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1. Introduction and Definitions

We consider the most popular ferromagnetic model of statistical physics, which is the Ising
model, see [1–5]. The property of ferromagnetism comes from the quantum mechanical
spinning of electrons. Because a small magnetic dipole moment is associated with the spin,
the electron acts like a magnet with one north pole and one south pole. Both the spin and
the magnetic moment can be represented by an arrow which defines the direction of the
electron’s magnetic field. The spin can point up (spin value +1) or down (spin value −1),
and it flips between the two orientations. Ferromagnetic models were invented in order to
describe the ferromagnetic phase transition via a simple model. Considering the Ising model
on the two-dimensional integer lattice Z

2, at sufficiently low temperatures, we know that
the model exhibits a phase transition, that is, there is a critical point βc > 0, such that if
β > βc, the Ising model exhibits spontaneous magnetization, as is testified by the occurrence
of more than one Gibbs measure in the infinite-volume limit. For example, see Aizenman and
Higuchi’s research work in this field. Especially the cases of free, plus, and minus boundary
conditions for finite-volume Gibbs measures have been studied, see; [1–10] for more details.
Beside the above three kinds of boundary conditions, it is also interesting for us to discuss
other kinds of boundary conditions, for example Dobrushin boundary conditions and some
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mixed boundary conditions as wewill consider in this paper. Dobrushin boundary conditions
are the two-component boundary conditions, which are defined by

τϕ(x) =

⎧
⎨

⎩

1, if x2 > x1 tanϕ,

−1, otherwise,
(1.1)

where ϕ ∈ (−π/2, π/2) and x = (x1, x2) ∈ Z
2. And the corresponding properties of the phase

boundary fluctuations for the two-dimensional Ising model have been studied; see [2]. The
research work on the Ising model with other mixed boundary conditions has also made some
progress, this can be found in Abraham’s review in Domb-Lebowitz (Vol 10); see [4, 11–15].
The object of the present paper is to study the spectral gap of the Ising model; the rate at
which the Ising model converges to the equilibrium and the spectral gap of the model are
closed linked, see [1, Chapter 9] for more details. So this work originates in an attempt to
understand the relaxation phenomena of the model with some kind of Dobrushin boundary
conditions.

In this paper, we study the Ising model with four classes mixed boundary conditions
in a finite square of side L+ 1 in the absence of an external field. The first class consists of free
boundary conditions with a small number of plus sites added; the second class consists of
a kind of generalized Dobrushin boundary conditions; the third class consists of two minus
droplets (wetting) on the left and right sides; and the fourth class consists of the sites on the
bottom side which are mostly plus, and with free boundary conditions on the other three
sides. Theorem 3.1 of this paper shows that certain upper and lower bounds on the gap in the
case of free boundary conditions essentially remain unchanged if replacing the free boundary
conditions with a suitable “weak mixing” boundary condition. Theorem 5.1 shows that, in
the phase transition regime (i.e., β > βc), for a certain class of “strong mixing” boundary
conditions one has basically the same lower bound on the spectral gap as in the case of, for
example, all “+” on one boundary edge and free boundary conditions elsewhere.

Let Z
2 be the usual two-dimensional square lattice with sites x = (x1, x2), equipped

with the l1-norm: ‖x‖ = |x1| + |x2|. We consider the standard two-dimensional Ising model in
a finite square Λ, which is defined by

Λ(L) =
{
x ∈ Z

2 : 0 ≤ xi ≤ L, i = 1, 2
}

(1.2)

for an integer L. LetΩΛ = {−1,+1}Λ be the configuration space, an element ofΩΛ will usually
be denoted by σΛ. Whenever confusion does not arise we will also omit the subscriptΛ in the
notation σΛ. Given Λ ⊂ Z

2, we define the interior and exterior boundaries of Λ as

∂int Λ ≡ {
x ∈ Λ : ∃y /∈Λ,

∥
∥x − y

∥
∥ = 1

}
,

∂ext Λ ≡ {
x /∈Λ : ∃y ∈ Λ,

∥
∥x − y

∥
∥ = 1

}
,

(1.3)

and the edge boundary ∂Λ as

∂Λ =
{(

x, y
)
: x ∈ ∂intΛ, y ∈ ∂extΛ,

∥
∥x − y

∥
∥ = 1

}
. (1.4)
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We also denote by |Λ| the cardinality of Λ. Given a boundary condition τ ∈ Ω = {−1, 0,+1}Z
2
,

we consider the Hamiltonian

Hτ
Λ(σ) = −1

2

∑

x,y∈Λ,‖x−y‖=1
(
σ(x)σ

(
y
) − 1

) −
∑

(x,y)∈∂Λ

(
σ(x)τ

(
y
) − 1

)
. (1.5)

