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1. Introduction

In this article we investigate solutions of the «#/-Laplace equation on canonical domains in the
n-dimensional Euclidean space.

Suppose that D is a domain in R", and let f : D — R be a function. For s > 0, a subset
A C Dis called s-zone (stagnation zone with the deviation s) of f if there exists a constant C such
that the difference between C and the function f is smaller than s on A. We may, for example,
consider difference in the sense of the sup norm

[1£(x) = Clleay = s‘;l:lf(x) -C|<s, (1.1)
the LP-norm

1/p
17 () = Clligsy = (me) - C|”dJ€"> <s, (12)
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or the Sobolev norm
p Ve
1760~ Cllugeay = ([ 19701 de) <, (13)

where #4 is the d-dimensional Hausdorff measure in R”".

For discussion about the history of the question, recent results and applications the
reader is referred to [1, 2].

Some estimates of stagnation zone sizes for solutions of the <#-Laplace equation on
locally Lipschitz surfaces and behavior of solutions in stagnation zones were given in [3]. In
this paper we consider solutions of the «#-Laplace equation in subdomains of R" of a special
form, canonical domains. In two-dimensional case, such domains are sectors and strips. In
higher dimensions, they are conical and cylindrical regions. The special form of domains
allows us to obtain more precise results.

Below we study stagnation zones of generalized solutions of the «#/-Laplace equation

div 4 (x, Vf) =0, (1.4)
(see [4]) with boundary conditions of types (see Definitions 1.1 and 1.2 below)

(A4(x,Vf),n)=0, x€dD\G,
1.5
f{4(x,Vf),n)=0, x€dD\G ()

on canonical domains in the Euclidean n-dimensional space, where G is a closed subset of
0D. We will prove Phragmén-Lindelof type theorems for solutions of the «4-Laplace equation
with such boundary conditions.

1.1. Canonical Domains

Let n > 2. Fix an integer k, 1 < k < n, and set

X 1/2
di(x) = <Zx12> . (1.6)

i=1
We call the set
Bi(t) = {x e R" : di(x) < t} (1.7)
a k-ball and

Se(t) = {x € R : die(x) = t) (1.8)
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Figure 1: D}, (a) and D?, in R®.

a k-sphere in R". In particular, the symbol X (0) denotes the k-sphere with the radius 0, that
is, the set

3k(0) ={x=(x1,.--, Xkye--,Xp) : X1 =+ =xx = 0}. (1.9)

For every 0 < k < n, we set

) 1/2
- 2
pPi(x) = <j:%1x] > , (110)

() ={xeR":pr(x) =t}, t>0.
Let 0 < a < f < oo be fixed, and let (see Figure 1)

D{;ﬁ = {x eR" :a<p(x)<p}. (1.11)

For k = n — 1, we also assume that x,, > 0. Then for k = n — 1, the DZ;;1 is the a layer between

two parallel hyperplanes, and for 1 < k < n — 1 the boundary of the domain Ds,p consists of
two coaxial cylindrical surfaces. The intersections X (t) N D§ s are precompact forall t > 0.

Thus, the functions di(x) are exhaustion functions for DZ 5
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1.2. Structure Conditions

Let D be a subdomain of R" and let
HA(x,&) : D xR" — R"
be a vector function such that for a.e. x € D the function
HA(x,¢) : R" — R"
is defined and is continuous with respect to ¢. We assume that the function
x — HA(x,¢)

is measurable in the Lebesgue sense for all ¢ € R” and

A(x,08) = L PP (x,8), LER\ ({0}, p21.

Suppose that for a.e. x € D and for all ¢ € R" the following properties hold:

v B < (¢, A(x,8)), A (x, &) <w G,
with p > 1 and some constants v1,v, > 0. We consider the equation
div J(x,Vf) =0.

An important special case of (1.17) is the Laplace equation

Af:iaz—fzo.

2
i71 0x;

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

As in [4, Chapter 6], we call continuous weak solutions of (1.17) <#-harmonic functions.
However we should note that our definition of generalized solutions is slightly different from

the definition given in [4, page 56].

1.3. Frequencies

Fixt > 0and p > 1. Let O be an open subset of 3 (t) (with respect to the relative topology of

37(t)), and let D be a nonempty closed subset of d0. We set

[Vl deen!

