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1. Introduction

The aim of this paper is to establish infinitely many solutions for two-point boundary value
problems with the nonlinear term possibly discontinuous. We immediately emphasize the
following theorem which is a particular case of our main result (Theorem 3.1).

Theorem 1.1. Let f : R → R be a locally bounded, and almost everywhere continuous function such
that infRf > 0. Put F(ξ) :=

∫ ξ
0f(t)dt for every ξ ∈ R and assume that

lim inf
ξ→+∞

F(ξ)
ξ2

<
1
4
lim sup
ξ→+∞

F(ξ)
ξ2

. (1.1)

Then, for each λ ∈]8/lim supξ→+∞ F(ξ)/ξ2, 2/lim infξ→+∞ F(ξ)/ξ2[, the problem

−u′′ = λf(u) in ]0, 1[

u(0) = u(1) = 0
(G1,0

f,λ
)

admits a sequence of pairwise distinct positive weak solutions.
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Clearly, when f is continuous in R, the solutions in Theorem 1.1 are classical (in this
case, it is enough to assume infRf ≥ 0; see Corollary 3.5). Moreover, substituting ξ → +∞
with ξ → 0+, the same results hold and, in addition, the sequence of pairwise distinct positive
solutions uniformly converges to zero (see Theorem 3.9 and Corollary 3.10).

When f is a continuous function, results of the existence of infinitely many solutions
for problem (G1,0

f,λ) are obtained, for example, in [1–7]. We observe that in the very interesting
paper [6], the authors assume lim infξ→+∞ F(ξ)/ξ2 = 0 and lim supξ→+∞ F(ξ)/ξ2 = +∞,
which are conditions that imply our key assumption. Very recently, in [4], a more general
condition than the previous assumption has been assumed, requiring in addition, however,
that limξ→+∞ f(ξ) = +∞. Moreover, we also observe that the results in [1, 2] are obtained by
using the important Variational Principle of Ricceri [8], which is, basically, the same as our
tool. We emphasize that, also when f is a continuos function, our theorems in this paper and
the results in [1–7] are mutually independent (see Remark 3.13 and Examples 3.11 and 3.12).

When the nonlinear term f is discontinuous, there have been many approaches to
studying a nonlinear eigenvalue differential equation as it arises in physics problems, such as
nonlinear elasticity theory, and mechanics, and engineering topics. Chang in [9] established
the critical point theory for nondifferentiable functionals and presented some applications
to partial differential equations with discontinuous nonlinearities. Next, Motreanu and
Panagiotopoulos (see [10, Chapter 3]) studied the critical point theory for non-smooth
functionals and in this framework, very recently, Marano and Motreanu, in [11], obtained
an infinitely many critical points theorem, which extends the Variational Principle of Ricceri
to non-smooth functionals, and applies this result to variational-hemivariational inequalities
and semilinear elliptic eigenvalue problems with discontinuous nonlinearities.

In this paper, we present a more precise version of the infinitely many critical
points theorem of Marano and Motreanu (Theorem 2.1), obtained by a completely different
proof (see Remark 2.2) and, by using the previous theorem, we establish our main result
(Theorem 3.1) on the existence of infinitely many solutions for a two-point boundary value
problem with the Sturm-Liouville equation having discontinuous nonlinear term.

We explicitly observe that methods and techniques used in the proof of Theorem 3.1
can be applied to a wide class of nonlinear differential problems to investigate infinitely many
solutions. The note is arranged as follows. In Section 2, we recall some basic definitions and
our abstract framework, while Section 3 is devoted to infinitely many solutions for the Sturm-
Liouville problem.

Finally, we point out that the existence of multiple solutions for nonlinear differential
problems has been studied in several papers by using different techniques (see, e.g., [12, 13]
and references therein).

2. Infinitely Many Critical Points

Let (X, ‖ · ‖) be a real Banach space. We denote by X∗ the dual space of X, while 〈·, ·〉 stands
for the duality pairing between X∗ and X. A function Φ : X → R is called locally Lipschitz
continuous when, to every x ∈ X, there corresponds a neighbourhood Vx of x and a constant
Lx ≥ 0 such that

∣∣Φ(z) −Φ(w)
∣∣ ≤ Lx‖z −w‖ ∀z, w ∈ Vx. (2.1)
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If x, z ∈ X, we write Φ◦(x; z) for the generalized directional derivative of Φ at the point x
along the direction z, that is,

Φ◦(x; z) := lim sup
w→x, t→ 0+

Φ(w + tz) −Φ(w)
t

. (2.2)

The generalized gradient of the function Φ in x, denoted by ∂Φ(x), is the set

∂Φ(x) :=
{
x∗ ∈ X∗ :

〈
x∗, z

〉 ≤ Φ◦(x; z) ∀z ∈ X
}
. (2.3)

We say that x ∈ X is a (generalized) critical point of Φwhen

Φ◦(x; z) ≥ 0 ∀z ∈ X, (2.4)

that clearly signifies 0 ∈ ∂Φ(x). When a non-smooth functional, Ψ : X → ] − ∞,+∞], is
expressed as a sum of a locally Lipschitz function, Φ : X → R, and a convex, proper, and
lower semicontinuous function, j : X → ] −∞,+∞], that is Ψ := Φ + j, a (generalized) critical
point of Ψ is every u ∈ X such that

Φ◦(u;v − u) + j(v) − j(u) ≥ 0 (2.5)

for all v ∈ X (see [10, Chapter 3]).
Here, and in the sequel,X is a reflexive real Banach space,Φ : X → R is a sequentially

weakly lower semicontinuous functional, Υ : X → R is a sequentially weakly upper
semicontinuous functional, λ is a positive real parameter, j : X → ] − ∞,+∞] is a convex,
proper and lower semicontinuous functional and D(j) is the effective dominion of j.

