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We are concerned with the following nonlinear second-order three-point boundary value problem
on time scales −xΔΔ(t) = f(t, x(t)), t ∈ [a, b]

T
, x(a) = 0, x(σ2(b)) = δx(η), where a, b ∈ T with

a < b, η ∈ (a, b)
T
and 0 < δ < (σ2(b)− a)/(η − a). A new representation of Green’s function for the

corresponding linear boundary value problem is obtained and some existence criteria of at least
one positive solution for the above nonlinear boundary value problem are established by using the
iterative method.

Copyright q 2009 Jian-Ping Sun. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Let T be a time scale, that is, T is an arbitrary nonempty closed subset of R. For each interval
I of R,we define IT = I ∩ T. For more details on time scales, one can refer to [1–5]. Recently,
three-point boundary value problems (BVPs for short) for second-order dynamic equations
on time scales have received much attention. For example, in 2002, Anderson [6] studied the
following second-order three-point BVP on time scales:

uΔ∇(t) + a(t)f(u(t)) = 0, t ∈ (0, T)
T
,

u(0) = 0, u(T) = αu
(
η
)
,

(1.1)

where 0, T ∈ T, η ∈ (0, ρ(T))
T
and 0 < α < T/η. Some existence results of at least one positive

solution and of at least three positive solutions were established by using the well-known
Krasnoselskii and Leggett-Williams fixed point theorems. In 2003, Kaufmann [7] applied the
Krasnoselskii fixed point theorem to obtain the existence of multiple positive solutions to the
BVP (1.1). For some other related results, one can refer to [8–10] and references therein.
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In this paper, we are concerned with the existence of at least one positive solution for
the following second-order three-point BVP on time scales:

− xΔΔ(t) = f(t, x(t)), t ∈ [a, b]
T
,

x(a) = 0, x
(
σ2(b)

)
= δx

(
η
)
.

(1.2)

Throughout this paper, we always assume that a, b ∈ T with a < b, η ∈ (a, b)
T
, and 0 < δ <

(σ2(b) − a)/(η − a).
It is interesting that the method used in this paper is completely different from that in

[6, 7, 9, 10], that is, a new representation of Green’s function for the corresponding linear BVP
is obtained and some existence criteria of at least one positive solution to the BVP (1.2) are
established by using the iterative method.

For the function f , we impose the following hypotheses:

(H1) f : [a, b]
T
× R

+ → R
+ is continuous;

(H2) for fixed t ∈ [a, b]
T
, f(t, u) is monotone increasing on u;

(H3) there exists q ∈ (0, 1) such that

f(t, ru) ≥ rqf(t, u) for r ∈ (0, 1), (t, u) ∈ [a, b]
T
× R

+. (1.3)

Remark 1.1. If (H3) is satisfied, then

f(t, λu) ≤ λqf(t, u) for λ ∈ (1,+∞), (t, u) ∈ [a, b]
T
× R

+. (1.4)

2. Main Results

Lemma 2.1. The BVP (1.2) is equivalent to the integral equation

x(t) =
∫σ(b)

a

K(t, s)f(s, x(s))Δs, t ∈
[
a, σ2(b)

]

T

, (2.1)

where

K(t, s) = G(t, s) +
δG

(
η, s

)

σ2(b) − a − δ
(
η − a

) (t − a) (2.2)

is called the Green’s function for the corresponding linear BVP, here

G(t, s) =
1

σ2(b) − a

⎧
⎨

⎩

(t − a)
(
σ2(b) − σ(s)

)
, t ≤ s,

(σ(s) − a)
(
σ2(b) − t

)
, t ≥ σ(s)

(2.3)
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is the Green’s function for the BVP:

−xΔΔ(t) = 0, t ∈ [a, b]
T
,

x(a) = x
(
σ2(b)

)
= 0.

(2.4)

Proof. Let x∗ be a solution of the BVP:

−xΔΔ(t) = f(t, x(t)), t ∈ [a, b]
T
,

x(a) = x
(
σ2(b)

)
= 0.

(2.5)

Then, it is easy to know that

x∗(t) =
∫σ(b)

a

G(t, s)f(s, x(s))Δs, t ∈
[
a, σ2(b)

]

T

,

x∗(a) = x∗
(
σ2(b)

)
= 0.

(2.6)

Now, if x is a solution of the BVP (1.2), then it can be expressed by

x(t) = C1 + C2t + x∗(t), (2.7)

which together with the boundary conditions in (1.2) and (2.6) implies that

x(t) =
δx∗(η

)

σ2(b) − a − δ
(
η − a

) (t − a) + x∗(t)

=
∫σ(b)

a

K(t, s)f(s, x(s))Δs, t ∈
[
a, σ2(b)

]

T

.

(2.8)

On the other hand, if x satisfies (2.1), then it is easy to verify that x is a solution of the
BVP (1.2).

Lemma 2.2. For any (t, s) ∈ [a, σ2(b)]
T
× [a, σ(b)]

T
, one has

δG
(
η, s

)

σ2(b) − a − δ
(
η − a

) (t − a) ≤ K(t, s) ≤
[

1 +
δG

(
η, s

)

σ2(b) − a − δ
(
η − a

)

]

(t − a). (2.9)

Proof. Since it is obvious from the expression of G(t, s) that

0 ≤ G(t, s) ≤ 1
σ2(b) − a

(t − a)
(
σ2(b) − t

)
, (t, s) ∈

[
a, σ2(b)

]

T

× [a, σ(b)]
T
, (2.10)

we know that (2.9) is fulfilled.
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Our main result is the following theorem.

