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The existence and uniqueness of positive solution is obtained for the singular second-order m-
point boundary value problem u′′(t) + f(t, u(t)) = 0 for t ∈ (0, 1), u(0) = 0, u(1) =

∑m−2
i=1 αiu(ηi),

where m ≥ 3, αi > 0 (i = 1, 2, . . . , m − 2), 0 < η1 < η2 < · · · < ηm−2 < 1 are constants, and f(t, u) can
have singularities for t = 0 and/or t = 1 and for u = 0. The main tool is the perturbation technique
and Schauder fixed point theorem.

1. Introduction

In this paper, we investigate the existence and uniqueness of positive solution for the singular
second-order differential equation

u′′(t) + f(t, u(t)) = 0, t ∈ (0, 1) (1.1)

with them-point boundary conditions

u(0) = 0, u(1) =
m−2∑

i=1

αiu
(
ηi
)
, (1.2)

wherem ≥ 3, αi > 0 (i = 1, 2, . . . , m − 2), 0 < η1 < η2 < · · · < ηm−2 < 1 are constants, and f(t, u)
can have singularities for t = 0 and/or t = 1 and for u = 0.
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Multipoint boundary value problems for second-order ordinary differential equations
arise in many areas of applied mathematics and physics; see [1–3] and references therein.
The study of three-point boundary value problems for nonlinear second-order ordinary
differential equations was initiated by Lomtatidze [4, 5]. Since then, the nonlinear second-
order multipoint boundary value problems have been studied by many authors; see [1–
3, 6–29] and references therein. Most of all the works in the above mentioned references are
nonsingular multipoint boundary value problems; see [1–3, 10–17, 20–23, 25, 26, 28, 29], but
the works on the singularities have been quite rarely seen; see [4–8, 18, 19, 24, 27].

Recently, Du and Zhao [7], by constructing lower and upper solutions and together
with the maximal principle, proved the existence and uniqueness of positive solutions for the
following singular second-order m-point boundary value problem:

u′′(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = 0, u(1) =
m−2∑

i=1

αiu
(
ηi
)
,

(1.3)

where m ≥ 3, 0 < αi < 1 (i = 1, 2, . . . , m − 2), 0 < η1 < η2 < · · · < ηm−2 < 1 are constants,
∑m−2

i=1 αi < 1, f(t, u) is singular at t = 0, t = 1 and u = 0, under conditions that

(H1) f(t, u) ∈ C((0, 1) × (0,+∞), [0,+∞)), and f(t, u) is decreasing in u;

(H2) f(t, λ)/≡ 0,
∫1
0t(1 − t)f(t, λt(1 − t))dt < +∞, for all λ > 0.

The purpose of this paper is to establish existence and uniqueness result of positive
solution to SBVP(1.1), (1.2) under conditions that are weaker than conditions in [7] and hence
improve the result in [7] by using perturbation technique and Schauder fixed point theorem
[30].

Throughout this paper, we make the following assumptions:

(C0) αi > 0, i = 1, 2, . . . , m − 2 and
∑m−2

i=1 αi ≤ 1;

(C1) f : (0, 1) × (0,+∞) → [0,+∞) is continuous and nonincreasing in u for each fixed
t ∈ (0, 1);

(C2) 0 <
∫1
0s(1 − s)f(s, u0)ds < +∞ for each constant u0 ∈ (0,+∞).

2. Preliminary

We consider the perturbation problems that are given by

u′′(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = h, u(1) =
m−2∑

i=1

αiu
(
ηi
)
+

(

1 −
m−2∑

i=1

αi

)

h,
(2.1)h

where h is any nonnegative constant.

Definition 2.1. For each fixed constant h ≥ 0, a function u(t) is said to be a positive solution of
BVP(2.1)h if u ∈ C[0, 1] ∩ C2(0, 1) with u(t) > 0 on (0, 1] such that u′′(t) + f(t, u(t)) = 0 holds
for all t ∈ (0, 1) and u(0) = h, u(1) =

∑m−2
i=1 αiu(ηi) + (1 −∑m−2

i=1 αi)h.
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Lemma 2.2. Assume that conditions (C1) and (C2) are satisfied. Then, for each fixed constant u0 > 0,

lim
t→ 0+

t

∫η1

t

f(s, u0)ds = 0, (2.2)

lim
t→ 1−

(1 − t)
∫ t

ηm−2
f(s, u0)ds = 0. (2.3)

Proof. We only prove (2.2). And (2.3) can be proved similarly.
For each fixed constant u0 > 0, let

v(t) = t

∫η1

t

f(s, u0)ds for t ∈ (0, η1
]
. (2.4)

Then from the conditions (C1) and (C2), we have

0 ≤ v(t) ≤
∫η1

t

sf(s, u0)ds ≤
∫η1

0
sf(s, u0)ds < +∞ for t ∈ (0, η1

]
,

v′(t) =
∫η1

t

f(s, u0)ds − tf(t, u0) for t ∈ (0, η1
]
.