Write

Ψ := Υ − j, Iλ := Φ − λΨ = (Φ − λΥ) + λj. (2.6)

We also assume that Φ is coercive and

D(j) ∩Φ−1(] −∞, r[
)
/=∅ (2.7)

for all r > infX Φ. Moreover, owing to (2.7) and provided r > infX Φ, we can define

ϕ(r) = inf
u∈Φ−1(]−∞,r[)

(
supu∈Φ−1(]−∞,r[)Ψ(u)

) −Ψ(u)

r −Φ(u)
,

γ := lim inf
r→+∞

ϕ(r), δ := lim inf
r→ (infXΦ)+

ϕ(r).
(2.8)

Assuming also that Φ and Υ are locally Lipschitz functionals, we have the following
result, which is a more precise version of [11, Theorem 1.1] (see Remark 2.2).
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Theorem 2.1. Under the above assumptions on X, Φ and Ψ, one has

(a) for every r > infX Φ and every λ ∈]0, 1/ϕ(r)[, the restriction of the functional Iλ = Φ−λΨ
to Φ−1(]−∞, r[) admits a global minimum, which is a critical point (local minimum) of Iλ
in X.

(b) if γ < +∞ then, for each λ ∈]0, 1/γ[, the following alternative holds: either

(b1) Iλ possesses a global minimum, or
(b2) there is a sequence {un} of critical points (local minima) of Iλ such that

limn→+∞Φ(un) = +∞.

(c) if δ < +∞ then, for each λ ∈]0, 1/δ[, the following alternative holds: either

(c1) there is a global minimum of Φ which is a local minimum of Iλ, or
(c2) there is a sequence {un} of pairwise distinct critical points (local minima) of Iλ, with

limn→+∞ Φ(un) = infX Φ, which weakly converges to a global minimum of Φ.

Proof. Arguing as in the proof of [14, Theorem 3.1]we have (a). More precisely, let 1/λ > ϕ(r),
then there is u ∈ D(j) such that Φ(u) < r and Φ(u) − λΨ(u) < r − λ supΦ(x)<r Ψ(x). Moreover,
put

M =
r −Φ(u)

λ
+ Ψ(u). (2.9)

Clearly,

sup
Φ(x)<r

Ψ(x) < M. (2.10)

Finally, put

ΨM(u) =

{
Ψ(u), if Ψ(u) ≤ M

M, if Ψ(u) > M.
(2.11)

Since, owing to [15, Corollary III.8] j is sequentially weakly lower semicontinuous, a simple
computation shows thatΨM is sequentially weakly upper semicontinuous. Put J = Φ−λΨM.
Clearly J is a sequentially weakly lower semicontinuous functional and, as it is easy to see,
it is also a coercive functional. Therefore (see, e.g., [16, Theorem 1.2]), it admits a global
minimum u0. If J(u0) = J(u), then u satisfies the conclusion.

Otherwise, assume J(u0) < J(u). In this case, we have that Ψ(u0) < M. In fact, from
J(u0) < J(u) one has Φ(u0) − λΨM(u0) < Φ(u) − λΨM(u). Hence, Φ(u0) < λΨM(u0) + Φ(u) −
λΨ(u) ≤ λM + Φ(u) − λΨ(u) = r and, from (2.10) one has Ψ(u0) < M. Therefore, Φ(u0) −
λΨ(u0) = Φ(u0) − λΨM(u0) ≤ Φ(u) − λΨM(u) for all u ∈ X and, taking again (2.10) into
account, Φ(u0) − λΨ(u0) ≤ Φ(u) − λΨ(u) for all u ∈ Φ−1(] − ∞, r[). Hence, u0 satisfies the
conclusion.

Let us prove (b). Pick λ ∈]0, 1/γ[ and assume that (b1) is not true. We will show that
when γ < +∞ and Iλ does not posses a global minimum in X, then Iλ admits a sequence of
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critical points. Let a ∈ R such that λ < a < 1/γ . From lim infr→+∞ ϕ(r) < 1/a there exists
a sequence {rn} such that limn→+∞ rn = +∞ and ϕ(rn) < 1/a for all n ∈ N. Put rn1 = r1.
Owing to (a), one can find u1 ∈ Φ−1(] −∞, rn1[) such that u1 is a local minimum for Iλ. From
our assumption, u1 is not a global minimum for Iλ. Therefore, there exists u1 ∈ X such that
Iλ(u1) < Iλ(u1). Hence, u1 /∈Φ−1(] − ∞, rn1[). Let rn2 ∈ {rn} such that rn2 > Φ(u1). Again from
(a), there is u2 ∈ Φ−1(] −∞, rn2[) such that u2 is a local minimum for the functional Iλ. Taking
into account that u2 is a global minimum in Φ−1(] − ∞, rn2[), we have that Iλ(u2) ≤ Iλ(u1)
and Iλ(u1) < Iλ(u1). Hence, Φ(u2) > rn1 . Reasoning inductively we obtain a sequence {uk} of
distinct critical points such that Φ(uk+1) > rnk for all k ∈ N. Hence, (b2) holds.

