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1. Introduction

Impulsive differential equations are a basic tool to study evolution processes that are
subjected to abrupt changes in their state. For instance, many biological, physical, and
engineering applications exhibit impulsive effects (see [1–3]). It should be noted that recent
progress in the development of the qualitative theory of impulsive differential equations has
been stimulated primarily by a number of interesting applied problems [4–24].

In this paper, we consider the existence of multiple positive solutions of the following
impulsive boundary value problem (for short BVP) on a half-line:

u ′′(t) + q(t)f(t, u) = 0, 0 < t <∞, t /= tk,

Δu(tk) = Ik(u(tk)), k = 1, . . . , p,

u(0) =
m−2∑

i=1

αiu(ξi), u ′(∞) = 0,

(1.1)
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where u ′(∞) = limt→+∞u ′(t), 0 < ξ1 < ξ2 < · · · < ξm−2 < +∞, 0 < t1 < t2 < · · · < tp < +∞,
Δu(tk) = u(t+k) − u(t−k), and αi, f, q, and Ik satisfy

(H1) 0 <
∑m−2

i=1 αi < 1;

(H2) f(t, u) ∈ C([0,∞)×[0,+∞), [0,+∞)), Ik(u) ∈ C([0,+∞), [0,+∞)), andwhen u/(1+t)
is bounded, f(t, u) and Ik(u) are bounded on [0,+∞);

(H3) q(t) ∈ C([0,∞), [0,+∞)) and q(t) is not identically zero on any compact subinterval
of (0,+∞). Furthermore q(t) satisfies

sup
t∈[0,+∞)

∫+∞

0
G(t, s)q(s)ds < +∞, (1.2)

where

G(t, s) =

⎧
⎨

⎩
s, 0 ≤ s ≤ t < +∞,

t, 0 ≤ t ≤ s < +∞.
(1.3)

Boundary value problems on the half-line arise quite naturally in the study of radially
symmetric solutions of nonlinear elliptic equations and there are many results in this area,
see [8, 13, 14, 20, 25–27], for example.

Lian et al. [25] studied the following boundary value problem of second-order
differential equation with a p-Laplacian operator on a half-line:

(
ϕp(u ′(t))

)′ + φ(t)f
(
t, u, u ′) = 0, 0 < t < +∞,

αu(0) − βu ′(0) = 0, u ′(∞) = 0.
(1.4)

They showed the existence at least three positive solutions for (1.4) by using a fixed point
theorem in a cone due to Avery-Peterson [28].

Yan [20], by using Leray-Schauder theorem and fixed point index theory presents
some results on the existence for the boundary value problems on the half-line with impulses
and infinite delay.

However to the best knowledge of the authors, there is no paper concerned with the
existence of three positive solutions to multipoint boundary value problems of impulsive
differential equation on infinite interval so far. Motivated by [20, 25], in this paper, we aim to
investigate the existence of triple positive solutions for BVP (1.1). The method chosen in this
paper is a fixed point technique due to Avery and Peterson [28].

2. Preliminaries

In this section, we give some definitions and results that we will use in the rest of the paper.

Definition 2.1. Suppose P is a cone in a Banach. The map α is a nonnegative continuous
concave functional on P provided α : P → [0,∞) is continuous and

α
(
tx + (1 − t)y) ≥ tα(x) + (1 − t)α(y) (2.1)
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for all x, y ∈ P , and t ∈ [0, 1]. Similarly, the map β is a nonnegative continuous convex
functional on P provided β : P → [0,∞) is continuous and

β
(
tx + (1 − t)y) ≤ tβ(x) + (1 − t)β(y) (2.2)

for all x, y ∈ P , and t ∈ [0, 1].

