
Hindawi Publishing Corporation
Boundary Value Problems
Volume 2009, Article ID 572512, 18 pages
doi:10.1155/2009/572512

Research Article
The Existence of Countably Many Positive
Solutions for Nonlinear nth-Order Three-Point
Boundary Value Problems

Yude Ji and Yanping Guo

College of Sciences, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China

Correspondence should be addressed to Yude Ji, jiyude-1980@163.com

Received 5 July 2009; Revised 30 August 2009; Accepted 30 October 2009

Recommended by Kanishka Perera

We consider the existence of countably many positive solutions for nonlinear nth-order three-point
boundary value problem u(n)(t)+a(t)f(u(t)) = 0, t ∈ (0, 1), u(0) = αu(η), u′(0) = · · · = u(n−2)(0) = 0,
u(1) = βu(η), where n ≥ 2, α ≥ 0, β ≥ 0, 0 < η < 1, α + (β − α)ηn−1 < 1, a(t) ∈ Lp[0, 1] for some
p ≥ 1 and has countably many singularities in [0, 1/2). The associated Green’s function for the
nth-order three-point boundary value problem is first given, and growth conditions are imposed
on nonlinearity f which yield the existence of countably many positive solutions by using the
Krasnosel’skii fixed point theorem and Leggett-Williams fixed point theorem for operators on a
cone.

Copyright q 2009 Y. Ji and Y. Guo. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

The existence of positive solutions for nonlinear second-order and higher-order multipoint
boundary value problems has been studied by several authors, for example, see [1–12]
and the references therein. However, there are a few papers dealing with the existence of
positive solutions for the nth-ordermultipoint boundary value problemswith infinitelymany
singularities. Hao et al. [13] discussed the existence and multiplicity of positive solutions for
the following nth-order nonlinear singular boundary value problems:

u(n)(t) + a(t)f(t, u) = 0, t ∈ (0, 1),

u(0) = 0, u′(0) = · · · = u(n−2)(0) = 0, u(1) = αu
(
η
)
,

(1.1)

where 0 < η < 1, 0 < αηn−1 < 1, a(t) may be singular at t = 0 and/or t = 1. Hao et al.
established the existence of at least two positive solution for the boundary value problems
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if f is either superlinear or sublinear by applying the Krasnosel’skii-Guo theorem on cone
expansion and compression.

In [14], Kaufmann and Kosmatov showed that there exist countably many positive
solutions for the two-point boundary value problems with infinitely many singularities of
following form:

−u′′(t) = a(t)f(u(t)), 0 < t < 1,

u(0) = 0, u(1) = 0,
(1.2)

where a(t) ∈ Lp[0, 1] for some p ≥ 1 and has countably many singularities in [0, 1/2).
In [15], Ji and Guo proved the existence of countably many positive solutions for the

nth-order ordinary differential equation

u(n)(t) + a(t)f(u(t)) = 0, t ∈ (0, 1), (1.3)

with one of the following m-point boundary conditions:

u(0) =
m−2∑

i=1

kiu(ξi), u′(0) = · · · = u(n−2)(0) = 0, u(1) = 0,

u(0) = 0, u′(0) = · · · = u(n−2)(0) = 0, u(1) =
m−2∑

i=1

kiu(ξi),

(1.4)

where n ≥ 2, ki > 0 (i = 1, 2, . . . , m − 2), 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, f ∈ C([0,+∞),[0,+∞)),
a(t) ∈ Lp[0,1] for some p ≥ 1 and has countably many singularities in [0, 1/2).

Motivated by the result of [13–15], in this paper we are interested in the existence
of countably many positive solutions for nonlinear nth-order three-point boundary value
problem

u(n)(t) + a(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = αu
(
η
)
, u′(0) = · · · = u(n−2)(0) = 0, u(1) = βu

(
η
)
,

(1.5)

where n ≥ 2, α ≥ 0, β ≥ 0, 0 < η < 1, α + (β − α)ηn−1 < 1, f ∈ C([0,+∞),[0,+∞)), a(t) ∈ Lp[0,1]
for some p ≥ 1 and has countably many singularities in [0, 1/2). We show that the problem
(1.5) has countably many solutions if a and f satisfy some suitable conditions. Our approach
is based on the Krasnosel’skii fixed point theorem and Leggett-Williams fixed point theorem
in cones.

Suppose that the following conditions are satisfied.

(H1) There exists a sequence {tk}∞k=1 such that tk+1 < tk(k ∈ N), t1 < 1/2, limk→∞tk = t∗ ≥
0, and limt→ tk a(t) = +∞ for all k = 1, 2, . . . .

(H2) There exists m > 0 such that a(t) ≥ m for all t ∈ [t∗, 1 − t∗].