Finally, we prove (c). Fix λ ∈]0, 1/δ[ and let u ∈ X such that Φ(u) = infX Φ. Assume
that (c1) does not hold, that is u is not a local minimum for Iλ. Consider a ∈ R such that λ <
a < 1/δ. By our assumption, lim infr→ (infXΦ)+ϕ(r) = δ < 1/a, hence there exists a decreasing
sequence {rn} such that limn→+∞rn = infXΦ and ϕ(rn) < 1/a for all n ∈ N. Put rn1 = r1.
Owing to (a), there exists u1 ∈ Φ−1(] − ∞, rn1[), which is a local minimum for Iλ. Therefore,
u1 /=u. Then, Φ(u) < Φ(u1). Let rn2 ∈ {rn} such that Φ(u) < rn2 < Φ(u1). Again from (a),
there is u2 ∈ Φ−1(] − ∞, rn2[) which is a local minimum for the functional Iλ, with Φ(u) <
Φ(u2) < Φ(u1). Reasoning inductively we obtain a sequence {uk} of distinct local minima for
Iλ such thatΦ(u) < Φ(uk) < rnk for all k ∈ N. Hence, limk→+∞ Φ(uk) = infXΦ. Moreover, since
{uk} ⊆ Φ−1(] − ∞, rn1[) and Φ is coercive, then it is bounded. Since X is reflexive, taking a
subsequence if necessary, {uk} weakly converges to u∗ ∈ X. From the weak sequential lower
semicontinuity, one has Φ(u∗) ≤ limk→+∞ Φ(uk) = infX Φ, that is Φ(u∗) = infX Φ. Hence, the
conclusion is obtained.

Remark 2.2. We explicitly observe that the proof here outlined is different from that proposed
by Marano and Motreanu in [11]. Further we do not use the weak closure of the sub-levels
Φ−1(] −∞, r[), for r > infXΦ.

3. Sturm-Liouville Boundary Value Problem

Consider the Sturm-Liouville boundary value problem

−(pu′)′ + qu = λf(u) in ]0, 1[

u(0) = u(1) = 0,
(Gp,q

f,λ
)

where p, q ∈ L∞([0, 1]), f : R → R is an almost everywhere continuous function and λ is a
positive parameter.

Denoting Df the set

Df := {z ∈ R : f is discontinuous at z}, (3.1)

we recall that f is said to be continuous almost everywhere if Df is (Lebesgue) measurable
and m(Df) = 0. Moreover, if f is locally essentially bounded, we write

f−(t) := lim
δ→ 0+

ess inf
|t−z|<δ

f(z), f+(t) := lim
δ→ 0+

ess sup
|t−z|<δ

f(z) (3.2)



6 Boundary Value Problems

for each t ∈ R. We observe that f− and f+ are, respectively, lower semi-continuous and upper
semi-continuous.

Assume that

p0 := ess inf
x∈[0,1]

p(x) > 0, q0 := ess inf
x∈[0,1]

q(x) ≥ 0. (3.3)

Let W1,2([0, 1]) be the Sobolev space endowed with the usual norm

‖u‖∗ :=
(∫1

0

∣
∣u′(x)

∣
∣2dx +

∫1

0

∣
∣u(x)

∣
∣2dx

)1/2

. (3.4)

As is customary, we denote byW1,2
0 ([0, 1]) the closure of C∞

0 ([0, 1]) inW1,2([0, 1]). Moreover,
a function u : [0, 1] → R is said to be a weak solution of (Gp,q

f,λ) if u ∈ W1,2
0 ([0, 1]) and

∫1

0
p(x)u′(x)v′(x)dx +

∫1

0
q(x)u(x)v(x)dx

= λ

∫1

0
f
(
u(x)

)
v(x)dx ∀v ∈ W1,2

0

(
[0, 1]

)
.

(3.5)

We recall that u ∈ AC([0, 1]) is a generalized solution of (Gp,q

f,λ
) if pu′ ∈ AC([0, 1]), u(0) = u(1)

and

−(p(x)u′(x)
)′ + q(x)u(x) = λf

(
u(x)

)
, (3.6)

for almost every x ∈ [0, 1].
Clearly, the weak solutions of (Gp,q

f,λ
) are also generalized solutions.

If f and q are continuous functions we recall that u ∈ C1([0, 1]) is a classical solution
of (Gp,q

f,λ
) if pu′ ∈ C1([0, 1]), u(0) = u(1) and

−(p(x)u′(x)
)′ + q(x)u(x) = λf

(
u(x)

)
, (3.7)

for every x ∈ [0, 1].
We recall that

(u, v) :=
∫1

0
q(x)u(x)v(x)dx +

∫1

0
p(x)u′(x)v′(x)dx u, v ∈ W1,2

0

(
[0, 1]

)
(3.8)
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is an inner product that induces in W1,2
0 ([0, 1]) the norm

‖u‖ :=
(∫1

0
p(x)

∣
∣u′(x)

∣
∣2dx +

∫1

0
q(x)

∣
∣u(x)

∣
∣2dx

)1/2

, (3.9)

which is equivalent to the usual one.
It is well known thatW1,2

0 ([0, 1]) is compactly embedded inC0([0, 1]) and in particular
one has

‖u‖∞ ≤ 1
2√p0

‖u‖, (3.10)

for every u ∈ W1,2
0 ([0, 1]).