4o (0) =inf

(1.19)
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where u € Lip, (O) N C°%(O) with ulp = 0. If P = 00, then we call 1,(0) = A, p(O) the
first frequency of the order p > 1 of the set O. If ) # 00, then the quantity A, p(O) is the third
frequency.

The second frequency is the following quantity:

VulPdrt
up(O) = supinf JolVu

c v [ou—C)lPden1’ (1.20)

where the supremum is taken over all constants C and u € Lip, .(O) N C° (O). See also Pélya
and Szego [5] as well as Lax [6].

1.4. Generalized Boundary Conditions

Suppose that D is a proper subdomain of R”. Let ¢ : D — R be a locally Lipschitz function.
We denote by Dy (¢) the set of all points x € D at which ¢ does not have the differential.
Let U C D be a subset and let 0'U = oU \ 0D be its boundary with respect to D. If o'U
is (H#"1, n — 1)-rectifiable, then it has locally finite perimeter in the sense of De Giorgi, and
therefore a unit normal vector n exists #" !-almost everywhere on oU [7, Sections 3.2.14,
3.2.15].

Let D ¢ R" be a domain and let G C 0D be a subset of the boundary of D. Define the
concept of a generalized solution of (1.17) with zero boundary conditions on 0D \ G. A subset
U c Dis called admissible, if U NG = () and U have a (#£"!,n — 1)-rectifiable boundary with
respect to D.

Suppose that D is unbounded. Let G C 0D be a set closed in R” U {oo}. We denote by
(G, D) the collection of all subdomains U ¢ D with U ¢ (DU (0D \ G)) and (#™ ', n - 1)-
rectifiable boundaries 0'U = oU \ oD.

Definition 1.1. We say that a locally Lipschitz function f : D — R is a generalized solution of
(1.17) with the boundary condition

(A(x,Vf),n)=0, x€dD\G, (1.21)
if for every subdomain U € (G, D),

H" U NDy(f)] =0, (1.22)
and for every locally Lipschitz function ¢ : U \ G — R the following property holds:

f (p(J(x,Vf),ﬁ)delZ""lzj (A(x, V), Vo dHk". (1.23)
ou u

Here n is the unit normal vector of 'U and d#" is the volume element on R".
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Definition 1.2. We say that a locally Lipschitz function f : D — R is a generalized solution of
(1.17) with the boundary condition

f(#4(x,Vf),n)=0, x€dD\G, (1.24)

if for every subdomain U € (G, D) with (1.22) and for every locally Lipschitz function ¢ :
U\ G — R the following property holds:

[ ot v, mader = [ (x,91),7(p et 125)

In the case of a smooth boundary 9D, and f € C?(D), the relation (1.23) implies (1.17)
with (1.21) everywhere on 0D\ G. This requirement (1.25) implies (1.17) with (1.24) on 0D\G.
See [8, Section9.2.1].

The surface integrals exist by (1.22). Indeed, this assumption guarantees that V f(x)
exists #" ! a.e. on 9'U. The assumption that U € (G, D) implies existence of a normal vector
n for #" ! a.e. points on d'U [7, Chapter 2, Section 3.2]. Thus, the scalar product («4(x, V f),n)
is defined and is finite a.e. on 0'U.

2. Saint-Venant’s Principle

In this section, we will prove the Saint-Venant principle for solutions of the <#-Laplace
equation. The Saint-Venant principle states that strains in a body produced by application
of a force onto a small part of its surface are of negligible magnitude at distances that are
large compared to the diameter of the part where the force is applied. This well known result
in elasticity theory is often stated and used in a loose form. For mathematical investigation of
the results of this type, see, for example, [9].

In this paper the inequalities of the form (2.5), (2.4) are called the Saint-Venant
principle (see also [9, 10]). Here we consider only the case of canonical domains. We plan
to consider the general case in another article.