If we set τ(y) = +1 for all y ∈ Z
2, the boundary condition is called the plus boundary

condition, if τ(y) = −1 for all y, then the resulting boundary condition is called the minus
boundary condition, and if τ(y) = 0 for all y, then we call the resulting boundary condition
the free or open boundary condition. The Gibbs measure associated with the Hamiltonian is
defined as

μ
β,τ

Λ (σ) = Zβ,τ(Λ)−1 exp
{−βHτ

Λ(σ)
}
, (1.6)

and the partition function is given by

Zβ,τ(Λ) =
∑

σ∈ΩΛ

exp
{−βHτ

Λ(σ)
}
, (1.7)

where β > 0 is a parameter.
We are interested in the case where β is greater than the critical value βc. In this case,

the Gibbs measures μβ,+
Λ and μ

β,−
Λ corresponding to + and − boundary conditions respectively,

will converge to different limits μ+ and μ− asΛ expands to thewhole planeZ
2, and the famous

Aizenman-Higuchi result shows that the plus and the minus state are the only extreme Gibbs
measures. Let μβ,∅

Λ denote the Gibbs measure with free boundary conditions, it is known that
the free boundary condition state converges to the symmetric mixture of the plus and minus
states. The stochastic dynamics which we want to study is defined by the Markov generator

(
L
β,τ

Λ f
)
(σ) =

∑

x∈Λ
c(x, σ, τ)

[
f(σx) − f(σ)

]
(1.8)

acting on L2(Ω, dμ
β,τ

Λ ), where the c(x, σ, τ) are the transition rates for the process which satisfy
the detailed balance condition

c(x, σ, τ)μβ,τ

Λ (σ) = c(x, σx, τ)μβ,τ

Λ (σx) (1.9)

for any integer L, x ∈ Λ, σ ∈ ΩΛ, where

σx(y
)
=

⎧
⎨

⎩

+σ
(
y
)
, if y /=x,

−σ(y), if y = x.
(1.10)

Also the rates satisfy a boundedness condition: there exist cm(β) and cM(β) such that

0 < cm
(
β
) ≤ inf

x,σ
c(x, σ, τ) ≤ sup

x,σ
c(x, σ, τ) ≤ cM

(
β
)
< ∞. (1.11)
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Various choices of the transition rates c(x, σ, τ) are possible for the process. In the present
paper, we take

c(x, σ, τ) = exp

⎧
⎨

⎩
−βσ(x)

⎡

⎣
∑

y∈Λ,‖x−y‖=1
σ
(
y
)
+

∑

(x,y)∈∂Λ
τ
(
y
)

⎤

⎦

⎫
⎬

⎭
. (1.12)

Finally, we define the spectral gap of this dynamics

gap
(
Λ, β, τ

)
= gap

(
L
β,τ

Λ

)
= inf

f∈L2
(
Ω,dμ

β,τ

Λ

)

Eβ,τ

Λ

(
f, f

)

Varβ,τΛ

(
f
) , (1.13)

where

Eβ,τ

Λ

(
f, f

)
=

1
2

∑

σ∈ΩΛ

∑

x∈Λ
μ
β,τ

Λ (σ)c(x, σ, τ)
[
f(σx) − f(σ)

]2
,

Varβ,τΛ

(
f
)
=

1
2

∑

σ,η∈ΩΛ

μ
β,τ

Λ (σ)μβ,τ

Λ

(
η
)[
f(σ) − f

(
η
)]2

,

(1.14)

where Eβ,τ

Λ (f, f) is the Dirichlet form associated with the generator L
β,τ

Λ , and Varβ,τΛ is the

variance relative to the probability measure μβ,τ

Λ .

2. The Four Classes of Boundary Conditions for the Ising Model

In this section, we give the definitions of four classes boundary conditions for the Isingmodel,
and give some descriptions of them. The estimates on the gap in the spectrum of the generator
of the dynamics with plus, minus, open and mixed boundary conditions have made some
progress in recent years. For example, for a finite volume Ising model, with zero external field
and at sufficiently low temperature (i.e., β 
 βc), Higuchi and Yoshida [4] show that for a
certain class of boundary conditions in which neither “+” nor “−” predominates the other, the
spectral gap on a square shrinks exponentially fast in the side-length L. In the present paper,
we discuss 4 classes of mixed boundary conditions τ1, τ2, τ3, τ4, and study the corresponding
spectral gap of the Ising model in the absence of an external field on a finite square of side-
length L. Next, we define the mixed boundary conditions τ1, τ2, τ3, τ4 as follows.