Consider Φ : W1,2
0 ([0, 1]) → R and Υ : W1,2

0 ([0, 1]) → R defined as follows

Φ(u) :=
‖u‖2
2

, Υ(u) :=
∫1

0
F
(
u(x)

)
dx, (3.11)

where

F(ξ) :=
∫ ξ

0
f(t)dt, (3.12)

for every ξ ∈ R.
By standard arguments, one has that Φ is Gâteaux differentiable and sequentially

weakly lower semicontinuous. Moreover, the Gâteaux derivative is the functional Φ′(u) ∈
(W1,2

0 ([0, 1]))
∗
given by

Φ′(u)(v) =
∫1

0
p(x)u′(x)v′(x)dx +

∫1

0
q(x)u(x)v(x)dx, (3.13)

for every v ∈ W1,2
0 ([0, 1]).

Moreover, Υ is locally Lipschitz continuous in W1,2
0 ([0, 1]). So it makes sense to

consider the generalized directional derivative Υ◦. Finally, by a standard argument, Υ is
sequentially weakly continuous.
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Now, put

κ := 3
p0

‖q‖∞ + 12‖p‖∞ , (3.14)

A := lim inf
ξ→+∞

max|t|≤ξ F(t)
ξ2

,

B := lim sup
ξ→+∞

F(ξ)
ξ2

,

(3.15)

λ1 :=
2
3
‖q‖∞ + 12‖p‖∞

B
,

λ2 := 2
p0
A
.

(3.16)

Our main result is the following theorem.

Theorem 3.1. Let f : R → R be a locally essentially bounded and almost everywhere continuous
function. Put F(ξ) :=

∫ ξ
0f(t)dt for every ξ ∈ R and assume that

(i)
∫ ξ
0F(t)dt ≥ 0, for every ξ ≥ 0;

(ii)

lim inf
ξ→+∞

max|t|≤ξF(t)
ξ2

< κ lim sup
ξ→+∞

F(ξ)
ξ2

, (3.17)

where κ is given by (3.14);

(iii) for almost every x ∈ [0, 1], for each z ∈ Df and for each λ ∈]λ1, λ2[ (where λ1, λ2 are given
by (3.16)) the condition

λf−(z) − q(x)z ≤ 0 ≤ λf+(z) − q(x)z (3.18)

implies λf(z) = q(x)z.

Then, for each λ ∈]λ1, λ2[, the problem (Gp,q

f,λ
) possesses a sequence of weak solutions which is

unbounded inW1,2
0 ([0, 1]).

Proof. Our aim is to apply Theorem 2.1(b). For this end, fix λ ∈]λ1, λ2[ and denote by X the
Banach space W1,2

0 ([0, 1]) endowed with the norm

‖u‖ :=
(∫1

0
p(x)

∣∣u′(x)
∣∣2dx +

∫1

0
q(x)

∣∣u(x)
∣∣2dx

)1/2

. (3.19)
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For each u ∈ X, put

Φ(u) :=
‖u‖2
2

, Υ(u) :=
∫1

0
F
(
u(x)

)
dx, j(u) := 0

Ψ(u) := Υ(u) − j(u) = Υ(u),

Iλ(u) := Φ(u) − λΨ(u) = Φ(u) − λΥ(u).

(3.20)

Clearly, Φ is sequentially weakly lower semicontinuous and coercive, Υ is, in particular,
sequentially weakly upper semicontinuous; moreover, they are locally Lipschitz functions
and one has I◦λ(u;v) = Φ′(u)(v) + λ(−Υ)◦(u;v) for all u, v ∈ X.

Now, let {cn} be a real sequence such that limn→+∞ cn = +∞ and

lim
n→+∞

max|t|≤cnF(t)

c2n
= A. (3.21)

Put rn = 2p0c2n for all n ∈ N. Taking (3.10) into account, one has maxt∈[0,1]|v(t)| ≤ cn for all
v ∈ X such that ‖v‖2 < 2rn. Hence, (taking also into account that the function u0(t) = 0 for all
t ∈ [0, 1] is such that ‖u0‖2 = 0 < 2rn) for all n ∈ N one has

ϕ
(
rn
)
= inf

‖u‖2<2rn

sup‖v‖2<2rn
∫1
0F
(
v(x)

)
dx − ∫10F

(
u(x)

)
dx

rn − ‖u‖2/2

≤
sup‖v‖2<2rn

∫1
0F
(
v(x)

)
dx − ∫10F

(
u0(x)

)
dx

rn −
∥∥u0
∥∥2/2

=
sup‖v‖2<2rn

∫1
0F
(
v(x)

)
dx

rn

≤ max|t|≤cnF(t)
rn

=
1
2p0

max|t|≤cnF(t)

c2n
.

(3.22)

Therefore, since from assumption (ii) one has A < +∞, we obtain

γ ≤ lim inf
n→+∞

ϕ
(
rn
) ≤ A

2p0
< +∞. (3.23)

Now we claim that the functional Iλ is unbounded from below. Let {dn} be a real
sequence such that limn→+∞ dn = +∞ and

lim
n→+∞

F
(
dn

)

d2
n

= B. (3.24)
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For all n ∈ N define

wn(x) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

4dnx if x ∈
[
0,

1
4

[

dn if x ∈
[
1
4
,
3
4

]

−4dn(x − 1) if x ∈
]
3
4
, 1
]
.

(3.25)

Clearly, wn ∈ X and

∥∥wn

∥∥2 ≤ 8d2
n

(
‖q‖∞
12

+ ‖p‖∞
)

. (3.26)

Therefore,

Φ
(
wn

) − λΥ
(
wn

)
=

∥∥wn

∥∥2

2
− λ

∫1

0
F
(
wn(x)

)
dx

≤ 4d2
n

(
‖q‖∞
12

+ ‖p‖∞
)

− λ

∫1

0
F
(
wn(x)

)
dx.

