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We investigate the following fourth-order four-point nonhomogeneous Sturm-Liouville boundary
value problem: u(4) = f(t, u), t ∈ [0, 1], αu(0) − βu′(0) = λ1, γu(1) + δu′(1) = λ2, au′′(ξ1) − bu′′′(ξ1) =
−λ3, cu′′(ξ2) + du′′′(ξ2) = −λ4, where 0 ≤ ξ1 < ξ2 ≤ 1 and λi(i = 1, 2, 3, 4) are nonnegative parameters.
Some sufficient conditions are given for the existence and uniqueness of a positive solution. The
dependence of the solution on the parameters λi(i = 1, 2, 3, 4) is also studied.

1. Introduction

Boundary value problems (BVPs for short) consisting of fourth-order differential equation
and four-point homogeneous boundary conditions have received much attention due to
their striking applications. For example, Chen et al. [1] studied the fourth-order nonlinear
differential equation

u(4) = f(t, u), t ∈ (0, 1), (1.1)

with the four-point homogeneous boundary conditions

u(0) = u(1) = 0, (1.2)

au′′(ξ1) − bu′′′(ξ1) = 0, cu′′(ξ2) + du′′′(ξ2) = 0, (1.3)

where 0 ≤ ξ1 < ξ2 ≤ 1. By means of the upper and lower solution method and Schauder fixed
point theorem, some criteria on the existence of positive solutions to the BVP (1.1)–(1.3)were
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established. Bai et al. [2] obtained the existence of solutions for the BVP (1.1)–(1.3) by using a
nonlinear alternative of Leray-Schauder type. For other related results, one can refer to [3–5]
and the references therein.

Recently, nonhomogeneous BVPs have attractedmany authors’ attention. For instance,
Ma [6, 7] and L. Kong and Q. Kong [8–10] studied some second-order multipoint
nonhomogeneous BVPs. In particular, L. Kong and Q. Kong [10] considered the following
second-order BVP with multipoint nonhomogeneous boundary conditions

u′′ + a(t)f(u) = 0, t ∈ (0, 1),

u(0) =
m∑

i=1

aiu(ti) + λ, u(1) =
m∑

i=1

biu(ti) + μ,
(1.4)

where λ and μ are nonnegative parameters. They derived some conditions for the above BVP
to have a unique solution and then studied the dependence of this solution on the parameters
λ and μ. Sun [11] discussed the existence and nonexistence of positive solutions to a class of
third-order three-point nonhomogeneous BVP. The authors in [12] studied the multiplicity
of positive solutions for some fourth-order two-point nonhomogeneous BVP by using a fixed
point theorem of cone expansion/compression type. For more recent results on higher-order
BVPs with nonhomogeneous boundary conditions, one can see [13–16].

Inspired greatly by the above-mentioned excellent works, in this paper we are
concerned with the following Sturm-Liouville BVP consisting of the fourth-order differential
equation:

u(4) = f(t, u), t ∈ [0, 1] (1.5)

and the four-point nonhomogeneous boundary conditions

αu(0) − βu′(0) = λ1, γu(1) + δu′(1) = λ2, (1.6)

au′′(ξ1) − bu′′′(ξ1) = −λ3, cu′′(ξ2) + du′′′(ξ2) = −λ4, (1.7)

where 0 ≤ ξ1 < ξ2 ≤ 1 and λi (i = 1, 2, 3, 4) are nonnegative parameters. Under the following
assumptions:

(A1) α, β, γ, δ, a, b, c, and d are nonnegative constants with β > 0, δ > 0, ρ1 := αγ+αδ+γβ >
0, ρ2 := ad + bc + ac(ξ2 − ξ1) > 0, −aξ1 + b > 0, and c(ξ2 − 1) + d > 0;

(A2) f(t, u) : [0, 1] × [0,+∞) → [0,+∞) is continuous and monotone increasing in u for
every t ∈ [0, 1];

(A3) there exists 0 ≤ θ < 1 such that

f(t, ku) ≥ kθf(t, u) for any t ∈ [0, 1], k ∈ (0, 1), u ∈ [0,+∞), (1.8)
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we prove the uniqueness of positive solution for the BVP (1.5)–(1.7) and study the
dependence of this solution on the parameters λi (i = 1, 2, 3, 4).