Let 0 < k < n. Fix a domain Dy in R* with compact and smooth boundary, and write

D=DyxR" = {x eR": (x1,...,xx) € Dy}. (2.1)

We write ) = {x € 0D : pr(x) =a}, Q= {x € 0D : px(x) = f},and G = pU Q. Lett, T € (a,p),
t<Tand

At T) = {xeD :t<pr(x) <7} (2.2)
For s > 0, we set

o (s) = {xe AK(0,00) : pr(x) :s}. (2.3)
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Theorem 2.1. Let a < 7' < 7" < f,and let 0 < k < n. If f : D — R is a generalized solution of
(1.17) with the generalized boundary condition (1.21) on 0D \ G, then the inequality

Ci(t) Ci(t)

Lt T)+—=< <11 (t, ") + V_l) exp I:—EJ‘T:,‘up <Gk(T)>dT] (2.4)

V1

holds for all t € (a, T'].
If f + D — R is a generalized solution of (1.17) with the generalized boundary condition
(1.24), then

"

Li(tT)+ < <11 (t, ") + Ci—gt)) exp [—E—;J‘T, )L:],/Zm <ok(7)>d7‘] (2.5)

Ca(t)
V1
holds for all t € (a, T']. Here

Ii(t,T) = f |V f|Pder, (2.6)

Ak (t,T)

Zf(T):{erZ(r)naD:;ilr}Cf(y):O}. (2.7)

Proof.

Case A. At first we consider the case in which f is a generalized solution of (1.17) with the
generalized boundary condition (1.24) on 0D \ G. It is easy to see that a.e. on D;ﬁ,

|Vpr(x)| =1. (2.8)

The domain A*(t, 7) belongs to (G, D). Let ¢ : U \ G — R be a locally Lipschitz function. By
(1.25) we have

f g AT AL = f wm T V) V(g f))d" (29)

t,T)
But
o AR(t, T) = o (t) U o (7). (2.10)

For ¢ =1, we have by (1.16) and (1.25)

viIi(t,T) < jAk(t )(J(x, Vf),Vf)de"
" 2.11)

<[ HAC T Ty [ (e 1), Tppo)d,

ok(r
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since n = Vpi(x) for x € o%(r) and n = ~Vpy(x) for x € o*(t). We obtain
vili(t,T) + Cao(t) < Lkm F(A(x, V), Vpr(x))de™, (2.12)
where
Co(t) = Lk(t) F(A(x, V), Vpr(x))d™ . (2.13)
Note that we may also choose

Co(1) = —f . f{A(x, V), Vpi(x))dHk™" (2.14)

to obtain an inequality similar to (2.12).
Next we will estimate the right side of (2.12). By (1.16) and the Holder inequality,

[ICEARR OIS

<[ TNl ] (T ey

1/p
< <f |f|de€n_1> <f |Vf|de€n_l>
ok (1) ak(7)

By using (1.19), we may write

(p-1)/p

J ol fasert <0l o () vflraset, (216)
o™ (T T

ok

F(A(x, V), Vpi(x))dr™™!

ok (T)

_1/ n—
< AN (ok(‘r)> f |V f|Pdr . (2.17)

ok(r)

By (2.12) and the Fubini theorem,

- dI
vl ) + Cot) S vl (oK) T ),

(dl/dr)(t,T)
(Ii(t, ) + Cao(t) /v1)

(2.18)

V1,1/p k
V_zj\P'Zf(T) (08(m) <
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By integrating this differential inequality, we have

et i 1/p k Li(t, ")+ Co(t) /vy
eXPIiv2 J‘T, )tp,zf(r) <O (T))dT] < Lt )+ Calt) /7 (2.19)

for arbitrary 7', 7" € (a, ) with 7' < 7”. We have shown that
N, C2(t) n ., Ca(b) vi (T k
Li(tT)+ o < (L") + o exp 0 ) )Lp/zf(T) <0'p (T))dT . (2.20)

Case B. Now we assume that f is a generalized solution of (1.17) with the boundary condition
(1.21) on 0D \ G. Fix t < 7. By choosing ¢ = 1 in (1.23), we see that

f (A(x,Vf),m)d"" = 0. (2.21)
ok(t)uck (1)

For an arbitrary constant C, we get from this and (1.23)

fok(t)UGk(T) (f = C){(A(x, V), M)dH™" = f AW)( (V)T fdn. (222)
Thus
Lk(m@l (x,Vf),Vf)dH" < C(t) + Lk i |f - C||4(x, Vi (x)) | dk™ Y, (2.23)
where
Ci(t) = Lkm |f - C||#(x, Vi (x)) | d™ " (2.24)
or

vili(t, ) + Ci(t) < vzj

(o

()|f—c||Vf|P*1d4z"-1. (2.25)

