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1. Introduction

Let Ω be a bounded domain in R
n with smooth boundary ∂Ω. We consider the initial

boundary value problem for a nonlinear hyperbolic equation with Lewis function α(x)which
depends on spacial variable:

α(x)utt − ρΔut − div
(
|∇u|m−2∇u

)
= f(u), x ∈ Ω, t ≥ 0, (1.1)

u|∂Ω = 0, x ∈ ∂Ω, t ≥ 0, (1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.3)

where α(x) ≥ 0, ρ > 0, m ≥ 2, and f is a continuous function.
The large time behavior of solutions for nonlinear evolution equations has been

considered by many authors (for the relevant references one may consult with [1–14].)
In the early 1970s, Levine [3] considered the nonlinear wave equation of the form

Putt = Au + h(u) (1.4)
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in aHilbert space where P areA are positive linear operators defined on some dense subspace
of the Hilbert space and h is a gradient operator. He introduced the concavity method and
showed that solutions with negative initial energy blow up in finite time. This method was
later improved by Kalantarov and Ladyzheskaya [4] to accommodate more general cases.

Very recently, Zhou [10] considered the initial boundary value problem for a
quasilinear parabolic equation with a generalized Lewis function which depends on both
spacial variable and time. He obtained the blowup of solutions with positive initial energy.
In the case with zero initial energy Zhou [11] obtained a blow-up result for a nonlinear wave
equation in R

n. A global nonexistence result for a semilinear Petrovsky equation was given
in [14].

In this work, we consider blow-up results in finite time for solutions of problem (1.1)-
(1.3) if the initial datas possesses suitable positive energy and obtain a precise estimate for
the lifespan of solutions. The proof of our technique is similar to the one in [10]. Moreover,
we also show the blowup of solution in finite time with nonpositive initial energy.

Throughout this paper ‖ · ‖X denotes the usual norm of LX(Ω).
The source term f(u) in (1.1)with the primitive

F(u) =
∫u

0
f(ξ)dξ (1.5)

satisfies

∣∣f(u)∣∣ ≤ c0|u|p−1, c0 > 0, p > m ≥ 2, (1.6)

β1mF(u) + β2m|∇u|m−1∇ut ≤ pF(u) < uf(u), β1 > 1, β2 > 0. (1.7)

Let B be the best constant of Sobolev embedding inequality

‖u‖p ≤ B‖∇u‖m (1.8)

from W1,m
0 (Ω) to LP (Ω).
We need the following lemma in [4, Lemma 2.1].

Lemma 1.1. Suppose that a positive, twice differentiable functionΨ(t) satisfies for t ≥ 0 the inequality

Ψ′′Ψ − (1 + σ)(Ψ′)2 ≥ 0, σ > 0. (1.9)

If Ψ(0) > 0, Ψ′(0) > 0, then

Ψ −→ +∞ as t −→ t1 < t2 =
Ψ(0)
σΨ′(0)

. (1.10)
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2. Blow-Up Results

We set

λ0 = (c0Bm)−1/(p−m), E0 =
p −m

pm
(c0Bp)−m/(p−m). (2.1)

The corresponding energy to the problem (1.1)-(1.3) is given by

E(t) =
1
m

∫

Ω
|∇u|mdx +

1
2

∫

Ω
α(x)u2

t dx −
∫

Ω
F(u)dx, (2.2)

and one can find that E(t) ≤ E(0) easily from

E′(t) = −ρ‖∇u‖22 ≤ 0, (2.3)

whence

E(t) = E(0) − ρ

∫ t

0
‖∇uτ‖22dτ. (2.4)

We note that from (1.6) and (1.7), we have

E(t) ≥ 1
m
‖∇u‖mm − c0

p
‖u‖pp, t ≥ 0, (2.5)

and by Sobolev inequality (1.8), E(t) ≤ G(‖u‖p), t ≥ 0, where

G(λ) = (mB
m)−1λm − c0p

−1λp. (2.6)

Note that G(λ) has the maximum value E0 at λ0 which are given in (2.1).
Adapting the idea of Zhou [10], we have the following lemma.

Lemma 2.1. Suppose that ‖u(x, 0)‖p > λ0 and E(0) ≤ E0. Then

‖u(x, t)‖p > λ0, ‖∇u(x, t)‖m > (c0λ
p

0)
1/m (2.7)

for all t ≥ 0.