(I) First we consider the boundary condition τ1 as follows:

τ1
(
y
)
= 1 or 0 for any y ∈ ∂extΛ,

∣
∣
{
y ∈ ∂extΛ : τ1

(
y
)
= 1

}∣
∣ ≤ C1(L lnL)1/2 (2.1)

where C1 is a positive constant, and τ1(y) = 0 means that there is no spin on the site y, or the
site y is open.

Remark 2.1. From the definition of the boundary condition τ1, it means that the number of “+”
spins on the outer boundary sites ofΛ(L) is about C1(L lnL)1/2, the overwhelming part of the
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boundary sites of Λ(L) is free or open, and we call τ1 the “weak boundary condition”. In this
case, we can show that the spectral gaps for the Ising model with τ1 boundary condition
(or other weak boundary conditions) are similar to those for the Ising model with the free
boundary condition.

(II) The boundary condition τ2 is defined as follows. For any y ∈ ∂extΛ(L) and any
l1, l2 such that −1 ≤ l1 < l2 ≤ L + 1,

τ2
(
y
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1, y2 ≥ l2,

0, l1 < y2 < l2,

1, y2 ≤ l1,

(2.2)

where τ2(y) = 0 means that there is no spin on the site y, or the site y is open.
(III) The boundary condition τ3 is defined as follows. For any y ∈ ∂extΛ(L) and any

l1, l2 such that −1 ≤ l1 < l2 ≤ L + 1 and |l2 − l1| < C3(L lnL)1/2,

τ3
(
y
)
=

⎧
⎨

⎩

−1, l1 < y2 < l2,

+1, otherwise.
(2.3)

(IV) The boundary condition τ4 is defined as follows. Let Ai (i = 1, 2, . . .) be the
connected subsets of {y ∈ ∂extΛ(L) : y2 = −1}, such that |⋃i Ai| < C4(L lnL)1/2 and for
any y ∈ ∂extΛ(L),

τ4
(
y
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, y2 ≥ 0

0, y ∈ ⋃
i Ai

1, y2 = −1, y /∈ ⋃
i Ai

(2.4)

where τ4(y) = 0 means that there is no spin on the site y.

Remark 2.2. In the above three classes of mixed boundary conditions τi, i = 2, 3, 4, we see
that there are many “+” and “−” spins on the outer boundary sites of Λ(L). In this case, the
boundary conditions may have a “strong effect” on the spectral gap of the Ising model.

3. Probability Estimates of Ising Model for the Boundary Condition τ1

In this section, we consider the Gibbs measure and the corresponding spectral gap of the
Ising model with the weak boundary condition τ1, and we will show upper bounds and
lower bounds in terms of the corresponding Gibbs measure and the spectral gap of the Ising
model with free boundary conditions.
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Theorem 3.1. Let the boundary condition τ1 be given by (2.1), then for any β > 0, we have

exp
{
−2βC1(L ln L)1/2

}
μ
β,∅
Λ (σ) ≤ μ

β,τ1
Λ (σ) ≤ exp

{
+2βC1(L ln L)1/2

}
μ
β,∅
Λ (σ), (3.1)

exp
{
−8βC1(L ln L)1/2

}
gap

(
L
β,∅
Λ

)
≤ gap

(
L
β,τ1
Λ

)
≤ exp

{
8βC1(L ln L)1/2

}
gap

(
L
β,∅
Λ

)
.

(3.2)

Proof of Theorem 3.1. Let μβ,τ1
Λ (σ) denote the Gibbs measure with the boundary condition τ1,

then by the definition of Gibbs measure, we have

μ
β,τ1
Λ (σ) =

exp
{−βHτ1

Λ (σ)
}

∑
σ exp

{−βHτ1
Λ (σ)

} =
exp

{
−βH∅

Λ(σ)
}
B(σ)

∑
σ exp

{
−βH∅

Λ(σ)
}
B(σ)

, (3.3)

where B(σ) = exp{β∑
(x,y)∈∂Λ δ(y)(σ(x)τ1(y) − 1)}, and δ(y) = τ1(y). So we have

exp
{
−2βC1(L ln L)1/2

}
≤ B(σ) ≤ 1. (3.4)

By (3.3) and the computation of the Hamiltonian for the Ising model, we have

exp
{
−2βC1(L ln L)1/2

}
μ
β,∅
Λ (σ) ≤ μ

β,τ1
Λ (σ) ≤ exp

{
+2βC1(L ln L)1/2

}
μ
β,∅
Λ (σ). (3.5)