As above, we obtain

1/p (p-1)/p
[ r-clmsrasr< ([ (r-crae) ([ poiraet)
ok(r) ok(r) ak(r)

(2.26)
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By using (1.20), we get

1/p 1/p
(J k()|f—C3|”dJ€"‘1> <pp " (0" (M) <f k()|Vf|”dJ£"‘1> , (227)

where C3 = C3(f) is the constant from (1.20). Then by (2.26) and (2.27),
[ r-cllwsr et < (o) [ uspae, 28)
and by (2.25) we have
vili(t,7) + Ca(t) < vaops,! <0k(7)>.[ak<r> |V f|Pder (2.29)
or
Wi ) + G (0) < wagi (0 () T ) (2.30)

By integrating this inequality, we have shown that

Lt T)+—= Cl( ) <I (t, ") + Cli )> [—:—lj:lyp(ak(r)>d7':|. (2.31)

O

3. Stagnation Zones

Next we apply the Saint-Venant principle to obtain information about stagnation zones of
generalized solutions of (1.17). We first consider zones with respect to the Sobolev norm.
Other results of this type follow immediately from well-known imbedding theorems.

3.1. Stagnation Zones with Respect to the W’} -Norm

We rewrite (2.4) and (2.5) in another form. Let 0 < k < n and let 0 < & < B. Fix a domain Dy
in R¥ with compact and smooth boundary, and write

D=DyxR"* = {xeR": (x1,...,xx) € Dy}. (3.1)
We write

pL) = pe) - 2. (3.2)
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For x € Ds,p and

we have
-B* <pp(x) < p7,
and we denote
D;f = {x eR": =p" <pp(x) < f7}.
Let -p* < 7' < 7" < *. We write
Ak (7, t") = {xeD: 7 <p}(x) <7"},
L(7,7") = f |V f | dee”.
Atk (7, T”)

Let0 < 7' < 7" < f*. By (2.5) we have, for t € (-7, 7),

Iz(t,7’)+ci§t)S<12(th") C4(t)> [wf )‘ilﬂ/g () *'k(T)>dT]'

where
Zi(1) = {x € 0D : pi(x) = T/\;iir;f(y) = 0}.

By choosing the estimate as in (2.14), we also have

L(-7,t) + Ci_it) < <Iz (=", t) + G )> [ Vl,[ ,)L:’/g (r) *'k(T)>dT]’

where

o*k(s) = {x € A (o0, 00) : pr(x) = s}.

11

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)



12 Boundary Value Problems
By adding these inequalities and noting that Cy(t) + C4(t) = 0, we obtain

L(-7,t) + L(t,7)

< (R(-7",t) + L(t,7")) (3.12)

! - 1/p ¥k ! T” 1/p *k
X max{exp[ V—ZJ‘_T")LP,Z;(T) <a (T))dT ,exp ” } )LP,Z}(T) (0 (T))dT .
Thus we have the estimate

L(-7,7") < L(-7",7")

"

vi (771 . vi (71 ‘
X max{exp I:—V—;IT")LP%(T) <g fk(-r))dr],exp [—v—lJ‘T, /\p,Zp}(T) <o & (T)>d7'] }

Similarly, from (2.4) we obtain

L(-7,7) < L(-7",7")
-7’ 7" (314)
X max { exp [—E—;f Hp <0*'k (T))dT] ,exp [—E—:j Hp <o*’k(7')> dT] }

From this we obtain the following theorem on stagnation W; -Zones.

