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We prove the interior approximate controllability for the following 2 × 2 reaction-diffusion system
with cross-diffusion matrix ut = aΔu− β(−Δ)1/2u+ bΔv + 1ωf1(t, x) in (0, τ)×Ω, vt = cΔu− dΔv −
β(−Δ)1/2v + 1ωf2(t, x) in (0, τ) × Ω, u = v = 0, on (0, T) × ∂Ω, u(0, x) = u0(x), v(0, x) = v0(x),
x ∈ Ω, where Ω is a bounded domain in R

N (N ≥ 1), u0, v0 ∈ L2(Ω), the 2 × 2 diffusion matrix
D =

[ a b

c d

]
has semisimple and positive eigenvalues 0 < ρ1 ≤ ρ2, β is an arbitrary constant, ω is an

open nonempty subset ofΩ, 1ω denotes the characteristic function of the setω, and the distributed
controls f1, f2 ∈ L2([0, τ];L2(Ω)). Specifically, we prove the following statement: if λ1/21 ρ1 + β > 0
(where λ1 is the first eigenvalue of −Δ), then for all τ > 0 and all open nonempty subset ω ofΩ the
system is approximately controllable on [0, τ].

Copyright q 2009 H. Larez and H. Leiva. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper we prove the interior approximate controllability for the following 2×2 reaction-
diffusion system with cross-diffusion matrix

ut = aΔu − β(−Δ)1/2u + bΔv + 1ωf1(t, x) in (0, τ) ×Ω,

vt = cΔu − dΔv − β(−Δ)1/2v + 1ωf2(t, x) in (0, τ) ×Ω,

u = v = 0, on (0, τ) × ∂Ω,
u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain in R
N (N ≥ 1), u0, v0 ∈ L2(Ω), the 2 × 2 diffusion matrix

D =

[
a b

c d

]

(1.2)
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has semisimple and positive eigenvalues, β is an arbitrary constant, ω is an open nonempty
subset of Ω, 1ω denotes the characteristic function of the set ω, and the distributed controls
f1, f2 ∈ L2([0, τ];L2(Ω)). Specifically, we prove the following statement: if λ1/21 ρ1 + β > 0 (the
first eigenvalue of −Δ), then for all τ > 0 and all open nonempty subset ω of Ω, the system is
approximately controllable on [0, τ].

When Ω = (0, 1) this system takes the following particular form:

ut = a
∂2u

∂x2
+ β

∂u

∂x
+ b

∂2v

∂x2
+ 1ωf1(t, x) in (0, τ) × (0, 1),

vt = c
∂2u

∂x2
+ d

∂2v

∂x2
+ β

∂v

∂x
+ 1ωf2(t, x) in (0, τ) × (0, 1),

u(t, 0) = v(t, 0) = u(t, 1) = v(t, 1) = 0, t ∈ (0, τ),

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ (0, 1).

(1.3)

This paper has been motivated by the work done Badraoui in [1], where author studies the
asymptotic behavior of the solutions for the system (1.3) on the unbounded domain Ω = R.
That is to say, he studies the system:

ut = a
∂2u

∂x2
+ β

∂u

∂x
+ b

∂2v

∂x2
+ f(t, u, v), x ∈ R, t > 0,

vt = c
∂2u

∂x2
+ d

∂2v

∂x2
+ β

∂v

∂x
+ g(t, u, v), x ∈ R, t > 0,

(1.4)

supplemented with the initial conditions:

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R, (1.5)

where the diffusion coefficients a and d are assumed positive constants, while the diffusion
coefficients b, c and the coefficient β are arbitrary constants. He assume also the following
three conditions:

(H1) (a − d)2 + 4bc > 0, cd /= 0 and ad > bc,

(H2) u0, v0 ∈ X = CUB(R),where CUB is the space of bounded and uniformly continuous
real-valued functions,

(H3) f(t, u, v) and g(t, u, v) ∈ X, for all t > 0 and u, v ∈ X. Moreover, f and g are
locally Lipshitz; namely, for all t1 ≥ 0 and all constant k > 0, there exist a constant
L = L(k, t1) > 0 such that

∣∣f(t,w1) − f(t,w2)
∣∣ ≤ L|w1 −w2|, (1.6)

is verified for all w1 = (u1, v1), w2 = (u2, v2) ∈ R × R with |w1| ≤ k, |w2| ≤ k and
t ∈ [0, t1].
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We note that the hypothesis (H1) implies that the eigenvalues of the matrix D are simple
and positive. But, this condition is not necessary for the eigenvalues of D to be positive, in
fact we can find matricesD with a and d been negative and having positive eigenvalues. For
example, one can consider the following matrix:

D =

[
5 −6
2 −2

]

, (1.7)

whose eigenvalues are ρ1 = 1 and ρ2 = 2.
The system (1.1) can be written in the following matrix form:

zt = DΔz − βI2×2(−Δ)1/2z + 1ωf(t, x), in (0, τ) ×Ω,

z = 0, on (0, τ) × ∂Ω,
z(0, x) = z0(x), x ∈ Ω,

(1.8)

where z = [u, v]T ∈ R
2, the distributed controls f = [f1, f2]

T ∈ L2([0, τ];L2(Ω;R2)), and I2×2
is the identity matrix of dimension 2 × 2.

Our technique is simple and elegant from mathematical point of view, it rests on the
shoulders of the following fundamental results.

Theorem 1.1. The eigenfunctions of −Δ with Dirichlet boundary condition are real analytic
functions.

Theorem 1.2 (see [2, Theorem 1.23, page 20]). SupposeΩ ⊂ R
n is open, nonempty, and connected

set, and f is real analytic function in Ω with f = 0 on a nonempty open subset ω of Ω. Then, f = 0
in Ω.

Lemma 1.3 (see [3, Lemma 3.14, page 62]). Let {αj}j≥1 and {βi,j : i = 1, 2, . . . , m}
j≥1 be two

sequences of real numbers such that α1 > α2 > α3 · · · . Then

∞∑

j=1

eαj tβi,j = 0, ∀t ∈ [0, t1], i = 1, 2, . . . , m (1.9)

if and only if

βi,j = 0, i = 1, 2, . . . , m; j = 1, 2, . . . ,∞. (1.10)

Finally, with this technique those young mathematicians who live in remote and
inhospitable places, far from major research centers in the world, can also understand and
enjoy the interior controllability with a minor effort.
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2. Abstract Formulation of the Problem

In this section we choose a Hilbert space where system (1.8) can be written as an abstract
differential equation; to this end, we consider the following notations:

Let us consider the Hilbert space H = L2(Ω,R) and 0 = λ1 < λ2 < · · · < λj → ∞
the eigenvalues of −Δ, each one with finite multiplicity γj equal to the dimension of the
corresponding eigenspace. Then, we have the following well-known properties (see [3, pages
45-46]).

(i) There exists a complete orthonormal set {φj,k} of eigenvectors of −Δ.

(ii) For all ξ ∈ D(−Δ), we have

−Δξ =
∞∑

j=1

λj

γj∑

k=1

〈
ξ, φj,k

〉
φj,k =

∞∑

j=1

λjEjξ, (2.1)

where 〈·, ·〉 is the inner product inH and

Enξ =
γj∑

k=1

〈
ξ, φj,k

〉
φj,k. (2.2)

So, {Ej} is a family of complete orthogonal projections inH and ξ =
∑∞

j=1Ejξ, ξ ∈ H.
(iii) Δ generates an analytic semigroup {TΔ(t)} given by

TΔ(t)ξ =
∞∑

j=1

e−λj tEjξ. (2.3)

Now, we denote by Z the Hilbert space H2 = L2(Ω;R2) and define the following
operator:

A : D(A) ⊂ Z −→ Z, Aψ = −DΔψ + βI2×2(−Δ)1/2ψ (2.4)

with D(A) = H2(Ω,R2) ∩H1
0(Ω,R

2). Therefore, for all z ∈ D(A), we obtain

Az =
∞∑

j=1

λ1/2j

(
λ1/2j D + βI2×2

)
Pjz, (2.5)

z =
∞∑

j=1

Pjz, ‖z‖2 =
∞∑

j=1

∥∥Pjz
∥∥2, z ∈ Z, (2.6)

where

Pj =

[
Ej 0

0 Ej

]

(2.7)

is a family of complete orthogonal projections in Z.
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Consequently, system (1.8) can be written as an abstract differential equation in Z:

z′ = −Az + Bωf, z ∈ Z, t ≥ 0, (2.8)

where f ∈ L2([0, τ];U),U = Z, and Bω : U → Z, Bωf = 1ωf is a bounded linear operator.
Now, we will use the following Lemma from [4] to prove the following theorem.

Lemma 2.1. Let Z be a Hilbert separable space and {Aj}j≥1, {Pj}j≥1 two families of bounded linear
operator in Z, with {Pj}j≥1 a family of complete orthogonal projection such that

AjPj = PjAj, j ≥ 1. (2.9)

Define the following family of linear operators:

T(t)z =
∞∑

j=1

eAjtPjz, z ∈ Z, t ≥ 0. (2.10)

Then the following hold.