Let γ, θ be nonnegative, continuous, convex functionals on P and α be a nonnegative,
continuous, concave functionals on P , and ψ be a nonnegative continuous functionals on P .
Then, for positive real numbers a, b, c, and d, we define the convex sets

P
(
γ, d

)
=
{
x ∈ P : γ(x) < d

}
,

P
(
γ, α, b, d

)
=
{
x ∈ P : b ≤ α(x), γ(x) ≤ d},

P
(
γ, θ, α, b, c, d

)
=
{
x ∈ P : b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d},

(2.3)

and the closed set

R
(
γ, ψ, a, d

)
=
{
x ∈ P : a ≤ ψ(x), γ(x) ≤ d}. (2.4)

To prove our main results, we need the following fixed point theorem due to Avery
and Peterson in [28].

Theorem 2.2. Let P be a cone in a real Banach space E. Let γ and θ be nonnegative continuous
convex functionals on a cone P , α be a nonnegative continuous concave functional on P , and ψ be a
nonnegative continuous functional on P satisfying ψ(λx) ≤ λψ(x) for 0 ≤ λ ≤ 1, such that for some
positive numbersM and d

α(x) ≤ ψ(x), ‖x‖ ≤Mγ(x) (2.5)

for all x ∈ P(γ, d). Suppose

Φ : P(γ, d) −→ P(γ, d) (2.6)

is completely continuous and there exist positive numbers a, d, and c with a < b such that

(i) {x ∈ P(γ, θ, α, b, c, d) : α(x) > b}/= ∅ and α(Φx) > b for x ∈ P(γ, θ, α, b, c, d);
(ii) α(Φx) > b for x ∈ P(γ, α, b, d) with θ(Φx) > c;
(iii) 0/∈R(γ, ψ, a, d) and ψ(Tx) < a for x ∈ R(γ, ψ, a, d), with ψ(Φx) = a.

Then Φ has at least three fixed points x1, x2, x3 ∈ P(γ, d) such that

γ(xi) ≤ d, for i = 1, 2, 3, ψ(x1) < a,

a < ψ(x2) with α(x2) < b, α(x3) > b.
(2.7)
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3. Some Lemmas

Define PC[0,+∞) = {u : [0,+∞) → R | u(t) is continuous at each t /= tk, left continuous at
t = tk, u(t+k) exists, k = 1, . . . , p}.

By a solution of (1.1)wemean a function u in PC[0,∞) satisfying the relations in (1.1).

Lemma 3.1. u(t) is a solution of (1.1) if and only if u(t) is a solution of the following equation:

u(t) =
∫+∞

0
G(t, s)q(s)f(s, u(s))ds +

∑

0<tk<t

Ik(u)

+
∑m−2

i=1 αi

1 −∑m−2
i=1 αi

⎡

⎣
∫+∞

0
G(ξi, s)q(s)f(s, u(s))ds +

∑

0<tk<ξi

Ik(u)

⎤

⎦

:= Tu(t),

(3.1)

where G(t, s) is defined as (1.3).

The proof is similar to Lemma 3 in [9], and here we omit it.
For tp < a∗ < b∗ < +∞, let c∗ = min{a∗/(1 + a∗), 1/(1 + b∗)}. Then

G(t, s)
1 + t

≥ c∗G(r, s)
1 + r

,
1

1 + t
≥ c∗

1 + r
, for t ∈ [a∗, b∗], r ∈ [0,+∞), s ∈ [0,+∞). (3.2)

It is clear that 0 < c∗ < 1. Consider the space E defined by

E =

{
u ∈ PC[0,+∞) : sup

t∈[0,∞)

|u(t)|
1 + t

< +∞
}
. (3.3)

E is a Banach space, equipped with the norm ‖u‖ = sup0≤t<+∞(|u(t)|/(1 + t)) < +∞.
Define the cone P ⊂ E by

P =
{
u ∈ E : u(t) ≥ 0, t ∈ [0,+∞), min

t∈[a∗,b∗]
u(t)
1 + t

≥ c∗‖u‖
}
. (3.4)

Lemma 3.2 (see [20, Theorem 2.2]). Let M ⊂ PC[0,+∞). Then M is compact in PC[0,+∞), if
the following conditions hold:

(a) M is bounded in PC[0,+∞);

(b) the functions belonging toM are piecewise equicontinuous on any interval of [0,+∞);

(c) the functions fromM are equiconvergent, that is, given ε > 0, there corresponds τ(ε) > 0
such that |f(t) − f(+∞)| < ε for any t ≥ τ(ε) and f ∈M.