Theorem 3.1. Let 0 < k < n, f > a > 0, and let -f* < 7 < 7" < B* where p* is as in (3.3).
If f is a solution of (1.17) on D with the generalized boundary condition (1.21) on 0D \ G, where
G ={x€aD:p(x)=+p"} and

"

max{exp [—Z—:J‘_ ”,Hp (o*'k (T)> dT] ,exp [—z—;f ,

or a solution of (1.17) on D with the generalized boundary condition (1.24) on 0D \ G and

Up <o*'k(T)>dT] } <sl/p (3.15)
N T *k "N " Up *k 1/
max{exp[ - J‘_T”)LP,ZF(T) (o‘ (T))dr],exp[ " J‘T, )Lp/z}(T) <O‘ (T)>d7]} <s'P, (3.16)
then the subdomain A**(—1',T') is an s-zone with respect to the Wr}—norm, that is,
f |[Vf|Pd" < s, (3.17)
A*’k(—T’,’T’)

where A** is as in (3.6).
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3.2, Stagnation Zones with Respect to the L’-Norm

Let p>a >0, and let -p* < 7/ < 7" < f* where p* is as in (3.3).
Denote by Cs the best constant of the imbedding theorem from W; (D;;k) to LP(D;;k)
that is in the inequality

s~ C”LP(D;;") <GCs ”g”w,;(D;;k) (3.18)

if such constant exists (see Maz'ya [11] or [12]). Then we obtain from (3.13), (3.14)

”f - C”,IiP(A*,k(_T'ﬂ-f))

1" 1" v - * v T *
<CEL(-7",1") x max{exp I:_v_ij ,IA;//ZP}(T) (o ,k(r)>d7‘],exp [—v—iJ‘ ,)L;,/%(T) <0' 'k(q-))dr]},

(3.19)

17 =l

< C§I2 (-7",7") x max{exp [—?J
2

_T:,/ip <0*,k (7-)> dT] , exp [— Z_;J‘T:,.”p (o*,k (7-)> dT] } .

(3.20)

These relations can be used to obtain information about stagnation zones with respect to the
LP-norm. Namely, we have the following.

Theorem 3.2. Let 0 < k < n, and let

D=DyxR" = {x eR": (x1,...,xx) € Dy}, (3.21)

where Dy is a domain in R¥ with compact and smooth boundary. If f is a solution of (1.17) on D, with
the generalized boundary condition, (1.21) or (1.24), on 0D \ G, where G = {x € 0D : p;(x) = £},
and the right side of, (3.19) or (3.20), is smaller than s > 0, then the domain A**(-7',7') is a
stagnation zone with the deviation sP in the sense of the LP-norm on D.

3.3. Stagnation Zones for Bounded, Uniformly Continuous Functions

Let p>a >0, and let -p* < 7' < 7" < f* where p* is as in (3.3).
As before, denote by Cs the best constant of the imbedding theorem from W; (D;;k) to
C (D;;k), that is in the inequality

g - CHC(D;;k) <Cs ”g”w;(D;;k) (3.22)

*,k

if such constant exists. For example, if the domain Dp*

(see Maz'ya [11] or [12, page 85]).

is convex, then (3.22) holds for p > n
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In this case from (3.13), (3.14), we obtain

17 = Clleqarsrmy

-7’ T
Py (o _ﬂ 1/p *k _E 1/p *,k
< CeL(-1",7") % max{exp[ - frffAP’Z}(T) <0' (T))dT],exp[ ” J‘T’ .)LP,Z}(T) <O‘ (T))d‘r]},
(323)

”f - C”C(A*fk(f'r’,'r’))

<CPL(-1",7") x max{exp [—%J‘
2

_T;‘up (0'*,k (T)> dT] ,exp I:—Z—; J‘T:,#p <o‘*,k (7-)>de| } .

(3.24)

These relations can be used to obtain theorems about stagnation zones for bounded,
uniformly continuous functions.

Theorem 3.3. Let 0 < k < n. If f is a solution of (1.17), p > n, on D where D is as before with the
generalized boundary condition, (1.21) or (1.24), on 0D \ G where G = {x € 0D : py(x) = £f"} and
the right side of, (3.23) or (3.24), is smaller than s > 0, then the domain A**(~7',7') is a stagnation
zone with the deviation s in the sense of the norm || - ||co(avk (- 7)-

4. Other Applications

Next we prove Phragmén-Lindelof type theorems for the solutions of the «#-Laplace equation
with boundary conditions (1.21) and (1.24).