(a) T(t) is a linear and bounded operator if ‖eAjt‖ ≤ g(t), j = 1, 2, . . ., with g(t) ≥ 0,
continuous for t ≥ 0.

(b) Under the above (a), {T(t)}t≥0 is a strongly continuous semigroup in the Hilbert space Z,
whose infinitesimal generator A is given by

Az =
∞∑

j=1

AjPjz, z ∈ D(A) (2.11)

with

D(A) =

⎧
⎨

⎩
z ∈ Z :

∞∑

j=1

∥∥AjPjz
∥∥2 <∞

⎫
⎬

⎭
. (2.12)

(c) The spectrum σ(A) of A is given by

σ(A) =
∞⋃

j=1

σ
(
Aj

)
, (2.13)

where Aj = AjPj : R(Pj) → R(Pj).

Theorem 2.2. The operator −A define by (2.5) is the infinitesimal generator of a strongly continuous
semigroup {T(t)}t≥0 given by:

T(t)z =
∞∑

j=1

eAjtPjz, z ∈ Z, t ≥ 0, (2.14)
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where Pj = diag[Ej, Ej] and Aj = RjPj with

Rj =

[−aλj −bλj
−cλj −dλj

]

− β
⎡

⎣
λ1/2j 0

0 λ1/2j

⎤

⎦. (2.15)

Moreover, if λ1/21 ρ1 + β > 0, then there existsM > 0 such that

‖T(t)‖ ≤M exp
{
−λ1/21

(
λ1/21 ρ1 + β

)
t
}
, t ≥ 0. (2.16)

Proof. In order to apply the foregoing Lemma, we observe that −A can be written as follows:

−Az =
∞∑

j=1

AjPjz, z ∈ D(A) (2.17)

with

Aj = −λ1/2j

(
λ1/2j D + βI2×2

)
Pj, Pj = diag

[
Ej, Ej

]
. (2.18)

Therefore, Aj = RjPj with

Rj =

[−aλj −bλj
−cλj −dλj

]

− β
⎡

⎣
λ1/2j 0

0 λ1/2j

⎤

⎦, AjPj = PjAj. (2.19)

Clearly that Aj is a bounded linear operator (linear and continuous). That is, there exists
Mj > 0 such that

∥∥Ajz
∥∥ ≤Mj‖z‖, ∀z ∈ Z. (2.20)

In fact, ‖Ajz‖ = ‖RjPjz‖ ≤ ‖Rj‖‖Pjz‖ ≤ ‖Rj‖‖z‖.
Now, we have to verify condition (a) of Lemma 2.1. To this end, without loss

of generality, we will suppose that 0 < ρ1 < ρ2. Then, there exists a set {Q1, Q2} of
complementary projections on R

2 such that

eDt = eρ1tQ1 + eρ2tQ2. (2.21)

Hence,

eRj t = eΓ1j tQ1 + eΓ2j tQ2, with Γjs = −λ1/2j

[
λ1/2j ρs + β

]
, s = 1, 2. (2.22)
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This implies the existence of positive numbers α,M such that

∥∥∥eAjt
∥∥∥ ≤Meαt, j = 1, 2, . . . . (2.23)

Therefore, −A generates a strongly continuous semigroup {T(t)}t≥0 given by (2.14).
Finally, if λ1/21 ρ1 + β > 0, then

−λ1/21

(
λ1/21 ρ1 + β

)
≥ −λ1/2j

(
λ1/2j ρi + β

)
, j = 1, 2, 3, . . . ; i = 1, 2, (2.24)

and using (2.14)we obtain (2.16).

3. Proof of the Main Theorem

In this section we will prove the main result of this paper on the controllability of the linear
system (2.8). But, before we will give the definition of approximate controllability for this
system. To this end, for all z0 ∈ Z and f ∈ L2(0, τ ;U), the initial value problem

z′ = −Az + Bωf(t), z ∈ Z,
z(0) = z0,

(3.1)

where the control function f belonging to L2(0, τ ;U) admits only one mild solution given by

z(t) = T(t)z0 +
∫ t

0
T(t − s)Bωf(s)ds, t ∈ [0, τ]. (3.2)

Definition 3.1 (approximate controllability). The system (2.8) is said to be approximately
controllable on [0, τ] if for every z0, z1 ∈ Z, ε > 0, there exists u ∈ L2(0, τ ;U) such that
the solution z(t) of (3.2) corresponding to u verifies:

‖z(τ) − z1‖ < ε. (3.3)

The following result can be found in [5] for the general evolution equation:

z′ = Az + Bf(t), z ∈ Z, u ∈ U, (3.4)

where Z, U are Hilbert spaces, A : D(A) ⊂ Z → Z is the infinitesimal generator of
strongly continuous semigroup {T(t)}t≥0 in Z,B ∈ L(U,Z), the control function f belongs
to L2(0, τ ;U).