2. Preliminary Lemmas

First, we recall some fundamental definitions.

Definition 2.1. Let X be a Banach space with norm ‖ · ‖. Then

(1) a nonempty closed convex set P ⊆ X is said to be a cone ifmP ⊆ P for allm ≥ 0 and
P ∩ (−P) = {0}, where 0 is the zero element of X;

(2) every cone P in X defines a partial ordering in X by u ≤ v ⇔ v − u ∈ P ;

(3) a cone P is said to be normal if there exists M > 0 such that 0 ≤ u ≤ v implies that
‖u‖ ≤ M‖v‖;

(4) a cone P is said to be solid if the interior
◦
P of P is nonempty.

Definition 2.2. Let P be a solid cone in a real Banach space X, T :
◦
P →

◦
P an operator, and

0 ≤ θ < 1. Then T is called a θ-concave operator if

T(ku) ≥ kθTu for any k ∈ (0, 1), u ∈
◦
P. (2.1)

Next, we state a fixed point theorem, which is our main tool.

Lemma 2.3 (see [17]). Assume that P is a normal solid cone in a real Banach space X, 0 ≤ θ < 1,

and T :
◦
P →

◦
P is a θ-concave increasing operator. Then T has a unique fixed point in

◦
P.

The following two lemmas are crucial to our main results.

Lemma 2.4. Assume that ρ1 and ρ2 are defined as in (A1) and ρ1ρ2 /= 0. Then for any h ∈ C[0, 1], the
BVP consisting of the equation

u(4)(t) = h(t), t ∈ [0, 1] (2.2)

and the boundary conditions (1.6) and (1.7) has a unique solution

u(t) =
∫1

0
G1(t, s)

∫ ξ2

ξ1

G2(s, τ)h(τ)dτ ds +
4∑

i=1

λiφi(t), t ∈ [0, 1], (2.3)
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where

G1(t, s) =
1
ρ1

⎧
⎨

⎩

(
αs + β

)(
γ + δ − γt

)
, 0 ≤ s ≤ t ≤ 1,

(
αt + β

)(
γ + δ − γs

)
, 0 ≤ t ≤ s ≤ 1,

G2(t, s) =
1
ρ2

⎧
⎨

⎩
(a(s − ξ1) + b)(c(ξ2 − t) + d), s ≤ t, ξ1 ≤ s ≤ ξ2,

(a(t − ξ1) + b)(c(ξ2 − s) + d), t ≤ s, ξ1 ≤ s ≤ ξ2,

φ1(t) =
1
ρ1

(
γ + δ − γt

)
, t ∈ [0, 1],

φ2(t) =
1
ρ1

(
αt + β

)
, t ∈ [0, 1],

φ3(t) =
1
ρ2

∫1

0
(c(ξ2 − s) + d)G1(t, s)ds, t ∈ [0, 1],

φ4(t) =
1
ρ2

∫1

0
(a(s − ξ1) + b)G1(t, s)ds, t ∈ [0, 1].

(2.4)

Proof. Let

u′′(t) = v(t), t ∈ [0, 1]. (2.5)

Then

v′′(t) = h(t), t ∈ [0, 1]. (2.6)

By (2.5) and (1.6), we know that

u(t) = −
∫1

0
G1(t, s)v(s)ds +

1
ρ1

(
αλ2 − γλ1

)
t +

1
ρ1

((
γ + δ

)
λ1 + βλ2

)
, t ∈ [0, 1]. (2.7)

On the other hand, in view of (2.5) and (1.7), we have

av(ξ1) − bv′(ξ1) = −λ3, cv(ξ2) + dv′(ξ2) = −λ4. (2.8)

So, it follows from (2.6) and (2.8) that

v(t) = −
∫ ξ2

ξ1

G2(t, s)h(s)ds +
1
ρ2

(cλ3 − aλ4)t +
1
ρ2

((aξ1 − b)λ4 − (cξ2 + d)λ3), t ∈ [0, 1], (2.9)
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which together with (2.7) implies that

u(t) =
∫1

0
G1(t, s)

∫ ξ2

ξ1

G2(s, τ)h(τ)dτ ds +
4∑

i=1

λiφi(t), t ∈ [0, 1]. (2.10)

Lemma 2.5. Assume that (A1) holds. Then

(1) G1(t, s) > 0 for (t, s) ∈ [0, 1] × [0, 1];

(2) G2(t, s) > 0 for (t, s) ∈ [0, 1] × [ξ1, ξ2];

(3) φi(t) > 0 for t ∈ [0, 1], i = 1, 2, 3, 4.

