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1. Introduction

Although important issues are still being investigated today, the bulk of the Fredholm theory
of linear elliptic boundary value problems on bounded domains was completed during the
1960s. (For pseudodifferential operators, the literature is more recent and begins with the
work of Boutet de Monvel [1]; see also [2] for a more complete exposition.) While this was
the result of the work and ideas of many, the most extensive treatment in the Lp framework is
arguably contained in the 1965 work of Geymonat [3]. This note answers a question explicitly
left open in Geymonat’s paper which seems to have remained unresolved.

We begin with a brief partial summary of [3] in the case of a single scalar equation. Let
Ω be a bounded connected open subset of R

N ,N ≥ 2, and let P denote a differential operator
on Ω of order 2m,m ≥ 1, with complex coefficients,

P =
∑

|α|≤2m
aα(x)∂α. (1.1)

Next, let B = (B1, . . . ,Bm)
� be a system of boundary differential operators on ∂Ω with B� of

order μ� ≥ 0 also with complex coefficients,

B� =
∑

|β|≤μ�

b�β(x)∂β. (1.2)
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With M := max{2m,μ1 + 1, . . . , μm + 1} and κ ≥ 0 denoting a chosen integer, introduce the
following regularity hypotheses:

(H1; κ) Ω is a CM+κ ∂-submanifold of R
N (i.e., ∂Ω is a CM+κ submanifold of R

N and Ω lies
on one side of ∂Ω);

(H2; κ) the coefficients aα are in CM−2m+κ(Ω) if |α| = 2m and inWM−2m+κ,∞(Ω) otherwise;

(H3; κ) the coefficients b�β are of class CM−μ�+κ(∂Ω) if |β| = μ� and in WM−μ�+κ,∞(∂Ω)
otherwise.

Then, for k ∈ {0, . . . , κ}, the operator P maps continuously WM+k,p(Ω) into
WM−2m+k,p(Ω) and B� maps continuously WM+k,p(Ω) into WM−μ�+k−1/p,p(∂Ω) for every p ∈
(1,∞)

Tp,k := (P,B) : WM+k,p(Ω) −→ WM−2m+k,p(Ω) ×
m∏

�=1

WM−μ�+k−1/p,p(∂Ω) (1.3)

is a well-defined bounded linear operator. Geymonat’s main result [3, Teorema 3.4 and
Teorema 3.5] reads as follows.

Theorem 1.1. Suppose that (H1; κ), (H2; κ), and (H3; κ) hold for some κ ≥ 0. Then,

(i) if p ∈ (1,∞) and k ∈ {0, . . . , κ}, the operatorTp,k is Fredholm if and only ifP is uniformly
elliptic in Ω and (P,B) satisfies the Lopatinskii-Schapiro condition (see below);

(ii) if also κ ≥ 1 and Tp,k is Fredholm for some p ∈ (1,∞) and some k ∈ {0, . . . , κ} (and hence
for every such p and k by (i)), both the index and null-space of Tp,k are independent of p
and k.

The assumptions made in Theorem 1.1 are nearly optimal. In fact, most subsequent
expositions retain more smoothness of the boundary and leading coefficients to make the
parametrix calculation a little less technical.

The best known version of the Lopatinskii-Schapiro (LS) condition is probably the
combination of proper ellipticity and of the so-called “complementing condition.” Since we
will not use it explicitly, we simply refer to the standard literature (e.g., [3–5]) for details.

We will fill the obvious “gap” between (i) and (ii) of Theorem 1.1 by proving what
follows.

Theorem 1.2. Theorem 1.1(ii) remains true if κ = 0.

Note that k = 0 corresponds to the most general hypotheses about the boundary and
the coefficients, which is often important in practice.

From now on, we set Tp := Tp,0 for simplicity of notation. The reason why κ ≥ 1 is
required in part (ii) of Theorem 1.1 is that the proof uses part (i)with κ replaced by κ − 1. By
a different argument, a weaker form of Theorem 1.2 was proved in [3, Proposizione 4.2] (p-
independence for p in some bounded open interval around the value p = 2, under additional
technical conditions).