Lemma 3.3. T : P → P is completely continuous.
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Proof. Firstly, for u ∈ P , from (H1)–(H3), it is easy to check that Tu is well defined, and
Tu(t) ≥ 0 for all t ∈ [0,+∞). For t ∈ [a∗, b∗]

1
1 + t

(Tu)(t) =
1

1 + t

∫+∞

0
G(t, s)q(s)f(s, u(s))ds +

1
1 + t

p∑

k=1

Ik(u)

+
1

1 + t

∑m−2
i=1 αi

1 −∑m−2
i=1 αi

⎡

⎣
∫+∞

0
G(ξi, s)q(s)f(s, u(s))ds +

∑

0<tk<ξi

Ik(u)

⎤

⎦

≥ c∗
[∫+∞

0

G(r, s)
1 + r

q(s)f(s, u(s))ds +
1

1 + r

p∑

k=1

Ik(u)

]

+ c∗
∑m−2

i=1 αi

1 −∑m−2
i=1 αi

⎡

⎣
∫+∞

0

G(ξi, s)
1 + r

q(s)f(s, u(s))ds +
1

1 + r

∑

0<tk<ξi

Ik(u)

⎤

⎦

≥ c∗ Tu(r)
1 + r

, for r ∈ [0,+∞)

(3.5)

so

min
t∈[a∗,b∗]

Tu(t)
1 + t

≥ c∗‖Tu‖, (3.6)

which shows TP ⊆ P .
Nowwe prove that T is continuous and compact, respectively. Let un → u as n → +∞

in P . Then there exists r0 such that supn∈N\{0}‖un‖ < r0. By (H2) we have f(t, u) is bounded
on [0,+∞) × [0, r0]. Set B0 = sup{f(t, u) : (t, u/(1 + t)) ∈ [0,+∞) × [0, r0]}, and we have

∫+∞

0

G(t, s)
1 + t

q(s)
∣∣f(s, un) − f(s, u)

∣∣ds ≤ 2B0

∫+∞

0

G(t, s)
1 + t

q(s)ds. (3.7)

Therefore by the Lebesgue dominated convergence theorem and continuity of f and Ik, one
arrives at

‖Tun − Tu‖

≤ sup
t∈[0,+∞)

1
1 + t

{∫+∞

0
G(t, s)q(s)

∣∣f(s, un) − f(s, u)
∣∣ds +

∑

0<tk<t
|Ik(un) − Ik(u)| +

∑m−2
i=1 αi

1 −∑m−2
i=1 αi

×
⎡

⎣
∫+∞

0
G(ξi, s)q(s)

∣∣f(s, un) − f(s, u)
∣∣ds +

∑

0<tk<ξi

|Ik(un) − Ik(u)|
⎤

⎦

⎫
⎬

⎭

−→ 0 as n −→ +∞.

(3.8)

Therefore T is continuous.



6 Boundary Value Problems

Let Ω be any bounded subset of P . Then there exists r > 0 such that ‖u‖ ≤ r for all
u ∈ Ω. Set B1 = sup{f(t, u) : (t, u/(1+t)) ∈ [0,+∞)×[0, r], B2k = sup{Ik(u) : u/(1+t) ∈ [0, r]},
then

‖Tu‖ = sup
t∈[0,+∞)

1
1 + t

{∫+∞

0
G(t, s)q(s)

∣∣f(s, u)
∣∣ds +

∑

0<tk<t
|Ik(u)|

+
∑m−2

i=1 αi

1 −∑m−2
i=1 αi

⎡

⎣
∫+∞

0
G(ξi, s)q(s)

∣∣f(s, u)
∣∣ds +

∑

0<tk<ξi

|Ik(u)|
⎤

⎦

⎫
⎬

⎭

≤ B1

[∫+∞

0
G(t, s)q(s)ds +

∑m−2
i=1 αi

1 −∑m−2
i=1 αi

∫+∞

0
G(ξi, s)q(s)ds

]

+

(
1 +

∑m−2
i=1 αi

1 −∑m−2
i=1 αi

)
p∑

k=1

B2k.