Assuming that a(t) satisfies the conditions (H1)-(H2) (we cite [15, Example 6.1] to
verify existence of a(t)) and imposing growth conditions on the nonlinearity f , it will be
shown that problem (1.5) has infinitely many solutions.
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The paper is organized as follows. In Section 2, we provide some necessary back-
ground material such as the Krasnosel’skii fixed-point theorem and Leggett-Williams fixed
point theorem in cones. In Section 3, the associated Green’s function for the nth-order three-
point boundary value problem is first given and we also look at some properties of the
Green’s function associated with problem (1.5). In Section 4, we prove the existence of
countably many positive solutions for problem (1.5) under suitable conditions on a and f .
In Section 5, we give two simple examples to illustrate the applications of obtained results.

2. Preliminary Results

Definition 2.1. Let E be a Banach space over R. A nonempty convex closed set P ⊂ E is said to
be a cone provided that

(i) au ∈ P for all u ∈ P and for all a ≥ 0;

(ii) u,−u ∈ P implies u = 0.

Definition 2.2. The map α : P → [0,∞) is said to be a nonnegative continuous concave
functional on P provided that α is continuous and

α
(
tx + (1 − t)y

) ≥ tα(x) + (1 − t)α
(
y
)
, (2.1)

for all x, y ∈ P and 0 ≤ t ≤ 1. Similarly, we say that the map γ : P → [0,∞) is a nonnegative
continuous convex functional on P provided that γ is continuous and

γ
(
tx + (1 − t)y

) ≤ tγ(x) + (1 − t)γ
(
y
)
, (2.2)

for all x, y ∈ P and 0 ≤ t ≤ 1.

Definition 2.3. Let 0 < a < b be given and let α be a nonnegative continuous concave functional
on P . Define the convex sets Pr and P(α, a, b) by

Pr = {x ∈ P | ‖x‖ < r},
P(α, a, b) = {x ∈ P | a ≤ α(x), ‖x‖ ≤ b}.

(2.3)

The following Krasnosel’skii fixed point theorem and Leggett-Williams fixed point
theorem play an important role in this paper.

Theorem 2.4 ([16], Krasnosel’skii fixed point theorem). Let E be a Banach space and let P ⊂ E

be a cone. Assume that Ω1, Ω2 are bounded open subsets of E such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. Suppose
that

T : P
⋂(

Ω2 \Ω1

)
−→ P (2.4)
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is a completely continuous operator such that, either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ P
⋂
∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ P

⋂
∂Ω2, or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P
⋂
∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ P

⋂
∂Ω2.

Then T has a fixed point in P
⋂
(Ω2 \Ω1).

Theorem 2.5 ([17], Leggett-Williams fixed point theorem). Let A : Pc → Pc be a completely
continuous operator and let α be a nonnegative continuous concave functional on P such that α(x) ≤
‖x‖ for all x ∈ Pc. Suppose there exist 0 < a < b < d ≤ c such that

(C1) {x ∈ P(α, b, d) | α(x) > b}/= ∅, and α(Ax) > b for x ∈ P(α, b, d),

(C2) ‖Ax‖ < a for ‖x‖ ≤ a,

(C3) α(Ax) > b for x ∈ P(α, b, c), with ‖Ax‖ > d.

Then A has at least three fixed points x1, x2, and x3 such that

‖x1‖ < a, b < α(x2), ‖x3‖ > a with α(x3) < b. (2.5)

In order to establish some of the norm inequalities in Theorems 2.4 and 2.5 we will
need Holder’s inequality. We use standard notation of Lp[a, b] for the space of measurable
functions such that

∫1

0

∣∣f(s)
∣∣pds < ∞, (2.6)

where the integral is understood in the Lebesgue sense. The norm on Lp[a, b], ‖ · ‖, is defined
by

∥
∥f
∥∥
p =

(∫1

0
|f(s)|pds

)1/p

. (2.7)

Theorem 2.6 ([18], Holder’s inequality). Let f ∈ Lp[a, b] and g ∈ Lq[a, b], where p > 1 and
1/p + 1/q = 1. Then fg ∈ L1[a, b] and, moreover

∫1

0

∣∣f(s)g(s)
∣∣ds ≤ ∥∥f∥∥p

∥∥g
∥∥
q. (2.8)

Let f ∈ L1[a, b] and g ∈ L∞[a, b]. Then fg ∈ L1[a, b] and

∫1

0

∣∣f(s)g(s)
∣∣ds ≤ ∥∥f∥∥1

∥∥g
∥∥
∞. (2.9)
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3. Preliminary Lemmas

To prove the main results, we need the following lemmas.