4.1. Estimates for W,-Norms

Let § > a > 0, and let Dy be a domain in R* with compact and smooth boundary. Write
D=DyxR" = {x eR": (x1,...,xx) € Dy}. (4.1)

Suppose that f* is as in (3.3). First we will prove some estimates of the W;—norm of a solution.
Let f be a solution of (1.17) on D;;k with the generalized boundary condition (1.21) on 0D\ G.
Fix 0 < 7’ < 7" < f* and estimate || f lw (ask ) -

Let ¢ : [7/,7"] — (0, 00) be a Lipschitz function such that

(') =1, g(t") =0. (4.2)

We choose

1 for |t| < 7/,
¢(t) = (4.3)
w(t]) for T’ <t <7
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The function ¢(x) = ¢(p; (x)) is admissible in Definition 1.1 for
u= A*’k(—T”, TII). (44)

Asin (2.22), we may by (1.23) write

[ PEE) O TS Rk
ovk (=T")Uo*k (T (4.5)

B J‘A*k( " ”)<°4(X, Vf)’V(¢P(p2(x))(f_c))>d42n.
By the construction of ¢, (4.2), and (4.3), the surface integral is equal to zero, and we have

f wiirrnn? (P () (A(x, V),V f)de"

(4.6)
= B O TS, TP 0k
Thus by (1.16),
w[ o pEe)Ivrae
o 4.7)
: P”Zf i PGS - CUVFT V9 (i)
Now we note that
Vo (pi(x))] = |¢' (P ()], (4.8)

and by the Holder inequality,

[ oo G = CUITA T i) st

= J‘A*/k(_ , ,,)(‘bp_l(PZ(x))|Vf|p71|(,b’(p;;(x))||f _ Cldelen

(p-1/p 1/p
< < f ¢'”(p,t<x>>|Vf|”M"> <f |¢’<p2(x>>|p|f—CI"de’€">
Ak (=1" 1) Ak (—1" 1)
(4.9)
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From this inequality and (4.7), we obtain

[ e <pf
A*,k(_T/,T/) Axk

(-7

Because ¢(p;(x)) =1on A**(-7',7"), we have the following inequality:

A josta <
A*'k (7.[.:,7./)

Ak (=1 T\ A%k (7' 7!
Next we will find that

minf
[ Axk (_T!I/T!!)\A*,k (—T’,T’)

where the minimum is taken over all ¢ in (4.3). We have

[ ¥ ()P If -l et
Ak (=1 T\ A%k (~1',7")

- werar re-crae

[ weraf  re-crae

minj
¢ A*rk(—T”,T”)\A*f" (—T’,T

—7!
< minj l¢' () |pd7'f
v )

— o*

, ¢’ (pr(x)) |71 f (x) = C|del”

|f(x) - C|" e
k(7)
+ minj l¢' () |pdTJ‘
g

T o*

Because by the Holder inequality

"

T’ p T”
, 1o\ |P 1P g pn-1
1S(L|qf<r>|df> S[quf(r)ldTL%k(T)If(x) clrax ]

" 1/(-p)1 P71
x U dTO |f(x) - c|”d4€"1> ] ,
T o*k(T)

| F LS - P dser

)qu’(PZ(x>)|”|f —C|Pd<er.

¢ (pr. () |”| f - C|Pdk?,

|f(x) - C|Pd™™ = Ay + A,.
(1)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)



Boundary Value Problems

we have

! "

and hence,

o 1/0-p P
Ay, > [J dT<f | f(x) - C|”d4e"1> ] )
T o*k(T)

It is easy to see that here the equality holds for a special choice of ¢. Thus

7 1/-p) 1P
Ay = U dT<J‘ |f(x)—C|pde!€”‘1> ] .
T U*,k(.r)

Similarly,

e 1/(1-p) -p
Ay = U dr (I |f(x) - C|deZ”‘1> ] .
— o‘*'k(T)

From (4.14) we obtain

min l¢' (pr. () "] f = C|Pdk”

[ J‘A*'k (_T!!/T!!)\A*,k (—T’,T’)

- 1/(-p) 1P
< [J dT(J |f(x) - C|pdel€”_1> ]
— 0‘*"‘(7‘)
7 1/(-p) 1P
+ [f d7<f |f(x)—C|de€"‘1> ] .
T o‘*rk(T)

By using (4.11), we obtain the inequality

,, 1/0-p 1P
p T
p-P<ﬂ>f |Vf|Pdetr < j dr f |f(x) - C|Pdee™!
%] A*'k(—T’,T’) - U*/k(T)