If Tp + (λ, 0) is invertible for some λ ∈ C and every p ∈ (1,∞), then Theorem 1.2 is a
straightforward by-product of the Sobolev embedding theorems and, in fact, indexTp = 0 in
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this case. However, this invertibility can only be obtained under more restrictive ellipticity
hypotheses (such as strong ellipticity) and/or less general boundary conditions (Agmon [6],
Browder [7], Denk et al. [8, Theorem 8.2, page 102]).

The idea of the proof of Theorem 1.2 is to derive the case κ = 0 from the case κ ≥ 1 by
regularization of the coefficients and stability of the Fredholm index. The major obstacle in
doing so is the mere CM regularity of ∂Ω, since Theorem 1.1 with κ ≥ 1 can only be used if ∂Ω
is CM+1 or better. This will be overcome in a somewhat nonstandard way in these matters, by
artificially increasing the smoothness of the boundary with the help of the following lemma.

Lemma 1.3. Suppose that Ω is a bounded open subset of R
N and that Ω is a ∂-submanifold of R

N of

class CM with M ≥ 2. Then, there is a bounded open subset Ω̃ of R
N such that Ω̃ is a ∂-submanifold

of R
N of class C∞ (even Cω) and that Ω and Ω̃ are CM diffeomorphic (as ∂-manifolds).

The next section is devoted to the (simple) proof of Theorem 1.2 based on Lemma 1.3
and to a useful equivalent formulation (Corollary 2.1). Surprisingly, we have been unable
to find any direct or indirect reference to Lemma 1.3 in the classical differential topology or
PDE literature. It does not follow from the related and well-known fact that every ∂-manifold
X of class CM with M ≥ 1 is CM diffeomorphic to a ∂-manifold Y of class C∞ since this
does not ensure that both can always be embedded in the same euclidian space. It is also
clearly different from the results just stating that Ω can be approximated by open subsets
with a smooth boundary (as in [9]), which in fact need not even be homeomorphic to Ω.
Accordingly, a proof of Lemma 1.3 is given in Section 3.

Based on themethod of proof and the validity of Theorem 1.1 for systems after suitable
modifications of the definition ofTp,k in (1.3) and of the hypotheses (H1; κ), (H2; κ), and (H3;
κ), there is no difficulty in checking that Theorem 1.2 remains valid for most systems as well,
but a brief discussion is given in Section 4 to make this task easier.

Remark 1.4. When the boundary ∂Ω is not connected, the system B of boundary conditions
may be replaced by a collection of such systems, one for each connected component of ∂Ω.
Theorems 1.1 and 1.2 remain of course true in that setting, with the obvious modification of
the target space in (1.3).

2. Proof of Theorem 1.2

As noted in [3, page 241], the p-independence of kerTp (recall Tp := Tp,0) follows from that
of indexTp, so that it will suffice to focus on the latter.

The problem can be reduced to the case when the lower-order coefficients in P and
B� vanish since the operator they account for is compact from the source space to the target
space in (1.3), irrespective of p ∈ (1,∞). Thus, the lower-order terms have no impact on
the existence of indexTp or on its value. It is actually more convenient to deal with the
intermediate case when all the coefficients aα are in CM−2m(Ω) and all the coefficients b�β
are in CM−μ� (∂Ω),which is henceforth assumed.

First, M ≥ 2 since M ≥ 2m and m ≥ 1, so that by (H1; 0) and Lemma 1.3, there are a

bounded open subset Ω̃ of R
N such that Ω̃ is a ∂-submanifold of R

N of class C∞ and a CM

diffeomorphism Φ : Ω̃ → Ωmapping ∂Ω̃ onto ∂Ω.