Lemma 3.1 (see [15]). For y(t) ∈ C[0, 1], the boundary value problem

u(n)(t) + y(t) = 0, t ∈ (0, 1),

u(0) = 0, u′(0) = · · · = u(n−2)(0) = 0, u(1) = 0
(3.1)

has a unique solution

u(t) = −
∫ t

0

(t − s)n−1

(n − 1)!
y(s)ds + tn−1

∫1

0

(1 − s)n−1

(n − 1)!
y(s)ds. (3.2)

Lemma 3.2 (see [15]). The Green’s function for the boundary value problem

− u(n)(t) = 0, t ∈ (0, 1),

u(0) = 0, u′(0) = · · · = u(n−2)(0) = 0, u(1) = 0
(3.3)

is given by

g(t, s) =
1

(n − 1)!

⎧
⎨

⎩

tn−1(1 − s)n−1 − (t − s)n−1, 0 ≤ s ≤ t ≤ 1,

tn−1(1 − s)n−1, 0 ≤ t ≤ s ≤ 1.
(3.4)

Lemma 3.3 (see [15]). The Green’s function g(t, s) defined by (3.4) satisfies that

(i) g(t, s) ≥ 0 is continuous on [0, 1] × [0, 1];

(ii) g(t, s) ≤ g(θ1(s), s) for all t, s ∈ [0, 1] and there exists a constant γ̃τ > 0 for any τ ∈
(0, 1/2) such that

min
t∈[τ,1−τ]

g(t, s) ≥ γ̃τg(θ1(s), s) ≥ γ̃τg
(
t′, s
)
, ∀t′, s ∈ [0, 1], (3.5)

where

γ̃τ = min

{(
τ

θ1(s)

)n−1
,

τ

1 − θ1(s)

}

,

θ1(s) =
s

1 − (1 − s)(n−1)/(n−2)
(s < θ1(s) < 1).

(3.6)
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Lemma 3.4. Suppose α + (β − α)ηn−1 /= 1, then for y(t) ∈ C[0, 1], the boundary value problem

u(n)(t) + y(t) = 0, t ∈ (0, 1),

u(0) = αu
(
η
)
, u′(0) = · · · = u(n−2)(0) = 0, u(1) = βu

(
η
) (3.7)

has a unique solution

u(t) = −
∫ t

0

(t − s)n−1

(n − 1)!
y(s)ds

− α

1 − α − (β − α
)
ηn−1

∫η

0

(
η − s

)n−1

(n − 1)!
y(s)ds +

αηn−1

1 − α − (β − α
)
ηn−1

∫1

0

(1 − s)n−1

(n − 1)!
y(s)ds

+
(1 − α)tn−1

1 − α − (β − α
)
ηn−1

∫1

0

(1 − s)n−1

(n − 1)!
y(s)ds −

(
β − α

)
tn−1

1 − α − (β − α
)
ηn−1

∫η

0

(
η − s

)n−1

(n − 1)!
y(s)ds.

(3.8)

Proof. The general solution of u(n)(t) + y(t) = 0 can be written as

u(t) = −
∫ t

0

(t − s)n−1

(n − 1)!
y(s)ds +Atn−1 +

n−2∑

i=1

Ait
i + B. (3.9)

Since u(i)(0) = 0 for i = 1, 2, . . . , n − 2, we get Ai = 0 for i = 1, 2, . . . , n − 2. Now we solve for
A,B by u(0) = αu(η) and u(1) = βu(η), it follows that

B = −α
∫η

0

(
η − s

)n−1

(n − 1)!
y(s)ds + αAηn−1 + αB

−
∫1

0

(1 − s)n−1

(n − 1)!
y(s)ds +A + B = −β

∫η

0

(
η − s

)n−1

(n − 1)!
y(s)ds + βAηn−1 + βB.

(3.10)

By solving the above equations, we get

A =
1

1 − α − (β − α
)
ηn−1

(

(1 − α)
∫1

0

(1 − s)n−1

(n − 1)!
y(s)ds − (β − α

)
∫η

0

(
η − s

)n−1

(n − 1)!
y(s)ds

)

,

B =
1

1 − α − (β − α
)
ηn−1

(

−α
∫η

0

(
η − s

)n−1

(n − 1)!
y(s)ds + αηn−1

∫1

0

(1 − s)n−1

(n − 1)!
y(s)ds

)

.

(3.11)
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Therefore, (3.7) has a unique solution

u(t) = −
∫ t

0

(t − s)n−1

(n − 1)!
y(s)ds

− α

1 − α − (β − α
)
ηn−1

∫η

0

(
η − s

)n−1

(n − 1)!
y(s)ds +

αηn−1

1 − α − (β − α
)
ηn−1

∫1

0

(1 − s)n−1

(n − 1)!
y(s)ds

+
(1 − α)tn−1

1 − α − (β − α
)
ηn−1

∫1

0

(1 − s)n−1

(n − 1)!
y(s)ds −

(
β − α

)
tn−1

1 − α − (β − α
)
ηn−1

∫η

0

(
η − s

)n−1

(n − 1)!
y(s)ds.