)

o 1/(1-p) P
+ [I dT<I |f(x) - C|Pdo’€"1> ]
T ok (T)

17

o va-p1tP
[J. dr <J‘ |f(x)-C|’ dJ€"1> ] < f |q;’(T)|pde |f(x) - C|Pdee™,
T ok (T) T o*k(T)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)
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where C is an arbitrary constant. From this we obtain

» 1/0-p)1 1P
f |Vf|Pd#™ < C; max f dT<f |f(x) - C|Pde’€”1> ;
A*'k(—T’,T’) — G*'k(T)
(4.22)

% 1/(-p) 1P
I dr f |f(x) - C|Pdetem ! ,
T o.*,k(.r)

where C; = 2pP (va/v1)P.
Similarly, for the solutions of the «#-Laplace equation with the boundary condition
(1.24), we may prove that

v p ! 1/(1—p) 1_P
p—p<v_1>f |VF|Pdetem < f dr<f |f(x)|de€"‘1>
2 A*’k(—T’,T’) —l 0.*,k(7.)
" 1/(1-p) P
[y

(4.23)

It follows that

- va-p P
I |Vf|Pd#" < C;max f dr f | f(x)|Pdetem ,
A*'k (7.[.1’7./) —h o-*,k (T)

o 1/(1-p) 1-p
[J‘ dT<f |f(x)|pde’€""1> ]
T ok (T)

4.2. Phragmén-Lindelof Type Theorems I

(4.24)

We prove Phragmén-Lindelof type theorems for cylindrical domains. Let k = n — 1. Fix a
domain Dy in R""! with compact and smooth boundary. Consider the domain

DZD()XR:{xERnZ(Xl,...,xn_l)EDo}. (425)

Let fo : D — R be a generalized solution of (1.17) with (1.15) and (1.16) satisfying the
boundary condition (1.21) on 0D.
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Fix > a >0, and let p* be as in (3.3). Let f(x) = fo(x — f*e,), where e, is the nth unit
coordinate vector, and let 0 < 7' < 7" < f* < c0. By (4.22)

g 1/(1-p) 1-p
’[ |Vf|Pdel€n < C7 max I dr '[ |f(x) —C|pd°l€"‘1 ,
Ak (=T 1) _h—1 o*n-1(7)

1 1/1-p P
f dr f |f(x) - C|Pdee™
T o*n-1 (T)

(4.26)

By using (3.14), we obtain from this the inequality

"

r 1/0-p) 1 1P
Iz(—TI, T’) < Cy max lf dT<I |f(x) - Cldeén—1> ] )
—7-1 0*,n71 (’T)

741 1/0-p) 1 1P
f dr <f |f(x) - C|pdel€"‘1>
" O-*,n—l (T)
X max { exp [—:—l f Hp (o*'"‘l (T))dT] ,exp [—:—l f Up <0*'”‘1 (T))dT] } .

(4.27)

We observe that in this case

(07" (1)) = pyp (0" (0)), (4.28)

and hence,

"

IT Up <0'*'"‘1 (T))dT =y <0'"‘1 (0)) (7" -1'). (4.29)

T
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It follows that

"

. 1/(1-p) 1P
IQ(—T’,T’) < Cy max [J dr (I |f(x) - C|”d°l€n—1> ] )
-7'-1 o*1(T)

41 va-p P 430
[J dr <J‘ |f(x) - C|’”d4e"1> ] (4:30)
" o*n-1(T)

X exp [—z—i Hp <0'"‘1 (0)) (" - T')] .

By letting §, 7" — +o0, we obtain the following statement.

Theorem 4.1. Fix a domain Dy in R"™! with compact and smooth boundary. Let
D=DyxR={xeR": (x1,...,x4-1) € Do}, (4.31)

and let f : D — R be a generalized solution of (1.17) with (1.15) and (1.16) satisfying the boundary
condition (1.21) on 0D. If for a constant C the right side of (4.30) goes to 0 as " — oo, then
f =conston D.

