ψmk(x + ynmk )} such

that

ψmk

(
x + ynmk

) −→ ψ /= 0 weakly in W
2,q
0 (Ω). (4.8)

So ψ̃mk(x + ynmk ) =M
−1/(2−q)
Ω ψmk(x + ynmk ) → M

−1/(2−q)
Ω ψ = ψ̃ /= 0 weakly in W

2,q
0 (Ω).

Let α∞, β∞ be quantities related to {ψ̃mk(x+ynmk )} in Lemma 2.1. Similarly to the proof
of the first part of Theorem 1.3, we can prove the second part of Theorem 4.2.

In the following, we give an application of Lemmas 2.1 and 2.3 to study the existence
and stability of steady two-dimensional incompressible waves. The well-known vorticity
equation governing the two-dimensional incompressible flow in an infinite strip channel is

∂Δψ
∂t

+
∂ψ

∂x

∂Δψ
∂y

− ∂ψ

∂y

∂Δψ
∂x

= 0, (x, y) ∈ Q = R × (0, 1), (4.9)

where ψ is a stream function.
If the stream function ψ satisfies

ψ(x, 0) = ψ(x, 1) = 0 for any x ∈ R, ψ(x, y) −→ 0 as |x| −→ +∞, (4.10)

then there are two conserved quantities of (4.9) and (4.10): the total energy ΦQ(ψ) =
(1/2)

∫
Q|∇ψ|2, the generalized enstrophy ΨQ(ψ) =

∫
QF(Δψ), where F is an arbitrary C1

function. Letting F(x) = −(1/q)|x|q for x ∈ R, where q = p/(p − 1) and 2 < p < +∞, we
consider the minimization problem:

MQ := inf
{∫

Q

(∣∣Δψ̃∣∣q); ψ ∈W2,q
0 (Q),

∫
Q

∣∣∇ψ̃∣∣2 = 1
}
. (MQ)

Let ZQ = {ψ̃; ∫Q|Δψ̃|q = MQ, and
∫
Q|∇ψ̃|2 = 1}, GQ = {ψ;ψ = M

1/(2−q)
Q ψ̃, ψ̃ ∈ ZQ}. Then we

have the following result, which is a corollary of Theorem 4.2.
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Corollary 4.3. The ground state set GQ is not empty. Moreover, it isW2,q
0 (Q)-stable with respect to

(4.9) and (4.10).

Appendix

Proposition A.1. The functional

IΩ(ψ) =
1
2

∫
Ω

(|∇ψ|2 + |ψ|2) − 1
q

∫
Ω
|Δψ − ψ|q (A.1)

is neither bounded from above nor from below inW2,q
0 (Ω).

Proof. For given ψ /= 0 in W2,q
0 (Ω), from IΩ(tψ) = (t2/2)

∫
Ω(|∇ψ|2 + |ψ|2) − (|t|q/q)∫Ω|Δψ − ψ|q

and 1 < q < 2, we have

IΩ(tψ) −→ +∞, as |t| −→ +∞. (A.2)

In the following, we prove that IΩ is not bounded from below inW2,q
0 (Ω).

Let Er = {ψ; ψ ∈ W
2,q
0 (Ω), andψ is radially symmetric}, {ei}+∞i=1 be a Schauder basis

for Er (cf. [14]), Xi = span{ei}, and Yk = ⊕+∞
i=kXi. Firstly, we claim

αk = sup
u∈Yk,‖ψ‖2,q=1

‖ψ‖1 −→ 0, as k −→ +∞. (A.3)

It is clear that αk is a nonnegative decreasing sequence in R. Let αk → α ≥ 0, as k → +∞. For
given k, there exists ψk such that ‖ψk‖2,q = 1 and ‖ψk‖1 ≥ αk/2. The fact that ‖ψk‖2,q = 1 and
ψk ∈ Yk implies that ψk ⇀ ψ = 0 in Er as k → +∞. Since Er ↪→ H1

0,r(Ω) is compact, ψk → 0
in H1

0,r(Ω) as k → +∞, where H1
0,r(Ω) = {ψ : ψ ∈ H1

0(Ω), andu is radially symmetric}. So
αk → α = 0. With the definition of αk,

IΩ(ψ) ≤ 1
2
α2k‖ψ‖22,q −

1
q
‖ψ‖q2,q on the subspaceYk. (A.4)