The pull-back Φ∗u := u ◦Φ is a linear isomorphism of Wj,p(Ω) onto Wj,p(Ω̃) for every
j ∈ {0, . . . ,M} and ofWM−μ�−1/p,p(∂Ω) ontoWM−μ�−1/p,p(∂Ω̃) for every 1 ≤ � ≤ m.Meanwhile,
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Pu = (Φ−1)∗P̃(Φ∗u)where P̃ is a differential operator of order 2mwith coefficients ãα of class

CM−2m on Ω̃ and B�u = (Φ−1)∗B̃�(Φ∗u) where B̃� is a differential operator of order μ� with
coefficients b̃�β of class CM−μ� on ∂Ω̃.

From the above remarks, the operator (where B̃ := (B̃1, . . . , B̃m))

T̃p :=
(
P̃, B̃

)
: WM,p

(
Ω̃
)
−→ WM−2m,p

(
Ω̃
)
×

m∏

�=1

WM−μ�−1/p,p
(
∂Ω̃

)
(2.1)

has the form T̃p = UpTpVp where Up and Vp are isomorphisms. As a result, T̃p is Fredholm
with the same index as Tp. Since the coefficients of P and P̃ and of B and B̃ have the same
smoothness, respectively, we may, upon replacing Ω by Ω̃ and Tp by T̃p, continue the proof
under the assumption that ∂Ω is a C∞ submanifold of R

N (but the aα are still CM−2m(Ω) and
the b�β still CM−μ� (∂Ω)).

The coefficients aα can be approximated in CM−2m(Ω) by coefficients a∞
α ∈ C∞(Ω) and

the coefficients b�β can be approximated in CM−μ� (∂Ω) by C∞ functions b∞
�β

on ∂Ω (since ∂Ω
is C∞; see, e.g., [10, Theorem 2.6, page 49]), which yields operators P∞ and B∞

� , 1 ≤ � ≤ m, of
order 2m and μ�, respectively, in the obvious way.

Let p, q ∈ (1,∞) be fixed. The corresponding operators T∞
p and T∞

q are arbitrarily
norm-close to Tp and Tq if the approximation of the coefficients is close enough. If so, by the
openness of the set of Fredholm operators and the local constancy of the index, it follows that
T∞

p and T∞
q are Fredholm with indexT∞

p = indexTp and indexT∞
q = indexTq. But since ∂Ω

is now C∞ and the coefficients a∞
α and b∞

�β
are C∞, the hypotheses (H1; κ), (H2; κ), and (H3;

κ) are satisfied by Ω, P∞ and B∞ and any κ ≥ 1. Thus, indexT∞
p = indexT∞

q by part (ii) of
Theorem 1.1, so that indexTp = indexTq. This completes the proof of Theorem 1.2.

Corollary 2.1. Suppose that (H1; 0), (H2; 0), and (H3; 0) hold, that P is uniformly elliptic in Ω,
and that (P,B) satisfies the LS condition. Let p, q ∈ (1,∞). If u ∈ WM,p(Ω) and (Pu,Bu) ∈
WM−2m,q(Ω) ×

∏m
�=1W

M−μ�−1/q,q(∂Ω), then u ∈ WM,q(Ω).

Proof. Since the result is trivial if p ≥ q, we assume p < q. Obviously, (Pu,Bu) ∈ rgeTp

and Tp is Fredholm by Theorem 1.1(i). Let Z denote a (finite-dimensional) complement of
rgeTp in WM−2m,p(Ω) ×

∏m
�=1W

M−μ�−1/p,p(∂Ω). Since WM−2m,q(Ω) ×
∏m

�=1W
M−μ�−1/q,q(∂Ω)

is dense in WM−2m,p(Ω) ×
∏m

�=1W
M−μ�−1/p,p(∂Ω) and rgeTp is closed, we may assume that

Z ⊂ WM−2m,q(Ω) ×
∏m

�=1W
M−μ�−1/q,q(∂Ω). If not, approximate a basis of Z by elements of

WM−2m,q(Ω) ×
∏m

�=1W
M−μ�−1/q,q(∂Ω). If the approximation is close enough, the approximate

basis is linearly independent and its span Z′ (of dimension dimZ) intersects rgeTp only at
{0} (by the closedness of rgeTp). Thus, Z may be replaced by Z′ as a complement of rgeTp.

