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The existence of antiperiodic solutions for Liénard-type and Duffing-type differential equations
with p-Laplacian operator has been studied by using degree theory. The results obtained improve
and enrich some known works to some extent.

1. Introduction

Antiperiodic problems arise naturally from the mathematical models of various of physical
processes (see [1, 2]), and also appear in the study of partial differential equations and
abstract differential equations (see [3–5]). For instance, electron beam focusing system in
travelling-wave tube’s theories is an antiperiodic problem (see [6]).

During the past twenty years, antiperiodic problems have been studied extensively by
numerous scholars. For example, for first-order ordinary differential equations, a Massera’s
type criterion was presented in [7] and the validity of the monotone iterative technique was
shown in [8]. Moreover, for higher-order ordinary differential equations, the existence of
antiperiodic solutions was considered in [9–12]. Recently, existence results were extended
to antiperiodic boundary value problems for impulsive differential equations (see [13]), and
antiperiodic wavelets were discussed in [14].

Wang and Li (see [15]) discussed the existence of solutions of the following
antiperiodic boundary value problem for second-order conservative system:

q′′ = u
(
t, q

)
, q(0) = −q(T), q′(0) = −q′(T) (1.1)

using of the main assumption as follows:
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(A1) There exist constants 0 ≤ c < 8 and M > 0, such that

∣
∣u
(
t, q

)∣∣ ≤ c

T2

∣
∣q
∣
∣ +M, ∀t ∈ [0, T], q ∈ R. (1.2)

The turbulent flow in a porous medium is a fundamental mechanics problem. For
studying this type of problems, Leibenson (see [16]) introduced the following p-Laplacian
equation:

(
φp

(
x′))′ = f

(
t, x, x′), (1.3)

where φp(s) = |s|p−2s, p > 1. Obviously, the inverse operator of φp is φq, where q > 1 is a
constant such that 1/p + 1/q = 1.

Notice that, when p = 2, the nonlinear operator (φp(x′))′ reduces to the linear operator
x′′.

In the past few decades, many important results relative to (1.3)with certain boundary
conditions have been obtained. We refer the reader to [17–20] and the references cited therein.
However, to the best of our knowledge, there exist relatively few results for the existence of
antiperiodic solutions of (1.3). Moreover, it is well known that the existence of antiperiodic
solutions plays a key role in characterizing the behavior of nonlinear differential equations
(see [21]). Thus, it is worthwhile to continue to investigate the existence of antiperiodic
solutions for (1.3).

A primary purpose of this paper is to study the existence of antiperiodic solutions for
the following Liénard-type p-Laplacian equation:

(
φp

(
x′))′ + f(x)x′ + g(t, x) = e(t) (1.4)

and antiperiodic solutions with symmetry for Duffing-type p-Laplacian equation as follows:

(
φp

(
x′))′ + g(t, x) = e(t), (1.5)

where f, e ∈ C(R,R), g ∈ C(R2,R) with f(−x) ≡ f(x), g(t + π,−x) ≡ −g(t, x), and e(t + π) ≡
−e(t). That is, we will prove that (1.4) or (1.5) has at least one solution x(t) satisfying

x(t + π) = −x(t), ∀t ∈ R. (1.6)

Note that, x(t) is also a 2π-periodic solution of (1.4) or (1.5) if x(t) is a π-antiperiodic
solution of (1.4) or (1.5). Hence, from the arguments in this paper, we can also obtain the
existence results of periodic solutions for above equations.

The rest of this paper is organized as follows. Section 2 contains some necessary
preliminaries. In Section 3, we establish some sufficient conditions for the existence of
antiperiodic solutions of (1.4), basing on Leray-Schauder principle. Then, in Section 4, we
obtain two existence results of antiperiodic solutions with symmetry for (1.5). Finally, in
Section 5, some explicit examples are given to illustrate the main results. Our results are
different from those of bibliographies listed above.
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2. Preliminaries

For convenience, we introduce some notations as follows:

Ck,2π =
{
x ∈ Ck(R,R) : x(t + 2π) ≡ x(t)

}
,

Ck,π =
{
x ∈ Ck,2π : x(t + π) ≡ −x(t)