(3.27)

Taking (i) into account, we have

∫1

0
F
(
wn(x)

)
dx ≥

∫3/4

1/4
F
(
dn

)
dt =

1
2
F
(
dn

)
. (3.28)

Then,

Φ
(
wn

) − λΥ
(
wn

) ≤ 4d2
n

(
‖q‖∞
12

+ ‖p‖∞
)

− λ

2
F
(
dn

)
, (3.29)

for all n ∈ N.
Now, if B < +∞, we fix ε ∈](8/λB)(‖q‖∞/12+‖p‖∞), 1[. From (3.24) there exists νε ∈ N

such that

F
(
dn

)
> εBd2

n, (3.30)
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for all n > νε. Therefore,

Φ
(
wn

) − λΥ
(
wn

) ≤ 4d2
n

(
‖q‖∞
12

+ ‖p‖∞
)

− λ

2
εBd2

n

= d2
n

[

4

(
‖q‖∞
12

+ ‖p‖∞
)

− λ

2
εB

] (3.31)

for all n > νε.
From the choice of ε, one has

lim
n→+∞

[
Φ
(
wn

) − λΥ
(
wn

)]
= −∞. (3.32)

On the other hand, if B = +∞, we fixM > (8/λ)(‖q‖∞/12+‖p‖∞) and, again from (3.24) there
exists νM ∈ N such that

F
(
dn

)
> Md2

n, (3.33)

for all n > νM. Therefore,

Φ
(
wn

) − λΥ
(
wn

) ≤ 4d2
n

(
‖q‖∞
12

+ ‖p‖∞
)

− λ

2
Md2

n

= d2
n

[

4

(
‖q‖∞
12

+ ‖p‖∞
)

− λ

2
M

] (3.34)

for all n > νM.
From the choice of M, also in this case, one has

lim
n→+∞

[
Φ
(
wn

) − λΥ
(
wn

)]
= −∞. (3.35)

Hence, our claim is proved.
Since all assumptions of Theorem 2.1(b) are verified, the functional Iλ admits a

sequence {un} of generalized critical points such that limn→+∞‖un‖ = +∞, that is {un} is
unbounded in X.

Now, we claim that the generalized critical points of Iλ are weak solutions for the
problem (Gp,q

f,λ
). To this end, let u0 ∈ X a generalized critical point of Iλ, that is I◦λ(u0, v) ≥ 0,

for all v ∈ X. From which, we obtain

Φ′(u0
)
(v) + λ(−Υ)◦(u0;v

) ≥ 0, (3.36)
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for all v ∈ X. Hence, Φ′(u0)(v) ≥ −λ(−Υ)◦(u0;v) for all v ∈ X, that is

−
∫1

0

[
p(x)u′

0(x)v
′(x) + q(x)u0(x)v(x)

]
dx ≤ λ(−Υ)◦(u0;v

)
, (3.37)

for all v ∈ X. Clearly, setting

L(v) := −
∫1

0

[
p(x)u′

0(x)v
′(x) + q(x)u0(x)v(x)

]
dx ∀v ∈ X, (3.38)

L is a continuous and linear functional on X, for which (3.37) signifies L ∈ λ∂(−Υ)(u0). Now,
since X is dense in L2([0, 1]), from [9, Theorem 2.2] one has L(v) ≤ λ(−Υ)◦(u0;v) for all
v ∈ L2([0, 1]), so that L is continuous and linear on L2([0, 1]). Therefore, there is h ∈ L2([0, 1])
such that L(v) =

∫1
0h(x)v(x)dx for all v ∈ L2([0, 1]). From a standard result (see, e.g., [15,

Example 2, page 219]) there is a unique u ∈ W2,2([0, 1]) ∩ X such that (pu′)′ − qu = h. In
particular, one has

∫1
0[(p(x)u

′(x))′ −q(x)u(x)]v(x)dx = −∫10[p(x)u′(x)v′(x)+q(x)u(x)v(x)]dx
for all v ∈ X. Hence, −∫10[p(x)u′

0(x)v
′(x) + q(x)u0(x)v(x)]dx = L(v) =

∫1
0h(x)v(x)dx =

∫1
0[(p(x)u

′(x))′ − q(x)u(x)]v(x)dx = −∫10[p(x)u′(x)v′(x) + q(x)u(x)v(x)]dx for all v ∈ X,
and since a continuous and linear functional on X is uniquely determined by a function in X
(see [17, Theorem 5.9.3, page 295]), we have u = u0; so that, u0 ∈ W2,2([0, 1]) and

∫1

0

[(
p(x)u′

0(x)
)′ − q(x)u0(x)

]
v(x)dx = −

∫1

0

[
p(x)u′

0(x)v
′(x) + q(x)u0(x)v(x)

]
dx (3.39)

for all v ∈ X. From (3.37) and (3.39) one has

∫1

0

[(
p(x)u′

0(x)
)′ − q(x)u0(x)

]
v(x)dx ≤ λ(−Υ)◦(u0;v

)
(3.40)

for all v ∈ X. Hence, [9, Corollary page 111] ensures that (p(x)u′
0(x))

′ − q(x)u0(x) ∈
[(−λf)−(u0(x)), (−λf)+(u0(x))] for almost every x ∈ [0, 1], that is (p(x)u′