Since Tp and Tq have the same index and null-space by Theorem 1.2, their ranges
have the same codimension. Now, Z ∩ rgeTq = {0} because Z is a complement of rgeTp and
rgeTq ⊂ rgeTp. This shows that Z is also a complement of rgeTq.

Therefore, since (Pu,Bu) ∈ WM−2m,q(Ω) ×
∏m

�=1W
M−μ�−1/q,q(∂Ω), there is z ∈ Z such

that (Pu,Bu)− z := w ∈ rgeTq ⊂ rgeTp. This yields z = (Pu, Bu)−w ∈ rgeTp,whence z = 0
and so (Pu,Bu) = w ∈ rgeTq. This means that (Pu,Bu) = (Pv,Bv) for some v ∈ WM,q(Ω) ⊂
WM,p(Ω). Thus, Tp(v − u) = 0, that is, v − u ∈ kerTp. Since kerTp = kerTq ⊂ WM,q(Ω) by
Theorem 1.2, it follows that u ∈ WM,q(Ω).
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It is not hard to check that Corollary 2.1 is actually equivalent to Theorem 1.2. This
was noted by Geymonat, along with the fact that Corollary 2.1 was only known to be true in
special cases ([3, page 242]).

3. Proof of Lemma 1.3

Under the assumptions of Lemma 1.3, Ω has a finite number of connected components, each
of which satisfies the same assumptions as Ω itself. Thus, with no loss of generality, we will
assume that Ω is connected.

If X and Y are ∂-manifolds of class Ck with k ≥ 1 and X and Y are C1 diffeomorphic,
they are also Ck diffeomorphic ([10, Theorem 3.5, page 57]). Thus, since Ω is of class CM

with M ≥ 2, it suffices to find a bounded open subset Ω̃ of R
N such that Ω̃ is C∞ and CM−1

diffeomorphic to Ω.
In a first step, we find a CM function g : R

N → R such that ∂Ω = g−1(0) and ∇g /= 0
on ∂Ωwhile g < 0 in Ω, g > 0 in R

N \ ∂Ω and lim|x|→∞g(x) = ∞. This can be done in various
ways and even when M = 1. However, since M ≥ 2, the most convenient argument is to rely
on the fact that the signed distance function

d(x) :=

⎧
⎨

⎩
dist (x, ∂Ω), if x /∈Ω,

−dist (x, ∂Ω), if x ∈ Ω
(3.1)

is CM in Ua, where a > 0, and

Ua :=
{
x ∈ R

N : |d(x)| = dist (x, ∂Ω) < a
}

(3.2)

is an open neighborhood of ∂Ω in R
N. This is shown in Gilbarg and Trudinger [11, page 355]

and also in Krantz and Parks [12]. Both proofs reveal that ∇d(x)/= 0 when x ∈ ∂Ω, that is,
when d(x) = 0. (Without further assumptions, the CM regularity of d breaks down when
M = 1.)

Let χ ∈ C∞(R) be nondecreasing and such that χ(s) = s if |s| ≤ b/2 and χ(s) = (sign s)b
if |s| ≥ b, where 0 < b < a is given. Then, g := χ ◦ d is CM in Ua, vanishes only on ∂Ω, and
∇g /= 0 on ∂Ω. Furthermore, since g = b on a neighborhood of ∂(Ω ∪ Ua) = {x ∈ R

N : d(x) =

a} inUa and g = −b on a neighborhood of ∂(Ω\Ua) = {x ∈ R
N : d(x) = −a} inUa, g remains

CM after being extended to R
N by setting g(x) = b if x ∈ R

N \ (Ω ∪ Ua), and g(x) = −b if
x ∈ Ω \Ua.