}
,

Ck,π
0 =

{
x ∈ Ck,π : x(−t) ≡ x(t)

}
,

Ck,π
1 =

{
x ∈ Ck,π : x(−t) ≡ −x(t)

}
,

‖x‖∞ = max
t∈[0,2π]

|x(t)|, x ∈ C0,2π,

‖x‖Ck = max
i∈{0,1,...,k}

{∥∥∥x(i)
∥∥∥
∞

}
, x ∈ Ck,2π,

(2.1)

and ‖ · ‖p denotes norm in Lp([0, 2π],R).
For each x ∈ C0,π , there exists the following Fourier series expansion:

x(t) =
∞∑

i=0
[a2i+1 cos(2i + 1)t + b2i+1 sin(2i + 1)t], (2.2)

where a2i+1, b2i+1 ∈ R. Let us define the mapping J : C0,π → C1,π by

(Jx)(t) =
∫ t

0
x(s)ds −

∞∑

i=0

b2i+1
2i + 1

=
∞∑

i=0

[
a2i+1

2i + 1
sin(2i + 1)t − b2i+1

2i + 1
cos(2i + 1)t

]
, ∀t ∈ R.

(2.3)

Notice that, x ∈ C0,π
0 may be written as Fourier series as follows:

x(t) =
∞∑

i=0

a2i+1 cos(2i + 1)t (2.4)

and x ∈ C0,π
1 may be written as the following Fourier series:

x(t) =
∞∑

i=0

b2i+1 sin(2i + 1)t. (2.5)
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We define the mapping J0 : C
0,π
0 → C1,π

1 by

(J0x)(t) =
∫ t

0
x(s)ds =

∞∑

i=0

a2i+1

2i + 1
sin(2i + 1)t, ∀t ∈ R (2.6)

and the mapping J1 : C
0,π
1 → C1,π

0 by

(J1x)(t) =
∫ t

0
x(s)ds −

∞∑

i=0

b2i+1
2i + 1

= −
∞∑

i=0

b2i+1
2i + 1

cos(2i + 1)t, ∀t ∈ R. (2.7)

It is easy to prove that the mappings J, J0, J1 are completely continuous by using Arzelà-
Ascoli theorem.

Next, we introduce a Wirtinger inequality (see [22]) and a continuation theorem (see
[23, 24]) as follows.

Lemma 2.1 (Wirtinger inequality). For each x ∈ W1,p([0, 2π],R) such that x(0) = x(2π) and
∫2π
0 |x(t)|p−2x(t)dt = 0, one has

λ1‖x‖pp ≤ ∥∥x′∥∥p

p, (2.8)

where

λ1 =
(
πp

π

)p

, πp =
2π

(
p − 1

)1/p

p sin
(
π/p

) . (2.9)

Lemma 2.2 (Continuation theorem). Let Ω be open-bounded in a linear normal space X. Suppose
that f is a completely continuous field on Ω. Moreover, assume that the Leray-Schauder degree

deg
(
f,Ω, p

)
/= 0, for p ∈ X \ f(∂Ω). (2.10)

Then equation f(x) = p has at least one solution in Ω.

3. Antiperiodic Solutions for (1.4)

In this section, an existence result of antiperiodic solutions for (1.4)will be given.

Theorem 3.1. Assume that
(H1) there exists a nonnegative function α ∈ C(R,R+) such that

lim sup
|x|→+∞

∣∣g(t, x)
∣∣

|x|p−1
= α(t), ∀t ∈ R, (3.1)
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where

‖α‖∞ <

(
πp

π

)p

(= λ1). (3.2)

Then (1.4) has at least one antiperiodic solution.

Remark 3.2. When p = 2, λ1 is equal to 1. It is easy to see that condition (A1) in [15] is stronger
than condition (H1) of Theorem 3.1.