3. Main Result

For convenience, we denote λ = (λ1, λ2, λ3, λ4) and μ = (μ1, μ2, μ3, μ4). In the remainder of this
paper, the following notations will be used:

(1) λ → ∞ if at least one of λi (i = 1, 2, 3, 4) approaches ∞;

(2) λ → μ if λi → μi for i = 1, 2, 3, 4;

(3) λ > μ if λi ≥ μi for i = 1, 2, 3, 4 and at least one of them is strict.

Let X = C[0, 1]. Then (X, ‖ · ‖) is a Banach space, where ‖ · ‖ is defined as usual by the
sup norm.

Our main result is the following theorem.

Theorem 3.1. Assume that (A1)–(A3) hold. Then the BVP (1.5)–(1.7) has a unique positive solution
uλ(t) for any λ > 0, where 0 = (0, 0, 0, 0). Furthermore, such a solution uλ(t) satisfies the following
properties:

(P1) limλ→∞‖uλ‖ = ∞;

(P2) uλ(t) is strictly increasing in λ, that is,

λ > μ > 0 =⇒ uλ(t) > uμ(t), t ∈ [0, 1]; (3.1)

(P3) uλ(t) is continuous in λ, that is, for any given μ > 0,

λ −→ μ =⇒ ∥∥uλ − uμ

∥∥ −→ 0. (3.2)

Proof. Let P = {u ∈ X | u(t) ≥ 0, t ∈ [0, 1]}. Then P is a normal solid cone in X with
◦
P = {u ∈ X | u(t) > 0, t ∈ [0, 1]}. For any λ > 0, if we define an operator Tλ :

◦
P → X as

follows:

Tλu(t) =
∫1

0
G1(t, s)

∫ ξ2

ξ1

G2(s, τ)f(τ, u(τ))dτ ds +
4∑

i=1

λiφi(t), t ∈ [0, 1], (3.3)
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then it is not difficult to verify that u is a positive solution of the BVP (1.5)–(1.7) if and only
if u is a fixed point of Tλ.

Now, we will prove that Tλ has a unique fixed point by using Lemma 2.3.

First, in view of Lemma 2.5, we know that Tλ :
◦
P →

◦
P.

Next, we claim that Tλ :
◦
P →

◦
P is a θ-concave operator.

In fact, for any k ∈ (0, 1) and u ∈
◦
P, it follows from (3.3) and (A3) that

Tλ(ku)(t) =
∫1

0
G1(t, s)

∫ ξ2

ξ1

G2(s, τ)f(τ, ku(τ))dτ ds +
4∑

i=1

λiφi(t)

≥ kθ

∫1

0
G1(t, s)

∫ ξ2

ξ1

G2(s, τ)f(τ, u(τ))dτ ds +
4∑

i=1

λiφi(t)

≥ kθ

(∫1

0
G1(t, s)

∫ ξ2

ξ1

G2(s, τ)f(τ, u(τ))dτ ds +
4∑

i=1

λiφi(t)

)

= kθTλu(t), t ∈ [0, 1],

(3.4)

which shows that Tλ is θ-concave.

Finally, we assert that Tλ :
◦
P →

◦
P is an increasing operator.

Suppose that u, v ∈
◦
P and u ≤ v. By (3.3) and (A2), we have

Tλu(t) =
∫1

0
G1(t, s)

∫ ξ2

ξ1

G2(s, τ)f(τ, u(τ))dτ ds +
4∑

i=1

λiφi(t)

≤
∫1

0
G1(t, s)

∫ ξ2

ξ1

G2(s, τ)f(τ, v(τ))dτ ds +
4∑

i=1

λiφi(t)

= Tλv(t), t ∈ [0, 1],

(3.5)

which indicates that Tλ is increasing.