Let ψ ∈ Yk, ‖ψ‖2,q = α−2/(2−q)k
,

IΩ(ψ) ≤ 1
2
α2kα

−4/(2−q)
k − 1

q
α
−2q/(2−q)
k =

(
1
2
− 1
q

)
α
−2q/(2−q)
k −→ −∞, as k −→ +∞. (A.5)

Let N = {ψ; ψ ∈ W
2,q
0 (Ω), 〈I ′Ω(ψ), ψ〉 = 0}, which is usually called Nehari manifold,

N1 = {ψ; ψ ∈ W
2,q
0 (Ω), 〈I ′Ω(ψ), h〉 = 0 for anyh ∈ W

2,q
0 (Ω)}, which is the set of all critical

points for IΩ. It is clear thatN ⊃N1.
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Definition A.2. A function ψ0 is called a ground state for IΩ, if ψ0 is a critical point of IΩ and
IΩ(ψ0) ≥ IΩ(ψ), that is, ‖ψ0‖21 ≤ ‖ψ‖21, for any ψ ∈N1.

Proposition A.3. If ψ̃0 is a minimizer for (MΩ), that is, ψ̃ ∈ ZΩ, then ψ0 = M
1/(2−q)
Ω ψ̃0 is a ground

state solution of IΩ. Moreover, ψ0 is a ”Mountain Pass type” critical point (saddle point) of IΩ.

Proof. As is presented in the proof of Theorem 1.3, ψ0 is a critical point of IΩ and

IΩ
(
ψ0

)
=

1
2

∫
Ω

(∣∣∇ψ0
∣∣2 + ∣∣ψ0

∣∣2) − 1
q

∫
Ω

∣∣Δψ0 − ψ0
∣∣q =

(
1
2
− 1
q

)
M

2/(2−q)
Ω . (A.6)

The definition of MΩ implies that ‖h‖q2,q ≥ MΩ‖h‖q1 for all h ∈ W
2,q
0 (Ω). If ψ ∈ N, which

implies that ‖ψ‖21 = ‖ψ‖q2,q, then ‖ψ‖21 ≥M
2/(2−q)
Ω . Therefore, for any ψ ∈N,

IΩ(ψ) =
(
1
2
− 1
q

)
‖ψ‖21 ≤

(
1
2
− 1
q

)
M

2/(2−q)
Ω = IΩ

(
ψ0

)
. (A.7)

SinceN1 ⊂N, by Definition A.2, ψ0 is a ground state solution of IΩ.
For 0/=ψ ∈ E and t ≥ 0, let

g(t) = IΩ(tψ) =
t2

2

∫
Ω

(∣∣∇ψ∣∣2 + |ψ|2) − tq

q

∫
Ω
|Δψ − ψ|q. (A.8)

Then there exists a unique t(ψ) > 0 such that IΩ(t(ψ)ψ) = inft≥0IΩ(tψ) and (dg(t)/dt)|t=t(ψ) =
0, that is, t(ψ)

∫
Ω(|∇ψ|2 + |ψ|2) − t(ψ)q−1∫Ω|Δψ − ψ|q = 0, which implies t(ψ)ψ ∈N. Let

c1 = sup
ψ∈N

IΩ(ψ), c2 = sup
0/=ψ∈E

inf
t≥0

IΩ(tψ). (A.9)

Therefore, IΩ(ψ0) = c1 = c2. It follows from the definition of c2 that ψ0 is a ”Mountain Pass
type” critical point (saddle point) of IΩ.

Remark A.4. From the proof of Proposition A.3, we obtain

GΩ =
{
ψ0; ψ0 =M

1/(2−q)
Ω ψ̃0, ψ̃0 ∈ ZΩ

}

=
{
ψ0; ψ0 ∈N1 ,

∥∥ψ0
∥∥2
1 ≤ ‖ψ‖21 for any ψ ∈N1

}
.

(A.10)

In fact, if ψ0 =M
1/(2−q)
Ω ψ̃0, where ψ̃0 ∈ ZΩ, then ψ0 ∈N1 and ‖ψ0‖21 ≤ ‖ψ‖21 for any ψ ∈N1. On

the other hand, if ψ0 ∈ N1 and ‖ψ0‖21 ≤ ‖ψ‖21 for any ψ ∈ N1, then ‖ψ0‖21 = ‖ψ0‖q2,q = M
2/(2−q)
Ω .

Letting ψ̃0 =M
−1/(2−q)
Ω ψ0, we know ψ̃0 ∈ ZΩ.
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