(2.5)

Hence from the conditions (C1) and (C2), we have

∫η1

0

∣
∣v′(t)

∣
∣dt ≤

∫η1

0
dt

∫η1

t

f(s, u0)ds +
∫η1

0
tf(t, u0)dt = 2

∫η1

0
tf(t, u0)dt < +∞. (2.6)

This implies that v′(t) ∈ L1(0, η1), and hence for each t ∈ [0, η1],

∫ t

0
v′(τ)dτ =

∫ t

0
dτ

∫η1

τ

f(s, u0)ds −
∫ t

0
τf(τ, u0)dτ = t

∫η1

t

f(s, u0)ds = v(t). (2.7)

Thus, it follows from the absolute continuity of integral that limt→ 0+v(t) = 0, that is,

lim
t→ 0+

t

∫η1

t

f(s, u0)ds = 0. (2.8)

This completes the proof of the lemma.

In the following discussion G(t, s) denotes Green’s function for Dirichlet problem:

−u′′(t) = 0, t ∈ [0, 1],

u(0) = u(1) = 0.
(2.9)



4 Boundary Value Problems

Then Green’s function G(t, s) can be expressed as follows:

G(t, s) =

⎧
⎨

⎩

(1 − t)s, 0 ≤ s ≤ t ≤ 1,

(1 − s)t, 0 ≤ t ≤ s ≤ 1.
(2.10)

It is easy to see that Green’s function G(t, s) has the following simple properties:

(i) 0 ≤ t(1 − t)s(1 − s) ≤ G(t, s) ≤ s(1 − s) for (t, s) ∈ [0, 1] × [0, 1];

(ii) G(t, s) > 0 for (t, s) ∈ (0, 1) × (0, 1);

(iii) G(0, s) = G(1, s) = 0 for s ∈ [0, 1].

By direct calculation, we can easily obtain the following result.

Lemma 2.3. Assume that conditions (C0), (C1), and (C2) are satisfied. Then, u(t) is a positive
solution of BVP(2.1)h (h > 0) if and only if u ∈ C[0, 1] is a solution of the following integral
equation:

u(t) =
∫1

0
G(t, s)f(s, u(s))ds +

t

1 −∑m−2
i=1 αiηi

m−2∑

i=1

αi

∫1

0
G
(
ηi, s
)
f(s, u(s))ds + h, (2.11)h

such that u(t) > h > 0 on (0, 1].

Lemma 2.4. Assume that conditions (C0), (C1), and (C2) are satisfied. Suppose also that u ∈ C[0, 1]
is a solution of the following integral equation:

u(t) =
∫1

0
G(t, s)f(s, u(s))ds +

t

1 −∑m−2
i=1 αiηi

m−2∑

i=1

αi

∫1

0
G
(
ηi, s
)
f(s, u(s))ds, (2.12)

such that u(t) > 0 on (0, 1]. Then, u(t) is a positive solution of SBVP(1.1), (1.2).

Proof. Since u ∈ C[0, 1] is a solution of (2.12)with u(t) > 0 on (0, 1], then for each t ∈ (0, 1),

∫ t

0
s(1 − t)f(s, u(s))ds < +∞,

∫1

t

t(1 − s)f(s, u(s))ds < +∞. (2.13)

So for each t ∈ (0, 1), we have

∫ t

0
sf(s, u(s))ds < +∞,

∫1

t

(1 − s)f(s, u(s))ds < +∞. (2.14)

For convenience, let c =: (1/(1 −∑m−2
i=1 αiηi))

∑m−2
i=1 αi

∫1
0G(ηi, s)f(s, u(s))ds. Take t ∈ (0, 1) and

Δt such that t + Δt ∈ (0, 1), then from the definition of derivative, the mean value theorem of
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integral, and the absolute continuity of integral, we have

lim
Δt→ 0

u(t + Δt) − u(t)
Δt

= lim
Δt→ 0

1
Δt

(∫ t+Δt

0
s(1 − t −Δt)f(s, u(s))ds +

∫1

t+Δt

(1 − s)(t + Δt)f(s, u(s))ds

−
∫ t

0
s(1 − t)f(s, u(s))ds −

∫1

t

t(1 − s)f(s, u(s))ds

)