This g satisfies all the required conditions except lim|x|→∞g(x) = ∞. Since g(x) = b > 0
for |x| large enough, this can be achieved by replacing g(x) by (1 + |x|2)g(x). Since g /= 0 off

∂Ω, it follows from a classical theorem of Whitney [13, Theorem III] (with ε(x) := |g(x)|/2 in
that theorem) that there is a CM function h on R

N, of class Cω in R
N \∂Ω such that, if |γ | ≤ M,

then ∂γh(x) = ∂γg(x) if x ∈ ∂Ω and |∂γh(x) − ∂γg(x)| < |g(x)|/2 if x ∈ R
N \ ∂Ω.

Evidently, h does not vanish on R
N \ ∂Ω and h has the same sign as g off ∂Ω, that

is, h(x) < 0 in Ω and h(x) > 0 in R
N \ Ω. Furthermore, ∇h(x) = ∇g(x)/= 0 for every x ∈

∂Ω, so that ∇h(x)/= 0 for x ∈ U2c for some c > 0. Upon shrinking c, we may assume that
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Ω \ U2c /= ∅. Also, lim|x|→∞h(x) = lim|x|→∞g(x) = ∞. For convenience, we summarize the
relevant properties of h below:

(i) h is CM on R
N and Cω off ∂Ω,

(ii) ∇h(x)/= 0 for x ∈ U2c,

(iii) Ω = {x ∈ R
N : h(x) < 0},

(iv) ∂Ω = h−1(0),

(v) lim|x|→∞h(x) = ∞.

Choose ε > 0. It follows from (v) that Kε := {x ∈ R
N : h(x) ≤ ε} is compact and,

from (iii) and (iv), that Kε ⊂ Ω ∪ Uc if ε is small enough (argue by contradiction). Since
h−1(ε) ∩Ω = ∅ by (iii) and (iv) and since h−1(ε) ⊂ Kε, this implies h−1(ε) ⊂ Uc \ ∂Ω. Thus, by
(i) and (ii), h−1(ε) is a Cω submanifold of R

N and the boundary of the open set Ωε := {x ∈
R

N : h(x) < ε} ⊃ Ω. In fact, Ωε = Kε is a ∂-manifold of class Cω since, once again by (ii), Ωε

lies on one side of its boundary.
We now proceed to show that Ωε is CM−1 diffeomorphic to Ω. This will be done by a

variant of the procedure used to prove that nearby noncritical level sets on compact manifolds
are diffeomorphic. However, since we are dealing with sublevel sets and since critical points
will abound, the details are significantly different.

Let θ ∈ C∞
0 (U2c) be such that θ ≥ 0 and θ = 1 on Uc. Since ∇h/= 0 on U2c by (ii), the

function θ(∇h/|∇h|2) extended by 0 outside Supp θ is a bounded CM−1 vector field on R
N.

Since M − 1 ≥ 1, the function ϕ : R × R
N → R

N defined by

∂ϕ

∂t
(t, x) = −θ

(
ϕ(t, x)

) ∇h
(
ϕ(t, x)

)

∣∣∇h(ϕ(t, x))
∣∣2
,

ϕ(0, x) = x,

(3.3)

is well defined and of class CM−1 and ϕ(t, ·) is an orientation-preserving CM−1 diffeomor-
phism of R

N for every t ∈ R.We claim that ϕ(ε, ·) produces the desired diffeomorphism from
Ωε to Ω.

It follows at once from (3.3) that (d/dt)(h ◦ ϕ) = −θ ◦ ϕ ≤ 0, so that h is decreasing
along the flow lines and hence that ϕ(t, ·) maps Ωε into itself for every t ≥ 0. Also, if x ∈ Ω,
then h(ϕ(t, x)) ≤ h(x) < 0 for every t ≥ 0, so that ϕ(t, x) ∈ Ω by (iii). If now x ∈ ∂Ω ⊂ Uc,
then h(x) = 0 and h(ϕ(t, x)) is strictly decreasing for t > 0 small enough. It follows that
h(ϕ(t, x)) < 0, that is, ϕ(t, x) ∈ Ω for t > 0. Altogether, this yields ϕ(ε,Ω) ⊂ Ω.