(3.12)

Lemma 3.5. Suppose 0 < α + (β − α)ηn−1 < 1, the Green’s function for the boundary value problem

u(n)(t) + y(t) = 0, t ∈ (0, 1),

u(0) = αu
(
η
)
, u′(0) = · · · = u(n−2)(0) = 0, u(1) = βu

(
η
) (3.13)

is given by

G(t, s) = g(t, s) +

(
β − α

)
tn−1 + α

1 − α − (β − α
)
ηn−1 g

(
η, s
)
, (3.14)

where g(t, s) is defined by (3.4).

We omit the proof as it is immediate from Lemma 3.4 and (3.4).

Lemma 3.6. Suppose 0 < α+ (β −α)ηn−1 < 1, the Green’s function G(t, s) defined by (3.14) satisfies
that

(i) G(t, s) ≥ 0 is continuous on [0, 1] × [0, 1];

(ii) G(t, s) ≤ J(s) for all t, s ∈ [0, 1] and there exists a constant γτ > 0 for any τ ∈ (0, 1/2)
such that

min
t∈[τ,1−τ]

G(t, s) ≥ γτJ(s) ≥ γτG
(
t′, s
)
, ∀t′, s ∈ [0, 1], (3.15)

where

J(s) = g(θ1(s), s) +
max
{
α, β
}

1 − α − (β − α
)
ηn−1 g

(
η, s
)
,

γτ = min

⎧
⎨

⎩
τn−1,

min
{(

β − α
)
τn−1,

(
β − α

)
(1 − τ)n−1

}
+ α

max
{
α, β
}

⎫
⎬

⎭
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≤ min

⎧
⎨

⎩

(
τ

θ1(s)

)n−1
,

τ

1 − θ1(s)
,
min
{(

β − α
)
τn−1,

(
β − α

)
(1 − τ)n−1

}
+ α

max
{
α, β
}

⎫
⎬

⎭

= min

⎧
⎨

⎩
γ̃τ ,

min
{(

β − α
)
τn−1,

(
β − α

)
(1 − τ)n−1

}
+ α

max
{
α, β
}

⎫
⎬

⎭
.

(3.16)

Proof. (i) From Lemma 3.3 and (3.14), we get

G(t, s) ≥ 0 is continuous on [0, 1] × [0, 1]. (3.17)

(ii) From Lemma 3.3 and (3.14), we have

G(t, s) = g(t, s) +

(
β − α

)
tn−1 + α

1 − α − (β − α
)
ηn−1 g

(
η, s
)

≤ g(θ1(s), s) +
max
{
α, β
}

1 − α − (β − α
)
ηn−1 g

(
η, s
)
= J(s).

(3.18)

Next, we prove that (3.15) holds.
From Lemma 3.3 and (3.14), for t ∈ [τ, 1 − τ], we have

G(t, s) = g(t, s) +

(
β − α

)
tn−1 + α

1 − α − (β − α
)
ηn−1 g

(
η, s
)

≥ γ̃τg(θ1(s), s) +
min
{(

β − α
)
τn−1,

(
β − α

)
(1 − τ)n−1

}
+ α

1 − α − (β − α
)
ηn−1 g

(
η, s
)

= γ̃τg(θ1(s), s) +
min
{(

β − α
)
τn−1,

(
β − α

)
(1 − τ)n−1

}
+ α

max
{
α, β
} × max

{
α, β
}

1 − α − (β − α
)
ηn−1 g

(
η, s
)

≥ γτ

(

g(θ1(s), s) +
max
{
α, β
}

1 − α − (β − α
)
ηn−1 g

(
η, s
)
)

= γτJ(s)

≥ γτG
(
t′, s
)
,

(3.19)

for all t′ ∈ [0, 1], where γτ = min{τn−1, (min{(β − α)τn−1, (β − α)(1 − τ)n−1} + α)/max{α, β}},
τ ∈ (0, 1/2).
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We use inequality (3.15) to define our cones. Let E = C[0, 1], then E is a Banach space
with the norm ‖u‖ = maxt∈[0,1]|u(t)|. For a fixed τ ∈ (0, 1/2), define the cone P ⊂ E by

P =
{
u ∈ E | u(t) ≥ 0 on [0, 1], and min

t∈[τ,1−τ]
u(t) ≥ γτ‖u‖

}
. (3.20)

Define the operator T by

Tu(t) =
∫1

0
G(t, s)a(s)f(u(s))ds, 0 ≤ t ≤ 1. (3.21)

Obviously, u(t) is a solution of (1.5) if and only if u(t) is a fixed point of operator T .