Therefore, it follows from Lemma 2.3 that Tλ has a unique fixed point uλ ∈
◦
P,which is

the unique positive solution of the BVP (1.5)–(1.7). The first part of the theorem is proved.
In the rest of the proof, we will prove that such a positive solution uλ(t) satisfies

properties (P1), (P2), and (P3).
First,

uλ(t) = Tλuλ(t)

=
∫1

0
G1(t, s)

∫ ξ2

ξ1

G2(s, τ)f(τ, uλ(τ))dτ ds +
4∑

i=1

λiφi(t), t ∈ [0, 1],
(3.6)

which together with φi(t) > 0 (i = 1, 2, 3, 4) for t ∈ [0, 1] implies (P1).
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Next, we show (P2). Assume that λ > μ > 0. Let

χ = sup
{
χ > 0 : uλ(t) ≥ χuμ(t), t ∈ [0, 1]

}
. (3.7)

Then uλ(t) ≥ χuμ(t) for t ∈ [0, 1].We assert that χ ≥ 1. Suppose on the contrary that 0 < χ < 1.

Since Tλ is a θ-concave increasing operator and for given u ∈
◦
P , Tλu is strictly increasing in λ,

we have

uλ(t) = Tλuλ(t) ≥ Tλ
(
χuμ
)
(t) > Tμ

(
χuμ
)
(t)

≥ (χ)θTμuμ(t) =
(
χ
)θ
uμ(t) > χuμ(t), t ∈ [0, 1],

(3.8)

which contradicts the definition of χ. Thus, we get uλ(t) ≥ uμ(t) for t ∈ [0, 1]. And so,

uλ(t) = Tλuλ(t) ≥ Tλuμ(t) > Tμuμ(t) = uμ(t), t ∈ [0, 1], (3.9)

which indicates that uλ(t) is strictly increasing in λ.
Finally, we prove (P3). For any given μ > 0, we first suppose that λ → μ with μ/2 <

λ < μ. From (P2), we know that

uλ(t) < uμ(t), t ∈ [0, 1]. (3.10)

Let

σ = sup
{
σ > 0 : uλ(t) ≥ σuμ(t), t ∈ [0, 1]

}
. (3.11)

Then 0 < σ < 1 and uλ(t) ≥ σuμ(t) for t ∈ [0, 1]. If we define

ω(λ) = min
{
λi
μi

: μi > 0
}
, (3.12)
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then 0 < ω(λ) < 1 and

uλ(t) = Tλuλ(t)

≥ Tλ
(
σuμ
)
(t)

=
∫1

0
G1(t, s)

∫ ξ2

ξ1

G2(s, τ)f
(
τ, σuμ(τ)

)
dτ ds +

4∑

i=1

λiφi(t)

≥
∫1

0
G1(t, s)

∫ ξ2

ξ1

G2(s, τ)f
(
τ, σuμ(τ)

)
dτ ds +ω(λ)

4∑

i=1

μiφi(t)

≥ ω(λ)

(∫1

0
G1(t, s)

∫ ξ2

ξ1

G2(s, τ)f
(
τ, σuμ(τ)

)
dτ ds +

4∑

i=1

μiφi(t)

)

= ω(λ)Tμ
(
σuμ
)
(t)

≥ ω(λ)(σ)θTμuμ(t)

= ω(λ)(σ)θuμ(t), t ∈ [0, 1],

(3.13)

which together with the definition of σ implies that

ω(λ)(σ)θ ≤ σ. (3.14)

So,

σ ≥ (ω(λ))1/(1−θ). (3.15)

Therefore,

uλ(t) ≥ σuμ(t) ≥ (ω(λ))1/(1−θ)uμ(t), t ∈ [0, 1]. (3.16)

In view of (3.10) and (3.16), we obtain that

∥∥uλ − uμ

∥∥ ≤
(
1 − (ω(λ))1/(1−θ)

)∥∥uμ

∥∥, (3.17)

which together with the fact that ω(λ) → 1 as λ → μ shows that

∥∥uλ − uμ

∥∥ −→ 0 as λ −→ μ with λ < μ. (3.18)

Similarly, we can also prove that

∥∥uλ − uμ

∥∥ −→ 0 as λ −→ μ with λ > μ. (3.19)

Hence, (P3) holds.
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