0(x))
′ ∈

[(−λf)−(u0(x)) + q(x)u0(x), (−λf)+(u0(x)) + q(x)u0(x)], for almost every x ∈ [0, 1]. From
which

−(p(x)u′
0(x)
)′ ∈ [λ(f)−(u0(x)

) − q(x)u0(x), λ(f)
+(u0(x)

) − q(x)u0(x)
]
, (3.41)

for almost every x ∈ [0, 1].
Now, since m(Df) = 0, from [18, Lemma 1] we obtain −(p(x)u′

0(x))
′ = 0 for almost

every x ∈ u−1
0 (Df). Hence, from (iii) we obtain λf(u0(x)) − q(x)u0(x) = 0 for almost every

x ∈ u−1
0 (Df). From which

−(p(x)u′
0(x)
)′ + q(x)u0(x) = λf

(
u0(x)

)
, (3.42)
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for almost every x ∈ u−1
0 (Df). On the other hand, for almost every x ∈ [0, 1] \ u−1

0 (Df),
condition (3.41) reduces to

−(p(x)u′
0(x)
)′ + q(x)u0(x) = λf

(
u0(x)

)
. (3.43)

Hence, our claim is proved and the assertion follows.

Remark 3.2. If q(x) = 0 for all x ∈ [0, 1] assumption (iii) becomes

(iii′) for each z ∈ Df , the condition

f−(z) ≤ 0 ≤ f+(z) (3.44)

implies f(z) = 0.

If z ∈ Df is such that 0 ∈ [f−(z), f+(z)] and f(z) = 0, then (iii′) is verified. Otherwise,
if z ∈ Df and there is a neighborhood V of z and a positive constant m > 0 such that either
f(t) > m for almost every t ∈ V , or f(t) < −m for almost every t ∈ V , then (iii′) is verified. In
particular, if infRf > 0 then (iii′) is verified for all z ∈ Df .

If q is a nonzero function, z ∈ Df and λ ∈]λ1, λ2[, (iii) is verified, e.g., when there is
a neighborhood V of z and a positive constant m > 0 such that either f(t) > (‖q‖∞/λ)z +m
for almost every t ∈ V , or f(t) < (q0/λ)z −m for almost every t ∈ V . In particular, whenever
λ1 > 0 and one has f(z) > (‖q‖∞/λ1)z +m for some m > 0, then (iii) is verified.

Finally, since a function u ∈ W1,2
0 ([0, 1]) such that

−(p(x)u′(x)
)′ + q(x)u(x) ∈ λ

[
(f)−

(
u(x)

)
, (f)+

(
u(x)

)]
(3.45)

for almost every x ∈ [0, 1] is called multi-valued solution for (Gp,q

f,λ) (see [9]), we explicitly
observe that, without assuming condition (iii), the same proof of Theorem 3.1 ensures a
sequence of pairwise distinct multi-valued solutions to problem (Gp,q

f,λ
).

Remark 3.3. The following condition

(ii′) there exist two real sequences {bn}, {cn}, with bn <
√
(p0/2(‖q‖∞/12 + ‖p‖∞))cn

for all n ∈ N and limn→+∞ cn = +∞, such that

A1 := lim
n→+∞

max|t|≤cnF(t) − (1/2)F
(
bn
)

2p0c2n − 4
(‖q‖∞/12 + ‖p‖∞

)
b2n

<
κ

2p0
lim sup
ξ→+∞

F(ξ)
ξ2

(3.46)

is more general than condition (ii) of Theorem 3.1. In fact, from (ii′) we obtain (ii), by
choosing bn = 0 for all n ∈ N.

Assuming in Theorem 3.1 condition (ii′) instead of condition (ii), for each λ ∈
]λ1, 1/A1[ the conclusion in Theorem 3.1 again holds. In fact, arguing as in the proof of
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Theorem 3.1, one has ϕ(rn) = inf‖u‖2<2rn(sup‖v‖2<2rn
∫1
0F(v(x))dx−

∫1
0F(u(x))dx)/(rn−‖u‖2/2) ≤

(sup‖v‖2<2rn
∫1
0F(v(x))dx−

∫1
0F(un(x))dx)/(rn−‖un‖2/2) ≤ (max|t|≤cnF(t)−(1/2)F(bn))/(2p0c2n−

4(‖q‖∞/12 + ‖p‖∞)b2n), by choosing

un(x) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

4bnx if x ∈
[
0,

1
4

[

bn if x ∈
[
1
4
,
3
4

]

−4bn(x − 1) if x ∈
]
3
4
, 1
]
.

(3.47)

Among the consequences of Theorem 3.1 we point out the following results.

Corollary 3.4. Let f : R → R be a continuous function and p ∈ C1([0, 1]), q ∈ C0([0, 1]). Assume
that (i) and (ii) of Theorem 3.1 hold. Then, for each λ ∈]λ1, λ2[, problem (Gp,q

f,λ
) possesses a sequence of

pairwise distinct classical solutions.

If f is nonnegative, using the Strong Maximum Principle (see, e.g., [19, Theorem 8.19,
page 198]) we can get the following two results.

Corollary 3.5. Let f : R → R be a continuous, nonnegative function and p ∈ C1([0, 1]), q ∈
C0([0, 1]). Assume that

(iia)

lim inf
ξ→+∞

F(ξ)
ξ2

< κ lim sup
ξ→+∞

F(ξ)
ξ2

. (3.48)

Then, for each λ ∈]λ1, λ2[, problem (Gp,q

f,λ) possesses a sequence of pairwise distinct positive classical
solutions.