For making use of Leray-Schauder degree theory to prove the existence of antiperiodic
solutions for (1.4), we consider the homotopic equation of (1.4) as follows:

(
φp

(
x′))′ = −λf(x)x′ − λg(t, x) + λe(t), λ ∈ [0, 1]. (3.3)

Define the operator Lp : D(Lp) ⊂ C1,π → L1([0, 2π],R) by

(
Lpx

)
(t) =

(
φp

(
x′(t)

))′
, ∀t ∈ R, (3.4)

where

D
(
Lp

)
=
{
x ∈ C1,π : φp

(
x′(t)

)
is absolutely continuous on R

}
. (3.5)

Let N : C1,π → L1([0, 2π],R) be the Nemytski operator

(Nx)(t) = −f(x(t))x′(t) − g(t, x(t)) + e(t), ∀t ∈ R. (3.6)

Obviously, the operator Lp is invertible and the antiperiodic problem of (3.3) is equivalent to
the operator equation

Lpx = λNx, x ∈ D
(
Lp

)
. (3.7)

We begin with some lemmas below.

Lemma 3.3. Suppose that the assumption (H1) is true. Then the antiperiodic solution x(t) of (3.3)
satisfies

∥∥x′∥∥
p ≤ K1, (3.8)

where K1 is a positive constant only dependent of λ1 and ‖e‖∞.
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Proof. Multiplying the both sides of (3.3)with x(t) and integrating it over [0, 2π], we get

∫2π

0

(
φp

(
x′(t)

))′
x(t)dt = −λ

∫2π

0
f(x(t))x′(t)x(t)dt

− λ

∫2π

0
g(t, x(t))x(t)dt + λ

∫2π

0
e(t)x(t)dt.

(3.9)

Noting that

∫2π

0

(
φp

(
x′(t)

))′
x(t)dt = −

∫2π

0
φp

(
x′(t)

)
x′(t)dt = −∥∥x′∥∥p

p
(3.10)

and
∫2π
0 f(x(t))x(t)x′(t)dt = 0, we have

∥∥x′∥∥p

p ≤
∫2π

0

∣∣g(t, x(t))
∣∣|x(t)|dt +

∫2π

0
|e(t)||x(t)|dt. (3.11)

By hypothesis (H1), there exists a nonnegative constant β such that

∣∣g(t, x)
∣∣ ≤ α(t)|x|p−1 + β, ∀t, x ∈ R. (3.12)

Thus, from (3.11), we have

∥∥x′∥∥p

p ≤ ‖α‖∞‖x‖pp +
(
β + ‖e‖∞

)
∫2π

0
|x(t)|dt. (3.13)

That is,

∥∥x′∥∥p

p ≤ ‖α‖∞‖x‖pp +K2‖x‖p, (3.14)

where K2 = (2π)1/q(β + ‖e‖∞).
For each x ∈ C1,π , we get

∫2π

0
x(t)dt =

∫π

0
x(t)dt +

∫π

0
x(t + π)dt = 0. (3.15)

Similarly, we obtain that

∫2π

0
x′(t)dt = 0, (3.16)

∫2π

0
|x(t)|p−2x(t)dt = 0. (3.17)
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Basing on Lemma 2.1, it can be shown from (3.17) and (3.14) that

∥
∥x′∥∥p

p ≤ ‖α‖∞
λ1

∥
∥x′∥∥p

p +
K2

λ
1/p
1

∥
∥x′∥∥

p. (3.18)

Let K1 = (K2λ
1/q
1 /(λ1 − ‖α‖∞))1/(p−1) > 0, then

∥
∥x′∥∥

p ≤ K1. (3.19)

The proof is complete.

Lemma 3.4. Suppose that the assumption (H1) is true. Then, for the possible antiperiodic solution
x(t) of (3.3), there exists a prior bounds in C1,π , that is, x(t) satisfies

‖x‖C1 ≤ T1, (3.20)

where T1 is a positive constant independent of λ.

Proof. By (3.15), there exists t1 ∈ [0, 2π] such that x(t1) = 0. Hence, (3.8) yields that

‖x‖∞ ≤
∫2π

0

∣∣x′(t)
∣∣dt ≤ (2π)1/q

∥∥x′∥∥
p ≤ (2π)1/qK1 := K3. (3.21)

Letting

K4 = max
{∣∣f(x)

∣∣ : ‖x‖∞ ≤ K3
}
,

K5 = max
{∣∣g(t, x)

∣∣ + |e(t)| : t ∈ [0, 2π], ‖x‖∞ ≤ K3
}
.