Theorems 2.4 and 2.5 require the operator T to be completely continuous and cone
preserving. If T is continuous and compact, then it is completely continuous. The next lemma
shows that T : P → P for τ ∈ (0, 1/2) and that T is continuous and compact.

Lemma 3.7. The operator T is completely continuous and T : P → P for each τ ∈ (0, 1/2).

Proof. Fix τ ∈ (0, 1/2). Since a(s)f(u(s)) ≥ 0 for all s ∈ [0, 1], u ∈ P and since G(t, s) ≥ 0 for
all t, s ∈ [0, 1], then Tu(t) ≥ 0 for all t ∈ [0, 1], u ∈ P .

Let u ∈ P , by (3.15) and (3.21) we have

min
t∈[τ,1−τ]

u(t) = min
t∈[τ,1−τ]

∫1

0
G(t, s)a(s)f(u(s))ds

≥
∫1

0
min

t∈[τ,1−τ]
G(t, s)a(s)f(u(s))ds

≥ γτ

∫1

0
G
(
t′, s
)
a(s)f(u(s))ds

≥ γτTu
(
t′
)
,

(3.22)

for all t′ ∈ [0, 1]. Thus

min
t∈[τ,1−τ]

u(t) ≥ γτ‖Tu‖. (3.23)

Clearly operator (3.21) is continuous. By the Arzela-Ascoli theorem T is compact. Hence, the
operator T is completely continuous and the proof is complete.

4. Main Results

In this section we present that problem (1.5) has countably many solutions if a and f satisfy
some suitable conditions.
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For convenience, we denote

Λ1 =
1

maxt∈[0,1]
∫1−τ1
τ1

G(t, s)ds ·m
, Λ2 =

1
‖J‖q · ‖a‖p

. (4.1)

Theorem 4.1. Suppose conditions (H1) and (H2) hold, let {τk}∞k=1 be such that tk+1 < τk < tk, k =
1, 2, . . . . Let {Rk}∞k=1 and {rk}∞k=1 be such that

Rk+1 < γτk rk < rk < Rk, Mrk < LRk, k = 1, 2, . . . , (4.2)

where M ∈ (Λ1,+∞), L ∈ (0,Λ2). Furthermore, for each natural number k, assume that f satisfies
the following two growth conditions:

(H3) f(u) ≤ LRk for all u ∈ [0, Rk],

(H4) f(u) ≥ Mrk for all u ∈ [γτk rk, rk].

Then problem (1.5) has countably many positive solutions {uk}∞k=1 such that rk ≤ ‖uk‖ ≤ Rk for each
k = 1, 2, . . . .

Proof. Consider the sequences {Ω1,k}∞k=1 and {Ω2,k}∞k=1 of open subsets of E defined by

Ω1,k = {u ∈ E | ‖u‖ < Rk},
Ω2,k = {u ∈ E | ‖u‖ < rk}.

(4.3)

Let {τk}∞k=1 be as in the hypothesis and note that t0 < tk+1 < τk < tk < 1/2, for all k ∈ N. For
each k ∈ N, define the cone Pk by

Pk =
{
u ∈ E | u(t) ≥ 0 on [0, 1], and min

t∈[τk,1−τk]
u(t) ≥ γτk‖u‖

}
. (4.4)

Fixed k and let u ∈ Pk
⋂
∂Ω2,k. For s ∈ [τk, 1 − τk], we have

γτk rk = γτk‖u‖ ≤ min
s∈[τk,1−τk]

u(s) ≤ u(s) ≤ ‖u‖ = rk. (4.5)
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By condition (H4), we get

‖Tu‖ = max
t∈[0,1]

∫1

0
G(t, s)a(s)f(u(s))ds

≥ max
t∈[0,1]

∫1−τk

τk

G(t, s)a(s)f(u(s))ds

≥ max
t∈[0,1]

∫1−τk

τk

G(t, s)a(s)ds ·Mrk

≥ mMrk · max
t∈[0,1]

∫1−τ1

τ1

G(t, s)ds

≥ rk = ‖u‖.

(4.6)

Now let u ∈ Pk
⋂
∂Ω1,k, then u(s) ≤ ‖u‖ = Rk for all s ∈ [0, 1]. By condition (H3), we

get

‖Tu‖ = max
t∈[0,1]

∫1

0
G(t, s)a(s)f(u(s))ds

≤
∫1

0
J(s)a(s)ds · LRk

≤ ‖J‖q‖a‖p · LRk

≤ Rk = ‖u‖.