Suppose now that x ∈ Ωε \ Ω = Kε \ Ω. Then, x ∈ Uc and hence θ(x) = 1. For
t > 0 small enough, ϕ(t, x) ∈ Uc and so θ(ϕ(t, x)) = 1 for t > 0 small enough. In fact, it is
obvious that θ(ϕ(t, x)) = 1 until t is large enough that ϕ(t, x)/∈Uc. But since ϕ(t, x) ∈ Ωε

and h ◦ ϕ(·, x) is decreasing along the flow lines, ϕ(t, x)/∈Uc implies ϕ(t, x) ∈ Ω. Since x /∈Ω,

this means that ϕ(τ(x), x) ∈ ∂Ω for some τ(x) ∈ (0, t). Call τ∗(x) > 0 the first (and, in fact,
only, but this is unimportant) time when ϕ(τ∗(x), x) ∈ ∂Ω. From the above, ϕ(t, x) ∈ Uc for
t ∈ [0, τ∗(x)) and hence for t ∈ [0, τ∗(x)] since ∂Ω ⊂ Uc. Then, θ(ϕ(t, x)) = 1 for t ∈ [0, τ∗(x)],
so that h(ϕ(t, x)) = h(x) − t for t ∈ [0, τ∗(x)]. In particular, since ϕ(τ∗(x), x) ∈ ∂Ω and hence
h(ϕ(τ∗(x), x)) = 0, it follows that h(x) − τ∗(x) = 0. In other words, τ∗(x) = h(x) ≤ ε. Thus,
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h(ϕ(ε, x)) ≤ h(ϕ(τ∗(x), x)) = 0, that is, ϕ(ε, x) ∈ Ω. If x ∈ ∂Ωε (so that h(x) = ε and hence

τ∗(x) = ε), this yields ϕ(ε, x) ∈ ∂Ω. On the other hand, if x ∈ Ωε \ Ω, then τ∗(x) = h(x) < ε.

Since ϕ(τ∗(x), x) ∈ ∂Ω ⊂ Uc, h(ϕ(t, x)) is strictly decreasing for t near τ∗(x) and so h(ϕ(ε, x)) <
h(ϕ(τ∗(x), x)) = 0, whence ϕ(ε, x) ∈ Ω.

The above shows that ϕ(ε, ·) maps Ωε into Ω, ∂Ωε into ∂Ω, and Ωε into Ω. That
it actually maps Ωε onto Ω follows from a Brouwer’s degree argument: Ω is connected
and no point of Ω is in ϕ(ε, ∂Ωε) since, as just noted, ϕ(ε, ∂Ωε) ⊂ ∂Ω. Thus, for y ∈
Ω,deg(ϕ(ε, ·),Ωε, y) is defined and independent of y. Now, choose y0 ∈ Ω \ U2c /= ∅, so that
θ(y0) = 0. Then, ϕ(t, y0) = y0 for every t ≥ 0 and so ϕ(ε, y0) = y0. Since ϕ(ε, ·) is one to one and
orientation-preserving, it follows that deg(ϕ(ε, ·),Ωε, y0) = 1 and so deg(ϕ(ε, ·),Ωε, y) = 1 for
every y ∈ Ω. Thus, there is x ∈ Ωε such that ϕ(ε, x) = y,which proves the claimed surjectivity.