(3.9)

So TΩ is bounded.
Moreover, for any ν ∈ (0,+∞) and t′, t′′ ∈ (tk, tk+1] ⊂ [0, ν](t′ < t′′), and u ∈ Ω, then

∣∣∣∣
Tu(t′′)
1 + t′′

− Tu(t′)
1 + t′

∣∣∣∣ ≤
∑m−2

i=1 αi

1 −∑m−2
i=1 αi

⎡

⎣B1

∫+∞

0
G(ξi, s)q(s)ds +

∑

0<tk<ξi

B2k

⎤

⎦
∣∣∣∣

1
1 + t′′

− 1
1 + t′

∣∣∣∣

+ B1

∫+∞

0

∣∣∣∣
G(t′′, s)
1 + t′′

− G(t′, s)
1 + t′

∣∣∣∣q(s)ds +
∑

0<tk<t′
B2k

∣∣∣∣
1

1 + t′′
− 1
1 + t′

∣∣∣∣

−→ 0, uniformly as t′ −→ t′′.

(3.10)

So TΩ is quasi-equicontinuous on any compact interval of [0,+∞).
Finally, we prove for any ε, there exists sufficiently largeN1 > 0 such that

∣∣∣∣
Tu(t′′)
1 + t′′

− Tu(t′)
1 + t′

∣∣∣∣ < ε, ∀t′, t′′ ≥N1, u ∈ Ω. (3.11)

Since
∫+∞
0 G(t, s)q(s)ds < +∞, we can chooseN1 > 0 such that

∑m−2
i=1 αi

N1

(
1 −∑m−2

i=1 αi
)

⎡

⎣B1

∫+∞

0
G(ξi, s)q(s)ds +

∑

0<tk<ξi

B2k

⎤

⎦ <
ε

6
,

B1
∫+∞
0 G(t, s)q(s)ds

N1
<
ε

6
,

p∑

k=1

B2k

N1
≤ ε

6
.

(3.12)
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For t′, t′′ ≥N1, it follows that

∣∣∣∣
(Tu)(t′)
1 + t′

− (Tu)(t′′)
1 + t′′

∣∣∣∣ ≤
∑m−2

i=1 αi

1 −∑m−2
i=1 αi

⎡

⎣B1

∫+∞

0
G(ξi, s)q(s)ds +

∑

0<tk<ξi

B2k

⎤

⎦
(

1
1 + t′′

+
1

1 + t′

)

+ B1

∫+∞

0

G(t′, s)
1 + t′

q(s)ds + B1

∫+∞

0

G(t′′, s)
1 + t′′

q(s)ds

+
p∑

k=1

B2k

(
1

1 + t′′
+

1
1 + t′

)

<
ε

3
+
ε

6
+
ε

6
+
ε

3
= ε.

(3.13)

That is (3.11) holds. By Lemma 3.2, TΩ is relatively compact. In sum, T : P → P is completely
continuous.

4. Existence of Three Positive Solutions

Let the nonnegative continuous concave functional α, the nonnegative continuous convex
functionals γ and θ, and the nonnegative continuous functionals ψ be defined on the cone P
by

γ(u) = ψ(u) = θ(u) = sup
t∈[0,+∞)

u(t)
1 + t

, α(u) = min
t∈[a∗,b∗]

u(t)
1 + t

. (4.1)

For notational convenience, we denote by

M = min
t∈[a∗,b∗]

∫+∞

0

G(t, s)
1 + t

q(s)ds,

M1 =
∑m−2

i=1 αi

1 −∑m−2
i=1 αi

∫+∞

0
G(ξi, s)q(s)ds.

(4.2)

The main result of this paper is the following.