Theorem 2.2. For α(x) ∈ L∞(Ω), suppose that u0 ∈ W1,m
0 (Ω) and u1 ∈ L2(Ω) satisfy

μ(x) =:
∫

Ω
α(x)u0u1dx > 0. (2.8)
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If 0 < E(0) ≤ E0, then the global solution of the problem (1.1)–(1.3) blows up in finite time and the
lifespan

T <
2
(
‖∇u0‖22 −

(
p − 2

)
μ(x)

)

(
p − 2

)2(E0 − E(0))
. (2.9)

Proof. To prove the theorem, it suffices to show that the function

A(t) =
∥∥∥∥
√
α(x)u

∥∥∥∥
2

2
+ ρ

∫ t

0
‖∇u‖22dτ + ρ(T0 − t)‖∇u0‖22 + γ(t + t0)

2 (2.10)

satisfies the hypotheses of the Lemma 1.1, where T0 > t, t0 > 0 and γ > 0 to be determined
later. To achieve this goal let us observe

2
∫ t

0

∫

Ω
∇u∇uτdxdτ =

∫ t

0

d

dτ
‖∇u‖22dτ

= ‖∇u‖22 − ‖∇u0‖22.
(2.11)

Hence,

‖∇u‖22 = 2
∫ t

0

∫

Ω
∇u∇uτdxdτ + ‖∇u0‖22. (2.12)

Let us compute the derivatives A′(t) and A′′(t). Thus one has

A′(t) = 2
∫

Ω
α(x)uutdx + ρ‖∇u‖22 − ρ‖∇u0‖22 + 2γ(t + t0)

= 2
∫

Ω
α(x)uutdx + 2ρ

∫ t

0

∫

Ω
∇u∇uτdxdτ + 2γ(t + t0),

(2.13)

and

A′′(t) = 2
∥∥∥∥
√
α(x)ut

∥∥∥∥
2

2
− 2‖∇u‖mm + 2

∫

Ω
uf(u)dx + 2γ

≥ 2
∥∥∥∥
√
α(x)ut

∥∥∥∥
2

2
− 2‖∇u‖mm + 2p

∫

Ω
F(u)dx + 2γ

≥ (p + 2
)∥∥∥∥
√
α(x)ut

∥∥∥∥
2

2
+ 2
(

p

m
− 1
)
‖∇u‖mm − 2pE(t) + 2γ

≥ (p + 2
)(∥∥∥∥

√
α(x)ut

∥∥∥∥
2

2
+ ρ

∫ t

0
‖∇uτ‖22dτ

)
+ 2
(

p

m
− 1
)
‖∇u‖mm − 2pE(0) + 2γ

(2.14)
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for all t ≥ 0. In the above assumption (1.7), the definition of energy functionals (2.2) and (2.4)
has been used. Then, due to (2.1) and (2.7) and taking γ = 2(E0 − E(0)),

A′′(t) ≥ (p + 2
)(∥∥∥∥

√
α(x)ut

∥∥∥∥
2

2
+ ρ

∫ t

0
‖∇uτ‖22dτ + γ

)
. (2.15)

Hence A′′(t) ≥ 0 for all t ≥ 0 and by assumption (2.8)we have

A′(0) = 2
(
μ(x) + γt0

)
> 0. (2.16)

Therefore A′(t) ≥ 0 for all t ≥ 0 and by the construction of A(t), it is clearly that

A(t) ≥
∥∥∥∥
√
α(x)u

∥∥∥∥
2

2
+ ρ

∫ t

0
‖∇u‖22dτ + γ(t + t0)

2, (2.17)

whence, A(0) > 0. Thus for all (a, b) ∈ R
2, from (2.13), (2.15), and (2.17) we obtain

a2A(t) + abA′(t) +
(
p + 2

)−1
b2A′′(t) ≥ a2

(∥∥∥∥
√
α(x)u

∥∥∥∥
2

2
+ ρ

∫ t

0
‖∇u‖22dτ + γ(t + t0)2

)

+ 2ab

(∫

Ω
α(x)uutdx + ρ

∫ t

0

∫

Ω
∇u∇uτdxdτ + γ(t + t0)

)

+ b2
(∥∥∥∥
√
α(x)ut

∥∥∥∥
2

2
+ ρ

∫ t

0
‖∇uτ‖22dτ + γ

)

=
∥∥∥∥
√
α(x)(au + but)

∥∥∥∥
2

2

+ ρ

∫ t

0
‖a∇u + b∇uτ‖22dτ + γ(a(t + t0) + b)2

≥ 0,
(2.18)

which implies

(
A′(t)

)2 − 4
p + 2

A(t)A′′(t) ≤ 0. (2.19)

Then using Lemma 1.1, one obtain that A(t) → +∞ as

t −→ 4A(0)(
p − 2

)
A′(0)

=
2
(∥∥∥
√
α(x)u0

∥∥∥
2

2
+ T0‖∇u0‖22 + γt20

)

(
p − 2

)(
μ(x) + γt0

) .
(2.20)
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Now, we are in a position to choose suitable t0 and T0. Let t0 be a number that depends on p,
(E0 − E(0)), ‖∇u0‖L2(Ω), and μ(x) as

t0 >
2‖∇u0‖22 −

(
p − 2

)
μ(x)(

p − 2
)
γ

. (2.21)

To choose T0, we may fix t0 as

T0 =
2‖√α(x)u0‖22 + 2T0‖∇u0‖22 + 2γt20(

p − 2
)(
μ(x) + γt0

)

=
2‖√α(x)u0‖22 + γt20(

p − 2
)(
μ(x) + γt0

) − 2‖∇u0‖22
.