This completes the proof of (3.1). Next we show the spectral gap inequality of (3.2). From the
definition of (1.13) and (3.1), we have the following estimates:

Varβ,τ1Λ

(
f
)
=

1
2

∑

σ,η∈ΩΛ

μ
β,τ1
Λ (σ)μβ,τ1

Λ

(
η
)[
f(σ) − f(η)

]2

≤ 1
2
exp

⎧
⎪⎨

⎪⎩
+4βC1(L ln L)

1
2

⎫
⎪⎬

⎪⎭

∑

σ,η∈ΩΛ

μ
β,∅
Λ (σ)μβ,∅

Λ

(
η
)[
f(σ) − f

(
η
)]2

,

(3.6)

and similarly

ε
β,τ1
Λ

(
f, f

)
=

1
2

∑

σ∈ΩΛ

∑

x∈Λ
μ
β,τ1
Λ (σ)c(x, σ, τ1)

[
f(σx) − f(σ)

]2

≥ 1
2
exp

⎧
⎪⎨

⎪⎩
−4βC1(L ln L)

1
2

⎫
⎪⎬

⎪⎭

∑

σ∈ΩΛ

∑

x∈Λ
μ
β,∅
Λ (σ)c(x, σ, ∅)[f(σx) − f(σ)

]2
,

(3.7)
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where c(x, σ, ∅) denote the transition rates for the Ising model with the free boundary
condition, and the following estimate is used in the above last inequality (see (1.12)):

c(x, σ, τ1) = c(x, σ, ∅) exp
⎧
⎨

⎩
−βσ(x)

∑

(x,y)∈∂Λ
τ1

(
y
)

⎫
⎬

⎭

≥ c(x, σ, ∅) exp
{
−βC1(L ln L)1/2

}
.

(3.8)

So we have

gap
(
Λ(L), β, τ1

) ≥ exp
{
−8βC1(L ln L)1/2

}
gap

(
Λ(L), β, ∅). (3.9)

This completes the proof of the lower bound for (3.2), and with the same method, we can
prove the upper bound of (3.2). Then we finish the proof of Theorem 3.1.

It should note that this first class of weak positive boundary conditions is weak in the
sense that the gap is similar to the free one, but still not so weak, in that in contrast to the
free boundary condition case, it will lead to convergence to the plus measure (not the mixed
measure) in the thermodynamic limit. Next we introduce an important result which comes
from [10], it plays an important role in proving Theorem 5.1 of the present paper. Let R be
the rectangle

R =
{
x ∈ Z

2 : 0 ≤ x1 ≤ L1, 0 ≤ x2 ≤ L2

}
(3.10)

with L1 ≥ L2 ≥ (L1 lnL1)
1/2. μβ,η1,η2,η3,η4

R denote the probability Gibbs measure on the rectangle
R with the boundary conditions η1, η2, η3, η4 on the outer boundary of its four sides ordered
clockwise starting from the bottom side. If one of the boundary configurations ηi is identically
equal to +1 or −1, then we replace it by a + or − sign. For example η1,−,+,− means η1
boundary condition on the bottom side of R, minus boundary condition on the vertical ones
and plus boundary condition on the top one. In particular, [0] boundary condition means −1
on the top side of the rectangle and +1 on the remaining three sides. Thus by [10, Theorem
3], we have the following Lemma 3.2.

Lemma 3.2. Let β > βc and L1 = L, there exists a m = m(β) > 0, for all x ∈ R with x2 ≤ (3/4)L2,
we have

μ
β,+
R (σ(x) = 1) − μ

β,[0]
R (σ(x) = 1) ≤ exp{−m lnL}. (3.11)

Since a lot of research work has been done to investigate the statistical properties of the
Ising model with the free boundary condition, see [1–4, 7], the results of Theorem 3.1 can be
extended by invoking known results about the free boundary Ising model. For example, by
above Lemma 3.2 and following the parallel proof of [7, Theorem 4.1], when β large enough,
there exist C′ > 0, such that for any large integer L, we can show that

gap
(
Λ(L), β, ∅) ≥ exp

{
−βτβL − C′β(L ln L)1/2

}
(3.12)
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where τβ is the surface tension. We denote by τβ(θ) the surface tension at angle θ (for the
details see [2]), which measures the free energy of an interface in the direction orthogonal to
the vector nθ = (cos θ, sin θ). Let θ (0 ≤ θ ≤ π/4) and L be a positive integer, and let Zβ

Λ(L)(θ)
be the partition function on Λ(L) with the boundary condition η(θ), where η(θ)(u) = −1 if
u2 > u1 tan θ, and η(θ)(u) = +1 if u2 < u1 tan θ. Then the surface tension τβ(θ) is defined by

τβ(θ) = lim
L→∞

cos θ
βL

log

⎛

⎝
Z

β

Λ(L)(θ)

Z
β,+
Λ(L)

⎞

⎠ (3.13)

where Z
β,+
Λ(L) is the partition function corresponding to the + boundary condition on Λ(L).