Corollary 3.6. Let f : R → R be a locally essentially bounded, nonnegative and almost everywhere
continuous function. Assume that (iia) of Corollary 3.5 and (iii) of Theorem 3.1 hold. Then, for each
λ ∈]λ1, λ2[, problem (Gp,q

f,λ) possesses a sequence of positive weak solutions which is unbounded in

W1,2
0 ([0, 1]).

Finally, we present the following result.

Corollary 3.7. Let f : R → R be a locally essentially bounded and almost everywhere continuous
function. Assume that (i) and (iii) of Theorem 3.1 hold. Further, assume that

(
ii1
)

lim sup
ξ→+∞

F(ξ)
ξ2

>
2
3
(‖q‖∞ + 12‖p‖∞

)
; (3.49)
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(
ii2
)

lim inf
ξ→+∞

max|t|≤ξF(t)
ξ2

< 2p0. (3.50)

Then, problem

−(pu′)′ + qu = f(u) in ]0, 1[

u(0) = u(1) = 0
(Gp,q

f,1)

possesses a sequence of weak solutions which is unbounded inW1,2
0 ([0, 1]).

Remark 3.8. Clearly, also Theorem 1.1 in Introduction is a particular case of Theorem 3.1,
taking Remark 3.2 and the Strong Maximum Principle into account.

Now, we present the other main result. First, put

A∗ := lim inf
ξ→ 0+

max|t|≤ξF(t)
ξ2

,

B∗ := lim sup
ξ→ 0+

F(ξ)
ξ2

,

(3.51)

λ∗1 :=
2
3
‖q‖∞ + 12‖p‖∞

B∗ ,

λ∗2 := 2
p0
A∗ .

(3.52)

Theorem 3.9. Let f : R → R be a locally essentially bounded and almost everywhere continuous
function. Assume that

(j)
∫ ξ
0F(t)dt ≥ 0, for every ξ ≥ 0;

(jj)

lim inf
ξ→ 0+

max|t|≤ξF(t)
ξ2

< κ lim sup
ξ→ 0+

F(ξ)
ξ2

, (3.53)

where κ is given by (3.14);

(jjj) for almost every x ∈ [0, 1], each z ∈ Df and each λ ∈]λ∗1, λ∗2[ (where λ∗1, λ∗2 are given by
(3.52) ), the condition

λf−(z) − q(x)z ≤ 0 ≤ λf+(z) − q(x)z (3.54)

implies λf(z) = q(x)z.
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Then, for each λ ∈]λ∗1, λ∗2[, problem (Gp,q

f,λ) possesses a sequence of pairwise distinct weak solutions,

which strongly converges to zero inW1,2
0 ([0, 1]).

Proof. The proof is the same of Theorem 3.1 applying part (c) of Theorem 2.1 instead of part
(b).

Clearly, from Theorem 3.9 we obtain similar consequences to those of Theorem 3.1.
Here, we present only one of them.

Corollary 3.10. Let f : R → R be a continuous, nonnegative function and p ∈ C1([0, 1]), q ∈
C0([0, 1]). Assume that

(jja)

lim inf
ξ→ 0+

F(ξ)
ξ2

< κ lim sup
ξ→ 0+

F(ξ)
ξ2

. (3.55)

Then, for each λ ∈]λ∗1, λ∗2[, problem (Gp,q

f,λ
) possesses a sequence of pairwise distinct positive classical

solutions, which strongly converges to zero in C0([0, 1]).

Now, we present some examples of application of Theorem 3.1 for which the results in
[1–4, 6, 7] cannot be applied (see Remark 3.13).

Example 3.11. Let q0 be a nonnegative real constant, put

an :=
2n!(n + 2)! − 1

4(n + 1)!
, bn :=

2n!(n + 2)! + 1
4(n + 1)!

, (3.56)

for every n ∈ N and define the nonnegative, continuous function f : R → R as follows

f(ξ) :=

⎧
⎪⎪⎨

⎪⎪⎩

32(n + 1)!2
[
(n + 1)!2 − n!2

]

π

√
1

16(n + 1)!2
−
(
ξ − n!(n + 2)

2

)2

if ξ ∈
⋃

n∈N

[
an, bn

]

0 otherwise.
(3.57)

One has
∫ (n+1)!
n! f(t)dt =

∫bn
an
f(t)dt = (n + 1)!2 − n!2 for every n ∈ N. Then, one has

limn→+∞ F(bn)/b2n = 4 and limn→+∞ F(an)/a2
n = 0. Therefore, by a simple computation, we

have lim infξ→+∞ F(ξ)/ξ2 = 0 and lim supξ→+∞ F(ξ)/ξ2 = 4. Hence,

0 = lim inf
ξ→+∞

F(ξ)
ξ2

<
3

q0 + 12
4 =

3
q0 + 12

lim sup
ξ→+∞

F(ξ)
ξ2

. (3.58)
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Owing to Corollary 3.5, for each λ > (q0 + 12)/6 the problem

−u′′ + q0u = λf(u) in ]0, 1[

u(0) = u(1) = 0
(G1,q0

f,λ
)

possesses a sequence of pairwise distinct positive classical solutions.
Now, let f∗ : R → R be the positive, continuous function defined as f∗(ξ) =

f(ξ) + 1 for all ξ ∈ R, where f is given by (3.57). Clearly, lim infξ→+∞ F∗(ξ)/ξ2 = 0 and
lim supξ→+∞ F∗(ξ)/ξ2 = 4. Hence, again owing to Corollary 3.5, for each λ > (q0 + 12)/6
the problem

−u′′ + q0u = λf∗(u) in ]0, 1[

u(0) = u(1) = 0
(G

1,q0
f,λ )

possesses a sequence of pairwise distinct positive classical solutions.