(3.22)

From (3.16), there exists t2 ∈ [0, 2π] such that x′(t2) = 0, which implies that φp(x′(t2)) = 0.
Therefore, integrating the both sides of (3.3) over [t2, t], we have

φp

(
x′(t)

)
= −λ

∫ t

t2

f(x(t))x′(t)dt − λ

∫ t

t2

g(t, x(t))dt + λ

∫ t

t2

e(t)dt. (3.23)

Thus, we get from (3.8) that

∣∣φp

(
x′(t)

)∣∣ ≤ K4

∫2π

0

∣∣x′(t)
∣∣dt + 2πK5

≤ K4(2π)1/q
∥∥x′∥∥

p + 2πK5

≤ (2π)1/qK4K1 + 2πK5 := K
p−1
6 , ∀t ∈ [0, 2π].

(3.24)
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Noting that |φp(x′(t))| = |x′(t)|p−1, we obtain that

∥
∥x′∥∥

∞ ≤ K6. (3.25)

Combining (3.21) with (3.25), we have

‖x‖C1 ≤ T1, (3.26)

where T1 = max{K3, K6}. The proof is complete.

Now we give the proof of Theorem 3.1.

Proof of Theorem 3.1. Setting

Ω =
{
x ∈ C1,π : ‖x‖C1 < T1 + 1

}
. (3.27)

Obviously, the set Ω is an open-bounded set in C1,π and zero element θ ∈ Ω.
From the definition of operator N, it is easy to see that

(Nx)(t + π) ≡ −(Nx)(t), ∀x ∈ C1,π . (3.28)

Hence, the operator N sends C1,π into C0,π . Let us define the operator Fλ : Ω → C1,π by

Fλx = JφqJλNx = φq(λ)L−1
p Nx, λ ∈ [0, 1]. (3.29)

Obviously, the operator Fλ is completely continuous in Ω and the fixed points of operator F1

are the antiperiodic solutions of (1.4).
With this in mind, let us define the completely continuous field hλ(x) : Ω × [0, 1] →

C1,π by

hλ(x) = x − Fλx. (3.30)

By (3.20), we get that zero element θ /∈ hλ(∂Ω) for all λ ∈ [0, 1]. So that, the following Leray-
Schauder degrees are well defined and

deg(id − F1,Ω, θ) = deg(h1,Ω, θ) = deg(h0,Ω, θ) = deg(id,Ω, θ) = 1/= 0. (3.31)

Consequently, the operator F1 has at least one fixed point in Ω by using Lemma 2.2.
Namely, (1.4) has at least one antiperiodic solution. The proof is complete.

4. Antiperiodic Solutions with Symmetry for (1.5)

In this section, we will prove the existence of even antiperiodic solutions or odd antiperiodic
solutions for (1.5).
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Theorem 4.1. Assume that
(H2) the functions g(t, x) and e(t) are even in t, that is,

g(−t, ·) = g(t, ·), e(−t) = e(t), ∀t ∈ R (4.1)

and the assumption (H1) is true. Then (1.5) has at least one even antiperiodic solution x(t), that is,
x(t) satisfies

x(t + π) = −x(t), x(−t) = x(t), ∀t ∈ R. (4.2)

Proof. We consider the homotopic equation of (1.5) as follows:

(
φp

(
x′))′ = −λg(t, x) + λe(t), λ ∈ [0, 1]. (4.3)

Define the operator N0 : C
1,π
0 → L1([0, 2π],R) by

(N0x)(t) = −g(t, x(t)) + e(t), ∀t ∈ R. (4.4)

Obviously, the operator N0 is continuous.
Basing on the proof of Theorem 3.1, for the possible even antiperiodic solution x(t) of

(4.3), there exists a prior bounds in C1,π
0 , that is, x(t) satisfies

‖x‖C1 ≤ T2, (4.5)

where T2 is a positive constant independent of λ. So that, our problem is reduced to construct
one completely continuous operatorGλ in C1,π

0 which sends C1,π
0 into C1,π

0 , such that the fixed
points of operator G1 in some open-bounded set are the even antiperiodic solutions of (1.5).