And let τβ denote the surface tension at zero degrees. Then by Theorem 3.1 and (3.12), for β
large enough, we have

gap
(
Λ(L), β, τ1

) ≥ exp
{
−8βC1(L ln L)1/2

}
exp

{
−βτβL − C′β(L ln L)1/2

}

≥ exp
{
−βτβL − Cβ(L ln L)1/2

}
,

(3.14)

where C is a positive constant. In fact, the existence of (3.12) and (3.14) in the supercritical
case β > βc can be shown by the theory and methods in [7, 10], here we omit this part.

4. The Block Updates for the Ising Model

In this section, we will briefly introduce the notations for the block dynamics, for the details,
see [2, 6]. The lattice system phase interfaces in two dimensions are known to fluctuate
widely, see for example [16] for the W-R model and [2] for the Ising model. Dobrushin et
al. [2] did a deep research work on the fluctuations of phase interfaces for the Ising model at
a sufficiently large parameter β. The theory of the cluster expansions is applied to investigate
the behaviors of interfaces fluctuations. Because the statistical analysis on the fluctuations
of the interfaces is very important for us to estimate the spectral gap of the Ising model,
we introduce a block dynamics to control and estimate the fluctuations of the interfaces. Let
V ⊂ Z

2 be a given finite set, τ ∈ ΩZ2 be the boundary condition, and let μβ,τ

V the corresponding
Gibbs measure which is given in Section 1. Let D = {V1, . . . , Vn} be a covering of V , i.e.,
V =

⋃
i Vi. Then we will denote by block dynamics with blocks {V1, . . . , Vn} the continuous

time Markov chain in which each block waits an exponential time of mean one and the
configuration inside the block is replaced by a new configuration distributed according to
the Gibbs measure of the block given the previous configuration outside the block. More
precisely, the generator of the Markov process corresponding to D is defined as (for details
see [6])

(
L{Vi},β,τ

)
f(σV ) =

n∑

i=1

∑

η∈ΩVi

μ
β,(τσV )
Vi

(
η
)[
f
(
σ
η

V

)
− f(σV )

]
, (4.1)

where (τσV ) denotes the configuration in ΩZ2 equal to τ outside V and to σV inside V , while
σ
η

V is the configuration inΩV equal to η in Vi and to σV \Vi in V \Vi. We will refer to theMarkov
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process generated by L{Vi},β,τ as the {Vi}-dynamics. The operator L{Vi},β,τ is self-adjoint on
L2(Ω, dμτ

V ), i.e., the block dynamics is reversible with respect to the Gibbs measure μβ,τ

V . Then

gapV ({Vi}) = inf
f∈L2(ΩV ,dμ

β,τ

V )

E(f, f)

Var
(
f
) (4.2)

where

E(f, f) =
1
2

∑

i

∑

σV

∑

η∈ΩVi

μ
β,τ

V (σV )μ
β,(τσV )
Vi

(
η
)[
f
(
σ
η

V

)
− f(σV )

]2
,

Var
(
f
)
=

1
2

∑

σ,η

μ
β,τ

V (σ)μβ,τ

V

(
η
)[
f(σ) − f(η)

]2
.

(4.3)

Next we introduce some results, which come from [6, 8], we will omit the proofs. Let
D = {V1, . . . , Vn} be an arbitrary collection of finite sets and V =

⋃
i Vi. By [6, Proposition 3.4],

we have Lemma 4.1.