Similarly for a solution f of (1.17) with (1.15) and (1.16) satisfying the boundary
condition (1.24), we may write

L 1/0-p 1P
12(—7-1,74) < Cymax |:f ar <I |f(x)|PdJén—1> ] )
—7-1 O-*,n—l (T)

PR 1/(1-p] P
f dr I |f(x)|P e
" O'*’"’H(T)

"

_vl - 1/p *,n—1 _ V1 ’ 1/p *,n—1
X max {exp - /\p,z} (7) (0 (T))dT],exp[ - J;/ '/\'p,Z} (7) <0' (T)>d7' .

v

(4.32)
However here we do not have any identity similar to (4.28). We have the following.
Theorem 4.2. Fix a domain Dy in R"™! with compact and smooth boundary. Let
D=DyxR={xeR": (x1,...,x-1) € Do}, (4.33)

and let f : D — R be a generalized solution of (1.17) with (1.15) and (1.16) satisfying the boundary
condition (1.24) on OD. If the right side of (4.32) tends to 0 as " — oo, then f =0 on oD.
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If f(x) = 0 everywhere on 0D, then an identity similar to (4.28) holds in the following
form:

piels (o*'"*1(7)> =1/ <a"*1(0)). (4.34)

As above, we find that

o 1/(1-p) 1P
L(-7',7') < C; max |:I dr <J |f(x)|PdJén1> ] )
—7-1 o-*,n—l (T)

1—
41 AT (4.35)
f dr f | f(x)|Pdt™
T/ 0'*/"71 (T)
_E Vp( n-1 "m0
x exp[ - Ay (o (0)>(T T)]

Thus we obtain the following.
Corollary 4.3. Fix a domain Dy in R with compact and smooth boundary. Let

D=DQXR={xERnZ(xl,...,xn_1)€D0}, (436)

and let f : D — R bea generalized solution of (1.17) with (1.15) and (1.16) satisfying the boundary
condition f =0 on OD. If the right side of (4.35) tends to 0 as 7" — oo, then f = const on 0D.

4.3. Phragmén-Lindelof Type Theorems II
We prove Phragmén-Lindelof type theorems for canonical domains of an arbitrary form. Let

1 <k <n-1. We consider a domain

D=DyxR"* = {x eR": (x1,...,xx) € Dy}, (4.37)

where Dy is a domain in RF with compact and smooth boundary. Let f be a generalized
solution of (1.17) with (1.15) and (1.16) satisfying the boundary condition (1.21) on 0D.
Fix 79 > 0. Let 79 < 7' < 7" < o0. By (4.22) we may write

o 1/1-p] P
ka |Vf|Pd" < Cs [f ,dT<J‘ . )|f(x) - C|pdel€”1> ] , (4.38)

0,7
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where Cg = C7/2. As in (3.14), we obtain from (2.4) the estimate

f v f|”de!€”§f k |Vf|”dewexp[—z—: Jjﬂp@k(r))dr]. (4.39)

0,79 0,7

By combining these inequalities, we obtain

o 1/(1-p)1 1P
f IV flPde™ < Cs [J' dr (f | f(x)—C|de£"1> ]
Dk T ok ()

o (4.40)
X exp I:—:j—l Jt Hp <ak (ﬂ)dT].

The inequality (4.40) holds for arbitrary constant C and every 7 > 7'. Thus the following
statement holds.

Theorem 4.4. Let f : D — R be a generalized solution of (1.17) with (1.15) and (1.16) satisfying
the boundary condition (1.21) on 0D, 1 < k < n — 1. If for a constant C the right side of (4.40) tends
to0as 7', 7" — +oo, then f = const on D.

If f satisfies (1.17) with (1.15), (1.16) and the boundary condition (1.24) on 0D, then
we have

o 1/a-ptP
f |V f | det” < Cs f dr<f | f(x)|”d4€"‘1>
Dk T ok(t)

o (4.41)
v (7 1/p k
X exp [_v_z J‘TO)Lp/Zf(T) <o (T))dT].

We obtain the following.

Theorem 4.5. Fix a domain Dy in R¥, where 1 < k < n— 1, with compact and smooth boundary. Let
D=DyxR"* = {x eR": (x1,...,xx) € Dy}, (4.42)

and let f : D — R be a generalized solution of (1.17) with (1.15) and (1.16) satisfying the boundary
condition (1.24) on OD. If for a constant C the right side of (4.41) tends to 0 as 7/, 7" — +co, then
f=0onD.
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