With this in mind, let us define the following set:

Ω0 =
{
x ∈ C1,π

0 : ‖x‖C1 < T2 + 1
}
. (4.6)

Obviously, the set Ω0 is an open-bounded set in C1,π
0 and zero element θ ∈ Ω0.

By hypothesis (H2), it is easy to see that

(N0x)(−t) ≡ (N0x)(t), ∀x ∈ C1,π
0 . (4.7)

Hence, the operatorN0 sendsC
1,π
0 intoC0,π

0 . Let us define the completely continuous operator
Gλ : Ω0 → C1,π

0 by

Gλx = J1φqJ0λN0x = φq(λ)
(
Lp |D(Lp)∩C0,π

0

)−1
N0x, λ ∈ [0, 1]. (4.8)
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From the similar arguments in the proof of Theorem 3.1, we can prove that there exists
at least one fixed point of operator G1 in Ω0. Thus, (1.5) has at least one even antiperiodic
solution. The proof is complete.

Theorem 4.2. Assume that
(H3) the function g(t, x) is odd in t, x and e(t) is odd in t, that is,

g(−t,−x) = −g(t, x), e(−t) = −e(t), ∀t, x ∈ R (4.9)

and the assumption (H1) is true. Then (1.5) has at least one odd antiperiodic solution x(t), that is,
x(t) satisfies

x(t + π) = −x(t), x(−t) = −x(t), ∀t ∈ R. (4.10)

Proof. We consider the homotopic equation (4.3) of (1.5). Define the operator N1 : C1,π
1 →

L1([0, 2π],R) by

(N1x)(t) = −g(t, x(t)) + e(t), ∀t ∈ R. (4.11)

Obviously, the operator N1 is continuous.
Based on the proof of Theorem 3.1, for the possible odd antiperiodic solutions of (4.3),

there exists a prior bounds in C1,π
1 . Hence, our problem is reduced to construct one completely

continuous operator Pλ in C1,π
1 which sends C1,π

1 into C1,π
1 , such that the fixed points of

operator P1 in some open-bounded set are the odd antiperiodic solutions of (1.5).
With this in mind, let us define the set as follows:

Ω1 =
{
x ∈ C1,π

1 : ‖x‖C1 < T2 + 1
}
. (4.12)

Obviously, the set Ω1 is an open-bounded set in C1,π
1 and zero element θ ∈ Ω1.

From the hypothesis (H3), it is easy to see that

(N1x)(−t) ≡ −(N1x)(t), ∀x ∈ C1,π
1 . (4.13)

Thus, the operatorN1 sends C
1,π
1 into C0,π

1 . Let us define the completely continuous operator
Pλ : Ω1 → C1,π

1 by

Pλx = J0φqJ1λN1x = φq(λ)
(
Lp |D(Lp)∩C0,π

1

)−1
N1x, λ ∈ [0, 1]. (4.14)

By a similar way as the proof of Theorem 3.1, we can prove that there exists at least
one fixed point of operator P1 in Ω1. So that, (1.5) has at least one odd antiperiodic solution.
The proof is complete.
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5. Examples

In this section, we will give some examples to illustrate our main results.
Consider the following second-order differential equation with p-Laplacian operator:

(
φ4

(
x′))′ + x2x′ + g(t, x) = e(t). (5.1)

Example 5.1. Let

g(t, x) =
1
2
sin2t · x3, e(t) = cos t. (5.2)

For p = 4, by direct calculation, we can get λ1 = 3/4. Choosing α(t) = (1/2)sin2t, then (5.1)
satisfies the condition of Theorem 3.1. So it has at least one antiperiodic solution.

Moreover, the conditions of Theorem 4.1 are also satisfied. Thus (5.1) has at least one
even antiperiodic solution.

Example 5.2. Let

g(t, x) =
1
2
sin2t · x3, e(t) = sin t. (5.3)

We choose α(t) = (1/2)sin2t. Obviously, (5.1) satisfies all the conditions of Theorem 4.2.
Hence it has at least one odd antiperiodic solution.
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