Theorem 4.1. Assume (H1)–(H3) hold. Let ak ≥ 0, 0 < a < b/c∗ < c = d, b/M < c∗d/2(M+M1)
and suppose that f, Ik satisfy the following conditions:

(A1) f(t, u) ≤ c∗d/2(M +M1), Ik(u) ≤ dc∗/2M2 for (t, u/(1 + t) ∈ [0,+∞) × [0, d],

(A2) f(t, u) > b/M for (t, u/(1 + t)) ∈ [a∗, b∗] × [b, c],

(A3) f(t, u) < c∗a/2(M+M1), Ik(u) ≤ ac∗ak/2M2 for t ∈ (t, u/(1+ t)) ∈ [0,+∞)× [0, a],
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where M2 =
∑p

k=1 ak/(1 −∑m−2
i=1 αi). Then (1.1) has at least three positive solutions u1, u2 and u3

such that

γ(ui) ≤ d, for i = 1, 2, 3, ψ(u1) < a, a < ψ(u2) with α(u2) < b, α(u3) > b. (4.3)

Proof.
Step 1. From the definition α, ψ, and γ , we easily show that

α(u) ≤ ψ(u), ‖u‖ ≤ γ(u) for u ∈ P(γ, d). (4.4)

Next we will show that

T : P(γ, d) −→ P(γ, d). (4.5)

In fact, for u ∈ P(γ, d), then

sup
t∈[0,+∞)

u(t)
1 + t

≤ d. (4.6)

From condition (A1), we obtain

f(t, u) ≤ dc∗

2(M +M1)
, Ik(u) ≤ dc∗

2M2
. (4.7)

It follows that

γ(Tu) = sup
t∈[0,+∞)

Tu(t)
1 + t

≤ 1
c∗

min
t∈[a∗,b∗]

Tu(t)
1 + t

≤ 1
c∗

min
t∈[a∗,b∗]

[
1

1 + t

∫+∞

0
G(t, s)q(s)f(s, u)ds +

1
1 + t

p∑

k=1

Ik(u)

+
1

1+t
·
∑m−2

i=1 αi

1−∑m−2
i=1 αi

⎛

⎝
∫+∞

0
G(ξi, s)q(s)f(s, u)ds +

∑

0<tk<ξi

Ik(u)

⎞

⎠

⎤

⎦

≤ 1
c∗

· c∗d
2(M +M1)

[
min

t∈[a∗,b∗]

∫+∞

0

G(t, s)
1 + t

q(s)ds +
∑m−2

i=1 αi

1 −∑m−2
i=1 αi

∫+∞

0
G(ξi, s)q(s)ds

]

+
1
c∗

· c
∗d
∑p

k=1 ak

2M2

[
1 +

∑m−2
i=1 αi

1 −∑m−2
i=1 αi

]

≤ d

2
+
d

2
= d.

(4.8)

Thus (4.5) holds.
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Step 2. We show that condition (i) in Theorem 2.2 holds. Taking u(t) = (1+ t)((b+d)/2), then
u ∈ P(γ, θ, α, b, c, d) and α(u) > b, which shows {u ∈ P(γ, θ, α, b, c, d) | α(u) > b}/= ∅. Thus for
u ∈ P(γ, θ, α, b, c, d) , there is

b ≤ u(t)
1 + t

≤ for t ∈ [a∗, b∗]. (4.9)

Hence by (A2), we have

α(Tu) = min
t∈[a∗,b∗]

Tu(t)
1 + t

≥ min
t∈[a∗,b∗]

∫+∞

0

G(t, s)
1 + t

q(s)f(s, u)ds

>
b

M
· min
t∈[a∗,b∗]

∫+∞

0

G(t, s)
1 + t

q(s)ds = b.