(4.7)

It is obvious that 0 ∈ Ω2,k ⊂ Ω2,k ⊂ Ω1,k. Therefore, by Theorem 2.4, the operator T has

at least one fixed point uk ∈ Pk
⋂
(Ω1,k \ Ω2,k) such that rk ≤ ‖uk‖ ≤ Rk. Since k ∈ N was

arbitrary, Theorem 4.1 is completed.

Let τk is defined by Theorem 4.1. We define the nonnegative continuous concave
functionals αk(u) on P by

αk(u) = min
t∈[τk,1−τk]

u(t). (4.8)

We observe here that, for each u ∈ P , α(u) ≤ ‖u‖.
For convenience, we denote

Λ = ‖J‖q · ‖a‖p, Γk = min
t∈[τk,1−τk]

∫1−τk

τk

G(t, s)ds ·m. (4.9)
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Theorem 4.2. Suppose conditions (H1) and (H2) hold, let {τk}∞k=1 be such that tk+1 < τk < tk, k =
1, 2, . . . . Let {ak}∞k=1, {bk}∞k=1, and {ck}∞k=1 be such that

ck+1 < ak < bk ≤ min
{
γτk ,

M

L

}
ck < ck, k = 1, 2, . . . , (4.10)

where L ∈ (Λ,+∞), M ∈ (0,Γk). Furthermore, for each natural number k, assume that f satisfies
the following growth conditions:

(H5) f(u) ≤ ck/L for all u ∈ [0, ck],

(H6) f(u) < ak/L for all u ∈ [0, ak],

(H7) f(u) ≥ bk/M for all u ∈ [bk, bk/γτk].

Then problem (1.5) has three infinite families of solutions {u1k}∞k=1, {u2k}∞k=1, and {u3k}∞k=1 such that

‖u1k‖ < ak, min
t∈[τk,1−τk]

u2k(t) > bk, ‖u3k‖ > ak, with min
t∈[τk,1−τk]

u3k(t) < bk, (4.11)

for each k = 1, 2, . . . .

Proof. We note first that T : Pck → Pck is completely continuous operator. If u ∈ P , then
from properties of G(t, s), Tu(t) ≥ 0, and by Lemma 3.7, mint∈[τk,1−τk]Tu(t) ≥ γτk‖Tu‖.
Consequently, T : P → P .

If u ∈ Pck , then ‖u‖ ≤ ck, and by condition (H5), we have

‖Tu‖ = max
t∈[0,1]

|Tu(t)|

= max
t∈[0,1]

∣∣∣∣∣

∫1

0
G(t, s)a(s)f(u(s))ds

∣∣∣∣∣

≤ ck
L

∣∣∣∣∣

∫1

0
J(s)a(s)ds

∣
∣∣∣∣

≤ ck
L

· ‖J‖q · ‖a‖p ≤ ck.

(4.12)

Therefore, T : Pck → Pck . Standard applications of Arzela-Ascoli theorem imply that T
is completely continuous operator.

In a completely analogous argument, condition (H6) implies that condition (C2) of
Theorem 2.5 is satisfied.

We now show that condition (C1) of Theorem 2.5 is satisfied. Clearly,

{
u ∈ P

(
αk, bk,

bk
γτk

)
| αk(u) > bk

}

/= ∅. (4.13)
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If u ∈ P(αk, bk, bk/γτk), then bk ≤ u(s) ≤ bk/γτk , for s ∈ [τk, 1 − τk]. By condition (H7), we get

αk(Tu) = min
t∈[τk,1−τk]

∫1

0
G(t, s)a(s)f(u(s))ds

≥ min
t∈[τk,1−τk]

∫1−τk

τk

G(t, s)a(s)f(u(s))ds

≥ m · bk
M

min
t∈[τk,1−τk]

∫1−τk

τk

G(t, s)ds ≥ bk.

(4.14)

Therefore, condition (C1) of Theorem 2.5 is satisfied.
Finally, we show that condition (C3) of Theorem 2.5 is also satisfied.
If u ∈ P(αk, bk, ck) and ‖Tu‖ > bk/γτk , then

αk(Tu) = min
t∈[τk,1−τk]

Tu(t) ≥ γτk‖Tu‖ > bk. (4.15)

Therefore, condition (C3) is also satisfied. By Theorem 2.5, There exist three infinite families
of solutions {u1k}∞k=1, {u2k}∞k=1, and {u3k}∞k=1 for problem (1.5) such that

‖u1k‖ < ak, min
t∈[τk,1−τk]

u2k(t) > bk, ‖u3k‖ > ak, with min
t∈[τk,1−τk]

u3k(t) < bk, (4.16)

for each k = 1, 2, . . . . Thus, Theorem 4.2 is completed.