Lemma 4.1. For any given boundary condition τ ∈ Ω, one has

gap
(
L
β,τ

V

)
≥ gap

(
L{Vi},β,τ

)
inf
i
inf
ϕ∈Ω

gap
(
L
β,ϕ

Vi

)
(

sup
x∈V

#{i : Vi � x}
)−1

. (4.4)

The following updates are similar as those of [8, Section 4]. Let Λ(L) be a square with
sides of L+1 and l = 2[k(β)(L lnL)1/2], where k(β) is some positive constant, and [a] denotes
the integer part of a. Without loss of generality, we can suppose thatN = 2L/l−1 is an integer.
For i = 1, . . . ,N/2, we define three kind of rectangles:

Ai =
{

x ∈ Z
2 : 0 ≤ x1 ≤ L, (i − 1)

l

2
≤ x2 ≤ (i + 1)

l

2

}

,

BN/2+i =
{

x ∈ Z
2 : 0 ≤ x1 ≤ L, L − (i + 1)

l

2
≤ x2 ≤ L − (i − 1)

l

2

}

,

CN+1 =
{

x ∈ Z
2 : 0 ≤ x1 ≤ L, − l

2
+

l

2
≤ x2 ≤ l

2
+

l

2

}

,

(4.5)

and let {Q} = {Ai, Bi, CN+1, i = 1, . . . ,N/2}. By the above definition, {Q} is the covering of
Λ(L), and by (3.12), we can construct the {Q}-dynamics. We will do the updatings in the
following order

(a) first, we do the updating of {Ai}, in the order of A1, A2, . . . , AN/2;

(b) second, we do the updating of {Bi}, in the order of BN/2+1, BN/2+2, . . . , BN ;

(c) at last, we do the updating of CN+1.
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The reason why we do the updatings is that we want to enforce the (+) spins and (−)
spins to agree after the updatings. Next we give a result, which comes from [6, Theorem 6.4].
First, let QL,M be a rectangle with sides of L,M and L ≥ M, then

inf
τ

gap
{
QL,M, β, τ

} ≥ 1
|QL,M|cm exp

{−4β(2M + 1)
}
, (4.6)

where the constant cm has been defined in Section 1.
By the arguments of Lemmas 3.2 and 4.1, we will study the spectral gaps for the

boundary conditions τ2, τ3, and τ4 in the next section.

5. The Estimates of the Spectral Gaps for the Boundary
Conditions τ2, τ3, and τ4

We consider the Gibbs probability measure and the corresponding spectral gaps of the Ising
model with mixed boundary conditions τ2, τ3, τ4. At inverse temperature β > βc, a lower
bound on the spectral gap for the two-dimensional stochastic Ising model has been given for
the boundary conditions τ2, τ3, τ4, which is of order −(L lnL)1/2 in the exponent. Lemma 3.2
and the results of Section 4 are applied to analyze and estimate the spectral gap in this section.
Next we give the following Theorem 5.1.

Theorem 5.1. Let β > βc, and let τi, i = 2, 3, 4 be defined in (2.2), (2.3) and (2.4) respectively, then
for some C > 0 and for any integer L, we have

gap
(
Λ(L), β, τi

) ≥ exp
{
−Cβ(L ln L)1/2

}
. (5.1)

Proof of Theorem 5.1. First we consider the case τ = τ3. Afterwards we consider the cases τ2, τ4.
Let

Λ(L) =
{
x ∈ Z

2 : 0 ≤ x1 ≤ L, 0 ≤ x2 ≤ L
}
. (5.2)

Now the definitions of (4.5) will be modified, and we will show the proof in two steps. In
order to simplify the proof, for τ = τ3, we give another condition, l2 −N/2 = N/2 − l1, where
l1, l2 are defined in (2.3). We redefine CN+1 of (4.5) to be

CN+1 =

{

x ∈ Z
2 : 0 ≤ x1 ≤ L, −C3(L ln L)1/2

2
+
L

2
≤ x2 ≤ C3(L ln L)1/2

2
+
L

2

}

. (5.3)



Boundary Value Problems 11

Step 1. In this part, we give the estimate for a special sequence of updatings. Let us use the
following convention

Vi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ai, 1 ≤ i ≤ N

2
,

Bi,
N

2
+ 1 ≤ i ≤ N,

Ci, i = N + 1.

(5.4)

LetΛ(L) be a finite square of side L+1, let SN+1 = {t1, . . . , tN, tN+1} be a fixed ordered sequence
with t1 = 0, and let σ{Q},τ

ti
be the configuration of {Q}-dynamics (see Section 4) at time ti

starting from the initial configuration σ, and the ith updating occurs in the box Vi. For m =
1, . . . ,N/2 and l = 2[k(β)(L lnL)1/2], let

RA
m =

⎧
⎨

⎩
x ∈

⋃

j≤m
Aj : x2 ≤ (m + 1)

l

2
−
[
l

4

]
⎫
⎬

⎭
,

RB
N/2+m =

⎧
⎨

⎩
x ∈

⋃

j≤m
BN/2+j : x2 ≥ L − (m + 1)

l

2
+
[
l

4

]
⎫
⎬

⎭
∪ RA

N/2,

RC
N+1 = CN+1 ∪ RB

N = Λ(L).