(2.22)

Thus, for t ≥ t0 the lifespan T is estimated by

T <
2‖√α(x)u0‖22 + 2γt2

(
p − 2

)(
μ(x) + γt

) − 2‖∇u0‖22

<
2‖∇u0‖22 −

(
p − 2

)
μ(x)

(
p − 2

)2(E0 − E(0))
,

(2.23)

which completes the proof.

Theorem 2.3. Assume that α(x) ∈ L∞(Ω) and the following conditions are valid:

u0 ∈ W1,m
0 , u1 ∈ L2(Ω), E(0) ≤ 0. (2.24)

Then the corresponding solution to (1.1)–(1.3) blows up in finite time.

Proof. Let

B(t) =
∥∥∥∥
√
α(x)u

∥∥∥∥
2

2
+ ρ

∫ t

0
‖∇u‖22dτ, (2.25)
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then

B′(t) = 2
∫

Ω
α(x)uutdx + ρ‖∇u‖22, (2.26)

B′′(t) = 2
∥∥∥∥
√
α(x)ut

∥∥∥∥
2

2
+ 2
∫

Ω
α(x)uuttdx + 2ρ

∫

Ω
∇u∇utdx

= 2
∥∥∥∥
√
α(x)ut

∥∥∥∥
2

2
− 2‖∇u‖mm + 2

∫

Ω
uf(u)dx

> 2
∥∥∥∥
√
α(x)ut

∥∥∥∥
2

2
− 2‖∇u‖mm + 2β1m

∫

Ω
F(u)dx + 2β2m

∫

Ω
|∇u|m−1∇utdx

> 2
(
β1 + 1

)∥∥∥∥
√
α(x)ut

∥∥∥∥
2

2
+ 2
(
β1 − 1

)‖∇u‖mm + 2β2
d

dt
‖∇u‖mm − 2β1mE(0)

> 2
(
β1 − 1

)‖∇u‖mm + 2β2
d

dt
‖∇u‖mm − 2β1mE(0), t > 0,

(2.27)

where the left-hand side of assumption (1.7) and the energy functional (2.2) have been used.
Taking the inequality (2.27) and integrating this, we obtain

B′(t) > 2
(
β1 − 1

)∫ t

0
‖∇u‖mmdτ + 2β2‖∇u‖mm − 2β1mE(0)t + B′(0), t > 0. (2.28)

By using Poincare-Friedrich’s inequality

‖u‖22 ≤ λ1‖∇u‖22, (2.29)

and Holder’s inequality

‖∇u‖mm ≥ (λ1M)−m/2|Ω|1−m/2
(∫

Ω
α(x)u2dx

)m/2

, (2.30)

∫ t

0
‖∇u‖mmdτ ≥ t1−m/2

(∫ t

0
‖∇u‖22dτ

)m/2

, (2.31)
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where M = maxΩ|α(x)|. Using (2.30) and (2.31), we find from (2.28) that

B′(t) ≥ 2β2(λ1M)−m/2|Ω|1−m/2
(∫

Ω
α(x)u2dx

)m/2

+ 2
(
β1 − 1

)
t1−m/2

(∫ t

0
‖∇u‖22dτ

)m/2

− 2β1mE(0)t + B′(0)

≥ 2β2(λ1M)−m/2|Ω|1−m/2t1−m/2
(∫

Ω
α(x)u2dx

)m/2

+ 2
(
β1 − 1

)
t1−m/2

(∫ t

0
‖∇u‖22dτ

)m/2

− 2β1mE(0)t + B′(0), t > 1.

(2.32)

Since −2β1mE(0)t + B′(0) → ∞ as t → ∞ so, there must be a t1 > 1 such that

−2β1mE(0)t + B′(0) ≥ 0 as t > t1. (2.33)

By inequality

(a1 + a2)
r < 2r−1

(
ar
1 + ar

2

)
, r > 1 (2.34)

and by virtue of (2.33) and using (2.32), we get

B′(t) ≥ Ct1−m/2(B(t))m/2, (2.35)

where

C = min
(
22−m/2(β1 − 1

)
, 22−m/2β2(λ1M)−m/2|Ω|1−m/2

)
. (2.36)

Therefore, there exits a positive constant

T =

⎧
⎨
⎩
C exp(t1), m = 2,

Ct
(4−m)/(2−m)
1 , m > 2,

(2.37)

such that

B(t) −→ ∞ as t −→ T−. (2.38)

This completes the proof.
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