Example 3.12. Let q0 be a nonnegative real constant, put

a1 := 2, an+1 :=
(
an

)3/2
, (3.59)

for every n ∈ N and S :=
⋃

n≥2]an+1 − 1, an+1 + 1[. Define the continuous function f : R → R

as follows

f(t) :=

⎧
⎪⎨

⎪⎩

(
an+1
)3
e1/(t−(an+1−1))(t−(an+1+1))+1

2
(
an+1 − t

)

(
t − (an+1 − 1

))2(
t − (an+1 + 1

))2 if t ∈ S

0 otherwise.
(3.60)

For which, one has

F(ξ) =
∫ ξ

0
f(t)dt

=

{(
an+1
)3
e1/(ξ−(an+1−1))(ξ−(an+1+1))+1 if ξ ∈ S

0 otherwise,

(3.61)

and F(an+1) = (an+1)
3 for every n ≥ 2. Hence, one has lim supξ→+∞ F(ξ)/ξ2 = +∞. On the

other hand, by setting xn = an+1 −1 for every n ≥ 2, one has maxξ∈[−xn,xn]F(ξ) = (an)
3 for every

n ≥ 2. Therefore, one has limn→+∞ maxξ∈[−xn,xn]F(ξ)/xn
2 = 1 and, by a simple computation,

one has lim infξ→+∞ maxt∈[−ξ,ξ] F(t)/ξ2 = 1. Hence,

lim inf
ξ→+∞

maxt∈[−ξ,ξ]F(t)
ξ2

= 1 <
3

q0 + 12
lim sup
ξ→+∞

F(ξ)
ξ2

= +∞. (3.62)
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Owing to Corollary 3.4, for each λ ∈]0, 2[ the problem (G1,q0
f,λ

) possesses a sequence of pairwise
distinct classical solutions.

Remark 3.13. In [3] the existence of infinitely many solutions for the problem

−u′′ = f(u) in ]0, 1[

u(0) = u(1) = 0
(3.63)

was studied under suitable assumptions on the function f , as f(ξ) > 0 for all ξ large
enough. We explicitly observe that we cannot apply [3, Theorem 2.11] to problem (G1,q0

f,λ
) of

Example 3.11, even in the case q0 = 0, since our function is not positive for all ξ large enough.
The same remark for [4, Corollary 3.1] holds, since limξ→+∞f(ξ) = +∞ (hence, in particular,
f(ξ) > 0 for ξ large enough) is requested.

The same problem was studied in [1, 7]. Assumptions of [1, Theorem 2.1] imply that
f is negative in suitable real intervals. Hence, [1, Theorem 2.1] cannot be applied to problem
(G1,q0

f,λ
) of Example 3.11. Moreover, assumptions in [7, Theorem 3.1], as inf{t ∈ R : f(t) > 0} <

0, cannot be applied to the function f of Example 3.11 since, in this case, one has inf{t ∈ R :
f(t) > 0} = 11/8.

In [2, 6], the authors studied the existence of infinitely many weak solutions of the
following autonomous Dirichlet problem

−Δpu = f(u) in Ω,

u = 0 on ∂Ω,
(D)

where Ω is a bounded open subset of the Euclidean space (RN, | · |), N ≥ 1, with boundary
of class C1, Δpu := div(|∇u|p−2∇u), p > 1, and f is a continuous function. In [6, Remark 3.3]
the key assumption to obtain infinitely many solutions to (D) is: lim infξ→+∞ F(ξ)/ξp = 0
and lim supξ→+∞ F(ξ)/ξp = +∞. Clearly, the function f in Example 3.11 does not satisfy this

condition. Hence, we cannot apply [6, Theorem 1.1] to our problem (G1,q0
f,λ

), even in the case
q0 = 0.

On the other hand, we cannot apply [2, Theorem 1.1] to (G
1,q0
f,λ ), since one of the

key assumptions is that function f is nonpositive in suitable real intervals. Another key
assumption of [2, Theorem 1.1] is

lim sup
ξ→+∞

F(ξ)
ξp

< +∞. (3.64)

Hence, we cannot apply [2, Theorem 1.1] to (G1,q0
f,λ

) in Example 3.12, even in the case q0 = 0.
Clearly, we cannot apply [6, Remark 3.3], [3, Theorem 2.11], [4, Corollary 3.1], [7,

Theorem 3.1] to (G1,q0
f,λ ) in Example 3.12 for the same previous reasons.

The following example deals with a discontinuous function.
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Example 3.14. Let {an} and {bn} be the sequences defined as in the Example 3.11 and define
the nonnegative (and discontinuous) function f : R → R as follows

f(ξ) :=

⎧
⎨

⎩

2(n + 1)!
[
(n + 1)!2 − n!2

]
if ξ ∈

⋃

n∈N

]
an, bn

[

0 otherwise.
(3.65)

By a similar computation as in Example 3.11, we have

lim sup
ξ→+∞

F(ξ)
ξ2

= 4, lim inf
ξ→+∞

F(ξ)
ξ2

= 0. (3.66)

From Corollary 3.6, for each λ > 2 the problem (G1,0
f,λ
) possesses a sequence of positive weak

solutions which is unbounded inW1,2
0 ([0, 1]).
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