(5.5)

For i = 1, . . . ,N + 1, let

Ri ∈

⎧
⎪⎨

⎪⎩
RA

1 , . . . , R
A
N,RB

N

2

, . . . , RB
N, RC

N+1

⎫
⎪⎬

⎪⎭
, (5.6)

for example, RN+1 = RC
N+1. Next, we define the events

Fi(x) =
{
(+){Q},τ

ti
(x)/= (−){Q},τ

ti
(x)

}
, i = 1, . . . ,N + 1,

Fi =
⋃

{x∈Ri}
Fi(x), i = 1, . . . ,N + 1.

(5.7)

In particular, we have

FN+1 =
⋃

x∈Λ(L)

FN+1(x). (5.8)

Let qi = P(Fi), i = 1, 2, . . . ,N + 1, then we have for every n ≤ N

qi+1 ≤ qi + P
(
Fi+1 ∩ Fc

i

) ≤
N∑

n=1

P(Fn+1 ∩ Fc
n) + P(F1). (5.9)
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Hence by induction, we have

qN+1 ≤
N/2−1∑

n=1

P(Fn+1 ∩ Fc
n) +

N−1∑

n=N/2

P(Fn+1 ∩ Fc
n)

+ P(F1) + P
(
FN+1 ∩ Fc

N

)
.

(5.10)

Next we want to show that

qN+1 ≤ N(L + 1)2 exp{−m(lnL)}, (5.11)

where m = m(β, ε) has been defined in Lemma 3.2. First, we consider the first term of (5.10),
∑N/2−1

n=1 P(Fn+1 ∩ Fc
n).

P(Fn+1 ∩ Fc
n) ≤

∑

x∈Rn+1∩An+1,
σ∈ΩΛ(L)

μ
β,τ

Λ(L)(σ)

× P

⎛

⎝Fn+1(x) ∩
⎡

⎣
⋂

y∈Rn

{
(+){Q},τ

tn

(
y
)
= (−){Q},τ

tn

(
y
)
= σ

{Q},τ
tn

(
y
)}

⎤

⎦

⎞

⎠

(5.12)

where n ∈ {1, . . . ,N/2 − 1}. Then the summand in the right-hand side of after mentioned
inequality can be estimated from above by

μ
β,τ

Λ(L)(σ)E
[

μ
β,σ

{Q},τ
tn

,+,(+){Q},τ
tn

,+
An+1

(
η(x) = 1

) − μ
β,σ

{Q},τ
tn

,+,(−){Q},τ
tn

,+
An+1

(
η(x) = 1

)
]

, (5.13)

where E is the expectation over the random configuration σ
{Q},τ
tn

. Since the dynamics is

reversible with respect to μ
β,τ

Λ(L)(σ), and by the DLR property,

∑

σ∈ΩΛ(L)

μ
β,τ

Λ(L)(σ)Eμ
β,σ

{Q},τ
tn

,+,(+){Q},τ
tn

,+
An+1

(
η(x) = 1

)

≤
∑

σ∈ΩΛ(L)

μ
β,τ

Λ(L)(σ)μ
β,σ,+,+,+
An+1

(
η(x) = 1

)

≤
∑

σ∈ΩRn+1∪An+1

μ
β,+
Rn+1∪An+1

(σ)μβ,σ,+,+,+
An+1

(
η(x) = 1

)

= μ
β,+
Rn+1∪An+1

(
η(x) = 1

)
.

(5.14)
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Similarly we obtain the following:

∑

σ∈ΩΛ(L)

μ
β,τ

Λ(L)(σ)Eμ
β,σ

{Q},τ
tn

,+,(−){Q},τ
tn

,+
An+1

(
η(x) = 1

) ≥ μ
β,[0]
Rn+1∪An+1

(
η(x) = 1

)
. (5.15)

By Lemma 3.2, we have

∑

x∈Rn+1∩An+1

[
μ
β,+
Rn+1∪An+1

(
η(x) = 1

) − μ
β,[0]
Rn+1∪An+1

(
η(x) = 1

)] ≤ (L + 1)2 exp{−m(lnL)}. (5.16)

Thus, for 1 ≤ n ≤ N/2 − 1, we have

P(Fn+1 ∩ Fc
n) ≤ (L + 1)2 exp{−m(lnL)},

N/2−1∑

n=1

P(Fn+1 ∩ Fc
n) ≤

(
N

2
− 1

)

(L + 1)2 exp{−m(lnL)}.
(5.17)