At this stage, we have shown that ϕ(ε, ·) is a CM−1 diffeomorphism of R
N mapping

Ωε into Ω, ∂Ωε into ∂Ω, and Ωε into and onto Ω. It is straightforward to check that such a
diffeomorphism also maps ∂Ωε onto ∂Ω (approximate x ∈ ∂Ω by a sequence from Ω) and
hence it is a boundary-preserving diffeomorphism of Ωε onto Ω. This completes the proof of
Lemma 1.3.

Remark 3.1. The CM−1 diffeomorphism ϕ(ε, ·) above is induced by a diffeomorphism of R
N,

but this does not mean that the same thing is true of the CM diffeomorphism of Lemma 1.3.

4. Systems

Suppose now that P := (Pij), 1 ≤ i, j ≤ n, is a system of n2 differential operators on Ω,
which is properly elliptic in the sense of Douglis and Nirenberg [14]. We henceforth assume
some familiarity with the nomenclature and basic assumptions of [4, 14]. Recall that Douglis-
Nirenberg ellipticity is equivalent to a more readily usable condition due to Volevič [15]. See
[5] for a statement and simple proof.

Let {s1, . . . , sn} ⊂ Z and {t1, . . . , tn} ⊂ Z be two sets of Douglis-Nirenberg numbers,
so that orderPij ≤ si + tj , that have been normalized so that max{s1, . . . , sn} = 0 and
min{t1, . . . , tn} ≥ 0.

It is well known that since N ≥ 2, proper ellipticity implies Σn
i=1(si + ti) = 2m with

m ≥ 0. We assume that a system B := (B�j), 1 ≤ � ≤ m, 1 ≤ j ≤ n of boundary differential
operators is given, with orderB�j ≤ r� + tj for some {r1, . . . , rm} ⊂ Z.

Let

R := max{0, r1 + 1, . . . , rm + 1}, M := R +max{t1, . . . , tn}, (4.1)

and call aijα and b�jβ the (complex valued) coefficients of Pij and B�j , respectively. Given an
integer κ ≥ 0, introduce the following hypotheses (generalizing those for a single equation in
the Introduction).

(H1; κ) Ω is a CM+κ ∂-submanifold of R
N.

(H2; κ) The coefficients aijα are in CR−si+κ(Ω) if |α| = si + tj and inWR−si+κ,∞(Ω) otherwise.

(H3; κ) The coefficients b�jβ are inCR−r�+κ(∂Ω) if |β| = r�+tj and inWR−r�+κ,∞(∂Ω) otherwise.
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For p ∈ (1,∞) and k ∈ {0, . . . , κ}, define

Tp,k := (P,B) :
n∏

j=1

WR+tj+k,p(Ω) −→
n∏

i=1

WR−si+k,p(Ω) ×
m∏

�=1

WR−r�+k−1/p,p(∂Ω). (4.2)

Then (as proved in [3]), Theorem 1.1 holds (once again, the LS condition amounts to proper
ellipticity plus complementing condition and proper ellipticity is equivalent to ellipticity if
m > 0 andN ≥ 3) and it is straightforward to check that the proof of Theorem 1.2 carries over
to this case if M ≥ 2. If so, Corollary 2.1 is also valid, with a similar proof and an obvious
modification of the function spaces.

Remark 4.1. If m = 0, there is no boundary condition (in particular, R = 0, and (H3; κ)
is vacuous) and the system Pu = f can be solved explicitly for u in terms of f and its
derivatives. This is explained in [14, page 506]. If so, the smoothness of ∂Ω (i.e., (H1; κ)) is
irrelevant, and Theorem 1.2 is trivially true regardless ofM (Tp is an isomorphism). A special
case when m = 0 arises if t1 = · · · = tn = 0 (in particular, if M = 0), for then s1 = · · · = sn = 0
from the conditions 2m = Σn

i=1(si + ti) ≥ 0 and si ≤ 0.

From the above, Theorem 1.2 may only fail if m ≥ 1, R = 0, and M = 1. (The author
was recently informed by H. Koch [16] that he could prove Lemma 1.3 when M = 1, so that
Theorem 1.2 remains true in this case as well.)
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