5. Example

In this section, we cite an example (see [15]) to verify existence of a(t), and two simple
examples are presented to illustrate the applications for obtained conclusion of Theorems
4.1 and 4.2.

Example 5.1. As an example of problem (1.5), we mention the boundary value problem

u(3)(t) + a(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) =
1
2
u

(
1
2

)
, u′(0) = 0, u(1) = u

(
1
2

)
,

(5.1)
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where a(t) is defined by [15, Example 6.1] and ε = 1/4,

f(u) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

32 × 10−(4k+2) − (1/2) × 10−4(k+1)

(1/625) × 10−(8k+4) − 10−8(k+1)
(
u2 − 10−8(k+1)

)

+
1
2
× 10−4(k+1), u ∈

[
10−4(k+1),

1
25

× 10−(4k+2)
]
,

18 × 10−(4k+2) × sinπ
u − (1/25) × 10−(4k+2)

10−(4k+2) − (1/25) × 10−(4k+2)

+32 × 10−(4k+2), u ∈
[
1
25

× 10−(4k+2), 10−(4k+2)
]
,

32 × 10−(4k+2) − (1/2) × 10−4k

10−(8k+4) − 10−8k
(
u2 − 10−8k

)

+
1
2
× 10−4k, u ∈ [10−(4k+2), 10−4k] (k = 1, 2, . . .),

1
2
× 10−4, u ∈ [10−4,+∞).

(5.2)

We notice that n = 3, α = 1/2, β = 1, η = 1/2.
If we take t0 = 5/16, tk = t0 −

∑k−1
i=0 1/(i + 2)4, τk = (1/2)(tk + tk+1), k = 1, 2, . . . , then

tk+1 < τk < tk, and 1/5 < t∗ < τk < τ1 = 1/4−1/(2×34) < 1/4, γτk =min{τ2
k
, (min{(β−α)τ2

k
, (β−

α)(1 − τk)
2} + α)/max{α, β}} > 1/25, k = 1, 2, . . . .

It follows from a direct calculation that

∫1−τ1

τ1

G(t, s)ds >

∫1−1/4

1/4
G(t, s)ds

=
∫3/4

1/4
g(t, s)ds +

4
3

(
1 + t2

)∫3/4

1/4
g

(
1
2
, s

)
ds

=
1
2

{∫ t

1/4

[
t2(1 − s)2 − (t − s)2

]
ds +

∫3/4

t

t2(1 − s)2ds

+
4
3

(
1 + t2

)[∫1/2

1/4

(
1
4
(1 − s)2 −

(
1
2
− s

)2
)

ds +
∫3/4

1/2

1
4
(1 − s)2ds

]}

=
1
576

(
−96t3 + 122t2 − 18t +

25
2

)
,

(5.3)
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so

max
t∈[0,1]

∫1−τ1

τ1

G(t, s)ds ≥ max
t∈[1/4,1−1/4]

∫1−1/4

1/4
G(t, s)ds =

31 × 7
24 × 6 × 32

>
1
32

,

‖J1‖2 =
(∫1

0
J21 (s)ds

)1/2

≤ 5
6
, ‖a‖2 =

√√
√
√√

2

(
π2

3
− 9
4

)

.

(5.4)

In addition, if we take rk = 10−(4k+2), Rk = 10−4k, M = 32, L = 1/2, m = (4/3)1/4, then

a(t) ≥
(
4
3

)1/4

= m, t ∈ [t∗, 1 − t∗],

Rk+1 = 10−4(k+1) <
1
25

× 10−(4k+2) < γτk · rk < rk = 10−(4k+2) < Rk = 10−4k,

Mrk = 32 × 10−(4k+2) < LRk =
1
2
× 10−4k, k = 1, 2, . . . ,

Λ1 =
1

maxt∈[0,1]
∫1−τ1
τ1

G1(t, s)ds ·m
≤ 1

(1/32) × (4/3)1/4
< 32 = M,

Λ2 =
1

‖J1‖2 · ‖a‖2
≥ 1

(5/6) ×
√√

2(π2/3 − 9/4)
> L =

1
2
,

(5.5)

and f(u) satisfies the following growth conditions:

f(u) ≤ LRk =
1
2
× 10−4k, u ∈

[
0, 10−4k

]
,

f(u) ≥ Mrk = 32 × 10−(4k+2), u ∈
[
1
25

× 10−(4k+2), 10−(4k+2)
]
.

(5.6)

Then all the conditions of Theorem 4.1 are satisfied. Therefore, by Theorem 4.1 we
know that problem (5.1) has countably many positive solutions {uk}∞k=1 such that 10−(4k+2) ≤
‖uk‖ ≤ 10−4k for each k = 1, 2, . . . .