(4.10)

Therefore we have

α(Tu) > b, ∀u ∈ P(γ, θ, α, b, c, d). (4.11)

This shows the condition (i) in Theorem 2.2 is satisfied.
Step 3. We now prove (ii) in Theorem 2.2 holds. For u ∈ P(γ, α, b, d)with θ(Tu) > c, we have

α(Tu) = min
t∈[a∗,b∗]

Tu(t)
1 + t

≥ c∗‖Tu‖ = c∗θ(Tu) > c∗c > b. (4.12)

Hence, condition (ii) in Theorem 2.2 is satisfied.
Step 4. Finally, we prove (iii) in Theorem 2.2 is satisfied. Since ψ(0) = 0 < a, so 0/∈R(γ, ψ, a, d).
Suppose that u ∈ R(γ, θ, a, d)with ψ(u) = a, then

0 ≤ u(t)
1 + t

≤ a, (4.13)

by the condition (A3) of this theorem,

ψ(Tu) = sup
t∈[0,+∞)

Tu(t)
1 + t

≤ 1
c∗

min
t∈[a∗,b∗]

Tu(t)
1 + t

≤ 1
c∗

· c∗a
2(M+M1)

[
min

t∈[a∗,b∗]

∫+∞

0

G(t, s)
1 + t

q(s)ds +
∑m−2

i=1 αi

1−∑m−2
i=1 αi

∫+∞

0
G(ξi, s)q(s)ds

]

+
1
c∗

· c
∗a
∑p

k=1 ak

2M2

[
1 +

∑m−2
i=1 αi

1 −∑m−2
i=1 αi

]

≤ a

2
+
a

2
= a.

(4.14)
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Thus condition (iii) in Theorem 2.2 holds. Therefore an application of Theorem 2.2 implies
the boundary value problem (1.1) has at least three positive solutions such that

sup
t∈[0,+∞)

ui(t)
1 + t

≤ d, i = 1, 2, 3,

sup
t∈[0,+∞)

u1(t)
1 + t

< a, a < sup
t∈[0,+∞)

u2(t)
1 + t

with min
t∈[a∗,b∗]

u2(t)
1 + t

< b,

min
t∈[a∗,b∗]

u3(t)
1 + t

> b.

(4.15)

5. An Example

Now we consider the following boundary value problem

u ′′(t) + q(t)f(t, u) = 0, 0 < t < +∞, t /= t1,

Δu(t1) = I1(u(t1)), t1 = 1,

u(0) =
1
4
u

(
1
4

)
+
1
4
u(4), u ′(∞) = 0

f(t, u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
100

e−t + 4
( u

1 + t

)7
,

u

1 + t
≤ 1,

1
100

e−t + 4,
u

1 + t
≥ 1,

I1(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

( u

1 + t

)4
,

u

1 + t
≤ 1,

1
2
,

u

1 + t
≥ 1,

(5.1)

q(t) = e−t. Choose a1 = 1/2, a = 1/2, b = 3/4, c = d = 48. If taking a∗ = 2, b∗ = 3, then c∗ = 1/4,
and M = (1 − e−3)/4, M1 = 2 − e−1/4 − e−4, M2 = 1. Consequently, f(t, u), Ik(u) satisfies the
following:

(1) f(t, u) ≤ 1/100+4 < c∗d/2(M+M1), I1(u) ≤ 1/2 < 3 = c∗a1d/2M2, for (t, u/(1+t)) ∈
[0,+∞) × [0, 48];

(2) f(t, u) > 4 > b/M, for (t, u/(1 + t)) ∈ [2, 3] × [3/4, 48];

(3) f(t, u) < 1/100+ (1/2)5 ≤ c∗a/2(M+M1), I1(u) ≤ 1/32 = c∗a1a/2M2, for (t, u/(1+
t)) ∈ [0,+∞) × [0, 1/2].

Then all conditions of Theorem 4.1 hold, so by Theorem 4.1, boundary value problem (5.1)
has at least three positive solutions.
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