Theorem 2.3. Assume that (H1)–(H3) are satisfied. Then, the BVP (1.2) has at least one positive
solution w. Furthermore, there existM ≥ m > 0 such that

m(t − a) ≤ w(t) ≤ M(t − a), t ∈
[
a, σ2(b)

]

T

. (2.11)

Proof. Let

E =
{
x | x :

[
a, σ2(b)

]

T

−→ R is continuous
}
,

D=
{
x ∈ E | there exist Mx≥mx>0 such that mx(t−a) ≤ x(t)≤Mx(t−a) for t∈

[
a, σ2(b)

]

T

}

P =
{
x ∈ E | x(t) ≥ 0 for t ∈

[
a, σ2(b)

]

T

}
.

,

(2.12)

Define an operator F : D → P :

(Fx)(t) =
∫σ(b)

a

K(t, s)f(s, x(s))Δs, t ∈
[
a, σ2(b)

]

T

. (2.13)

Then it is obvious that fixed points of the operator F in D are positive solutions of the BVP
(1.2).

First, in view of (H2), it is easy to know that F : D → P is increasing.
Next, we may assert that F : D → D, which implies that for any x ∈ D, there exist

positive constants l and L such that

(Fx)(t) ≤ Lx(t), (Fx)(t) ≥ lx(t) for x ∈
[
a, σ2(b)

]

T

. (2.14)

In fact, for any x ∈ D, there exist 0 < mx < 1 < Mx such that

mx(t − a) ≤ x(t) ≤ Mx(t − a) for t ∈
[
a, σ2(b)

]

T

, (2.15)

which together with (H2), (H3), and Remark 1.1 implies that

(mx)qf(t, t − a) ≤ f(t, x(t)) ≤ (Mx)qf(t, t − a) for t ∈ [a, b]
T
. (2.16)

By Lemma 2.2 and (2.16), for any t ∈ [a, σ2(b)]
T
, we have

(Fx)(t) ≤ (Mx)q
∫σ(b)

a

[

1 +
δG

(
η, s

)

σ2(b) − a − δ
(
η − a

)

]

f(s, s − a)Δs(t − a),

(Fx)(t) ≥ (mx)q
∫σ(b)

a

δG
(
η, s

)

σ2(b) − a − δ
(
η − a

)f(s, s − a)Δs(t − a).

(2.17)
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If we let

M0 = (Mx)q
∫σ(b)

a

[

1 +
δG

(
η, s

)

σ2(b) − a − δ
(
η − a

)

]

f(s, s − a)Δs,

m0 = (mx)q
∫σ(b)

a

δG
(
η, s

)

σ2(b) − a − δ
(
η − a

)f(s, s − a)Δs,

(2.18)

then it follows from (2.17) and (2.18) that

m0(t − a) ≤ (Fx)(t) ≤ M0(t − a) for t ∈
[
a, σ2(b)

]

T

, (2.19)

which shows that Fx ∈ D.
Now, for any fixed h0 ∈ D, we denote

lh0 = sup
{
l > 0 | (Fh0)(t) ≥ lh0(t), t ∈

[
a, σ2(b)

]

T

}
(2.20)

Lh0 = inf
{
L > 0 | (Fh0)(t) ≤ Lh0(t), t ∈

[
a, σ2(b)

]

T

}
(2.21)

m = min
{
1
2
, (lh0)

1/(1−q)
}
, M = max

{
2, (Lh0)

1/(1−q)
}

(2.22)

and let

un(t) = (Fun−1)(t), vn(t) = (Fvn−1)(t), t ∈
[
a, σ2(b)

]

T

, n = 1, 2, . . . , (2.23)

where

u0(t) = mh0(t), v0(t) = Mh0(t), t ∈
[
a, σ2(b)

]

T

. (2.24)

Then, it is easy to know from (2.20), (2.21), (2.22), (2.23), (2.24), (H3), and Remark 1.1 that

u0(t) ≤ u1(t) ≤ · · · ≤ un(t) ≤ · · · ≤ vn(t) ≤ · · · ≤ v1(t) ≤ v0(t), t ∈
[
a, σ2(b)

]

T

. (2.25)

Moreover, if we let t0 = m/M, then it follows from (2.22), (2.23), (2.24), and (H3) by induction
that

un(t) ≥ (t0)q
n

vn(t), t ∈
[
a, σ2(b)

]

T

, n = 0, 1, 2, . . . , (2.26)

which together with (2.25) implies that for any positive integers n and p,

0 ≤ un+p(t) − un(t) ≤
[
1 − (t0)q

n
]
Mh0(t), t ∈

[
a, σ2(b)

]

T

. (2.27)



6 Boundary Value Problems

Therefore, there exists a w ∈ D such that {un(t)}∞n=0 and {vn(t)}∞n=0 converge uniformly to w
on [a, σ2(b)]

T
and

un(t) ≤ w(t) ≤ vn(t), t ∈
[
a, σ2(b)

]

T

, n = 0, 1, 2, . . . . (2.28)

Since F is increasing, in view of (2.28), we have

un+1(t) = (Fun)(t) ≤ (Fw)(t) ≤ (Fvn)(t) = vn+1(t), t ∈
[
a, σ2(b)

]

T

, n = 0, 1, 2, . . . . (2.29)

So,

(Fw)(t) = w(t), t ∈
[
a, σ2(b)

]

T

, (2.30)

which shows that w is a positive solution of the BVP (1.2). Furthermore, since w ∈ D, there
exist M ≥ m > 0 such that

m(t − a) ≤ w(t) ≤ M(t − a), t ∈
[
a, σ2(b)

]

T

. (2.31)

Acknowledgment

This work is supported by the National Natural Science Foundation of China (10801068).

References

[1] R. P. Agarwal and M. Bohner, “Basic calculus on time scales and some of its applications,” Results in
Mathematics, vol. 35, no. 1-2, pp. 3–22, 1999.

[2] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Application,
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