Example 5.2. As another example of problem (1.5), we mention the boundary value problem

u(3)(t) + a(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) =
1
2
u

(
1
2

)
, u′(0) = 0, u(1) = u

(
1
2

)
,

(5.7)
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where a(t) is defined by [15, Example 6.1] and ε = 1/4,

f(u) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u

2
u ∈ [10−4(k+1), 10−(4k+3)],

(1/2) × 10−(4k+3) − 45 × 10−(4k+2)

10−(8k+6) − 10−(8k+4)
(
u2 − 10−(8k+4)

)

+45 × 10−(4k+2), u ∈ [10−(4k+3), 10−(4k+2)],

5 × 10−(4k+2) × sinπ
u − 10−(4k+2)

25 × 10−(4k+2) − 10−(4k+2)

+45 × 10−(4k+2), u ∈ [10−(4k+2), 25 × 10−(4k+2)
]
,

45 × 10−(4k+2) − (1/2) × 10−4k

625 × 10−(8k+4) − 10−8k
(
u2 − 10−8k

)

+
1
2
× 10−4k, u ∈ [25×10−(4k+2), 10−4k], (k=1, 2, . . .),

1
2
× 10−4, u ∈ [10−4,+∞).

(5.8)

We notice that n = 3, α = 1/2, β = 1, η = 1/2.
If we take t0 = 5/16, tk = t0 −

∑k−1
i=0 1/(i + 2)4, τk = (1/2)(tk + tk+1), k = 1, 2, . . . , then

tk+1 < τk < tk, and 1/5 < t∗ < τk < τ1 = 1/4−1/(2×34) < 1/4, γτk =min{τ2
k
, (min{(β−α)τ2

k
, (β−

α)(1 − τk)
2} + α)/max{α, β}} > 1/25, k = 1, 2, . . . .

It follows from a direct calculation that

Λ = ‖J‖2 · ‖a‖2 ≤
5
6

√√√
√√

2

(
π2

3
− 9
4

)

,

min
t∈[τk,1−τk]

∫1−τk

τk

G(t, s)ds ≥ min
t∈[1/5,1−1/5]

∫1−1/4

1/4
G(t, s)ds =

3253
3200 × 45

>
1
45

.

(5.9)

In addition, if we take ak=10−(4k+3), bk=10−(4k+2), ck=10−4k,M=1/45, L=2,m=(4/3)1/4, then

a(t) ≥
(
4
3

)1/4

= m, t ∈ [t0, 1 − t0],

ck+1 = 10−4(k+1) < ak = 10−(4k+3) < bk = 10−(4k+2)

<
1
90

× 10−4k = min
{
γτk ,

M

L

}
ck < ck = 10−4k,
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M =
1
45

<
1
45

×
(
4
3

)1/4

< min
t∈[τk,1−τk]

∫1−τk

τk

G(t, s)ds ·m = Γk, k = 1, 2, . . . ,

Λ = ‖J‖2 · ‖a‖2 ≤
5
6

√√
√
√√

2

(
π2

3
− 9
4

)

< 2 = L,

(5.10)

and f(u) satisfies the following growth conditions:

f(u) ≤ ck
L

=
10−4k

2
, u ∈

[
0, 10−4k

]
,

f(u) <
ak

L
=

10−(4k+3)

2
, u ∈

[
0, 10−(4k+3)

]
,

f(u) ≥ bk
M

=
10−(4k+2)

1/45
= 45 × 10−(4k+2), u ∈

[
10−(4k+2), 25 × 10−(4k+2)

]
.

(5.11)

Then all the conditions of Theorem 4.2 are satisfied. Therefore, by Theorem 4.2 we
know that problem (5.7) has countably many positive solutions {uk}∞k=1 such that

‖u1k‖ < 10−(4k+3), min
t∈[τk,1−τk]

u2k(t) > 10−(4k+2)

‖u3k‖ > 10−(4k+3), with min
t∈[τk,1−τk]

u3k(t) < 10−(4k+2),
(5.12)

for each k = 1, 2, . . . .

Remark 5.3. In [8–12], the existence of solutions for local or nonlocal boundary value
problems of higher-order nonlinear ordinary (fractional) differential equations that has been
treated did not discuss problems with singularities. In [13], the singularity only allowed to
appear at t = 0 and/or t = 1, the existence and multiplicity of positive solutions were asserted
under suitable conditions on f . Although, [14, 15] seem to have considered the existence of
countably many positive solutions for the second-order and higher-order boundary value
problems with infinitely many singularities in [0, 1/2). However, in [15], only the boundary
conditions u(0) = 0 or u(1) = 0 have been considered. It is clear that the boundary conditions
of Examples 5.1 and 5.2 are u(0)/= 0 and u(1)/= 0. Hence, we generalize second-order and
higher-order multipoint boundary value problem.
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