Theorem 3.2. System (3.4) is approximately controllable on [0, τ] if and only if

B∗T ∗(t)z = 0, ∀t ∈ [0, τ] =⇒ z = 0. (3.5)

Now, one is ready to formulate and prove the main theorem of this work.
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Theorem 3.3 (main theorem). If λ1/21 ρ1 + β > 0, then for all τ > 0 and all open nonempty subset ω
of Ω the system, (2.8) is approximately controllable on [0, τ].

Proof. We will apply Theorem 3.2 to prove the approximate controllability of system (2.8).
With this purpose, we observe that

B∗
ω = Bω, T ∗(t)z =

∞∑

j=1

eR
∗
j tP ∗

j z, z ∈ Z, t ≥ 0. (3.6)

On the other hand,

Rj = −λ1/2j

{

λ1/2j

[
a b

c d

]

+ β

[
1 0

0 1

]}

= −λ1/2j

{
λ1/2j D + βI2×2

}
. (3.7)

Without lose of generality, we will suppose that 0 < ρ1 < ρ2. Then, there exists a set {Q1, Q2}
of complementary projections on R

2 such that

eDt = eρ1tQ1 + eρ2tQ2. (3.8)

Hence,

eRj t = eΓj1tQ1 + eΓj2tQ2, with Γjs = −λ1/2j

[
λ1/2j ρs + β

]
, s = 1, 2. (3.9)

Therefore,

B∗
ωT

∗(t)z =
∞∑

j=1

B∗
ωe

Rj∗tP ∗
j z =

∞∑

j=1

2∑

s=1

eΓjstB∗
ωP

∗
s,jz, (3.10)

where Ps,j = QsPj = PjQs.
Now, suppose for z ∈ Z that B∗

ωT
∗(t)z = 0, for all t ∈ [0, τ]. Then,

B∗
ωT

∗(t)z =
∞∑

j=1

B∗
ωe

R∗
j tP ∗

j z =
∞∑

j=1

2∑

s=1

eΓjstB∗
ωP

∗
s,jz = 0

⇐⇒
∞∑

j=1

2∑

s=1

eΓjst
(
B∗
ωP

∗
s,j

)
z(x) = 0, ∀x ∈ Ω.

(3.11)

Clearly that, {Γjs} is a decreasing sequence. Then, from Lemma 1.3, we obtain for all x ∈ Ω
that

(
B∗
ωP

∗
s,jz
)
(x) = Q∗

s

⎡

⎢⎢
⎣

γj∑

k=1

〈
z1, φj,k

〉
1ωφj,k(x)

γj∑

k=1

〈
z2, φj,k

〉
1ωφj,k(x)

⎤

⎥⎥
⎦ =

[
0

0

]

, j = 1, 2, 3, 4, . . . ; s = 1, 2. (3.12)
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Since Q1 +Q2 = IR2 , we get that

⎡

⎢⎢
⎣

γj∑

k=1

〈
z1, φj,k

〉
φj,k(x)

γj∑

k=1

〈
z2, φj,k

〉
φj,k(x)

⎤

⎥⎥
⎦ =

[
0

0

]

, j = 1, 2, 3, 4, . . . ; s = 1, 2, ∀x ∈ ω. (3.13)

On the other hand, from Theorem 1.1 we know that φn,k are analytic functions, which implies
the analyticity of Ejzi =

∑γj
k=1< zi, φj,k > φj,k. Then, from Theorem 1.2 we get that

⎡

⎢⎢
⎣

γj∑

k=1

〈
z1, φj,k

〉
φj,k(x)

γj∑

k=1

〈
z2, φj,k

〉
φj,k(x)

⎤

⎥⎥
⎦ =

[
0

0

]

, j = 1, 2, 3, 4, . . . , ∀x ∈ Ω, s = 1, 2. (3.14)

Hence Pjz = 0, j = 1, 2, 3, 4, . . ., which implies that z = 0. This completes the proof of the main
theorem.
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