We can use the same method to estimate
∑N−1

n=N/2 P(Fn+1 ∩ Fc
n), but in this case, the vertical

boundary conditions of BN+i (for i = 1, . . . ,N/2, see (4.5)) becomes minus boundary
conditions instead of plus boundary conditions. For this case of minus boundary condition,
we can get similar results as in the argument above. So we have

N−1∑

n=N/2

P(Fn+1 ∩ Fc
n) ≤

N

2
(L + 1)2 exp{−m(lnL)}. (5.18)

Similarly we can estimate P(F1) in (5.10). Note that, by the definition of {Q}-dynamics, we
have P(FN+1 ∩ Fc

N) = 0. Thus, we finally obtain (5.11)

qN+1 ≤ N(L + 1)2 exp{−m(lnL)}. (5.19)

Step 2. In this part, we will use the results of the first step to finish the proof of Theorem 5.1.
Given a sequence SN+1 = {t1, . . . , tN+1} of updatings we say that SN+1 is a good

sequence if and only if SN+1 is ordered and the event Fc
N+1 occurs at the end of the sequence.

Because of (5.11) we know that the probability that an ordered sequence of updatings SN+1

is also a good sequence is larger than

1 − (N + 1)(L + 1)2 exp{−m(lnL)} >
1
2

(5.20)

for L large enough. By [7, Lemma 3.1], for any N large enough (independent of t)

P
(
there exists no ordered sequence in [0, t]

) ≤ exp

{

− tN
−N

2

}

. (5.21)
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Let T = exp{(L lnL)1/2} and L be large enough, then

P
(
there exists a good sequence in [0, T]

) ≥ 1
3
. (5.22)

We conclude by observing that, if there exists a good sequence in [0, t], then, by
monotonicity, at the end of the sequence, the configurations (+){Q},τ

t and (−){Q},τ
t will be

identical. Therefore we can estimate

P
(
(+){Q},τ

t /= (−){Q},τ
t

)
≤

(
2
3

)[t/T]

(5.23)

which immediately implies that

gap({Q}, τ) ≥ T−1 log
(
3
2

)

= exp
{
−(L ln L)1/2

}
log

(
3
2

)

. (5.24)

By Lemma 4.1, we want to estimate the term “(supx∈V #{i : Vi � x})−1”, by the construction of
covering defined in (a)–(c) of Section 4, we have (supx∈V #{i : Vi � x}) ≤ 2, so by Lemma 4.1,
(4.6), (5.22) and (5.24), we have

gap
(
Λ(L), β, τ

) ≥ 1
2
inf
i
inf
ϕ

gap
(
L
β,ϕ

Vi

)
gap ({Q}, τ)

≥ 1
2
(L + 1)−2cm exp

{
−4β2k(β)(L ln L)1/2

}
exp

{
−(L ln L)1/2

}
log

(
3
2

)

≥ exp
{
−Cβ(L ln L)1/2

}

(5.25)

for some C > 0.
For the case that τ = τ2, τ = τ4, we follow the similar arguments as above. Specifically,

for the case that τ = τ2, we replace the free boundary condition with δ+ or δ− boundary
conditions, where δ is a small positive constant. Then we use almost the same arguments as
in the above proof, we can prove Theorem 5.1 for τ = τ2. For the case that τ = τ4, by (2.4) and
Theorem 3.1, we can get

gap
(
Λ(L), β, τ4

) ≥ exp
{
−8βC(L ln L)1/2

}
gap

(
Λ(L), β, τ ′

)
(5.26)

where τ ′ denotes the boundary conditions that on the bottom side of Λ(L) is the plus
boundary condition and on the other three sides of Λ(L) are open boundary conditions. For
gap(Λ(L), β, τ ′), by using the arguments of the present paper, we can prove Theorem 5.1 for
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τ = τ4. Note that in this case, (4.5) should be changed to be

Ai =
{

x ∈ Z2 : 0 ≤ x1 ≤ L, (i − 1)
l

2
≤ x2 ≤ (i + 1)

l

2

}

(5.27)

where l = 2[(L lnL)1/2] andN = 2L/l − 1, for i = 1, . . . ,N.

Combining the above proofs for boundary conditions τ2, τ3, τ4, these complete the
proof of Theorem 5.1.

6. Conclusion

In the present paper, we estimate the Gibbs measures and the spectral gaps of Ising model
with four classes of mixed boundary conditions in a finite square of side L + 1, in the absence
of an external field and at the inverse temperature β > βc. The results show to which extent
boundary conditions can affect the speed at which the stochastic Ising model relaxes to the
equilibrium.
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