+ c

= lim
Δt→ 0

1
Δt

(

−
∫ t

0
sΔtf(s, u(s))ds +

∫ t+Δt

t

s(1 − t −Δt)f(s, u(s))ds

+
∫1

t+Δt

(1 − s)Δtf(s, u(s))ds −
∫ t+Δt

t

t(1 − s)f(s, u(s))ds

)

+ c

= −
∫ t

0
sf(s, u(s))ds + t(1 − t)f(t, u(t)) +

∫1

t

(1 − s)f(s, u(s))ds − t(1 − t)f(t, u(t)) + c

= −
∫ t

0
sf(s, u(s))ds +

∫1

t

(1 − s)f(s, u(s))ds + c.

(2.15)

Hence

u′(t) = −
∫ t

0
sf(s, u(s))ds +

∫1

t

(1 − s)f(s, u(s))ds + c for t ∈ (0, 1). (2.16)

Consequently u′ ∈ C(0, 1).
Again, from the definition of derivative and the mean value theorem of integrals, we

have

lim
Δt→ 0

u′(t + Δt) − u′(t)
Δt

= lim
Δt→ 0

1
Δt

(

−
∫ t+Δt

0
sf(s, u(s))ds +

∫1

t+Δt

(1 − s)f(s, u(s))ds

+
∫ t

0
sf(s, u(s))ds −

∫1

t

(1 − s)f(s, u(s))ds

)

= lim
Δt→ 0

1
Δt

(

−
∫ t+1

t

sf(s, u(s))ds −
∫ t+Δt

t

(1 − s)f(s, u(s))ds

)

= lim
Δt→ 0

1
Δt

(

−
∫ t+Δt

t

f(s, u(s))ds

)

= −f(t, u(t)) for t ∈ (0, 1).

(2.17)

Hence u′′(t) = −f(t, u(t)) for t ∈ (0, 1). In particular, u′′ ∈ C(0, 1).
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On the other hand, from (2.12), we have u(0) = 0 and

m−2∑

i=1

αiu
(
ηi
)
=

m−2∑

i=1

αi

(∫1

0
G
(
ηi, s
)
f(s, u(s))ds +

ηi

1 −∑m−2
i=1 αiηi

m−2∑

i=1

αi

∫1

0
G
(
ηi, s
)
f(s, u(s))ds

)

=
m−2∑

i=1

αi

∫1

0
G
(
ηi, s
)
f(s, u(s))ds +

∑m−2
i=1 αiηi

1 −∑m−2
i=1 αiηi

m−2∑

i=1

αi

∫1

0
G
(
ηi, s
)
f(s, u(s))ds

=
1

1 −∑m−2
i=1 αiηi

m−2∑

i=1

αi

∫1

0
G
(
ηi, s
)
f(s, u(s))ds

= u(1).
(2.18)

In summary, u(t) is a positive solution of SBVP(1.1), (1.2). This completes the proof of the
lemma.

Remark 2.5. Assume that all conditions in Lemma 2.4 hold. Then

(1) if f ∈ C([0, 1) × [0,+∞), [0,+∞)), we have

u ∈ C[0, 1] ∩ C1[0, 1) ∩ C2(0, 1); (2.19)

(2) if f ∈ C((0, 1] × (0,+∞), [0,+∞)), we get

u ∈ C[0, 1] ∩ C1(0, 1] ∩ C2(0, 1). (2.20)

Lemma 2.6. Assume that conditions (C0), (C1), and (C2) are satisfied. Then, for each constant h > 0,
BVP(2.1)h has a unique solution u(t;h) with u(t;h) ≥ h on [0, 1].

Proof. We begin by defining an operator T in Dh by

(Tu)(t) =
∫1

0
G(t, s)f(s, u(s))ds +

t

1 −∑m−2
i=1 αiηi

m−2∑

i=1

αi

∫1

0
G
(
ηi, s
)
f(s, u(s))ds + h, (2.21)

where Dh := {u ∈ C[0, 1] : u(t) ≥ h on [0, 1]} is a convex closed set. Then from Lemma 2.2
and the condition (C2), we have Tu ∈ C[0, 1] and Tu satisfies

(Tu)′′(t) + f(t, u(t)) = 0, t ∈ (0, 1),

(Tu)(0) = h, (Tu)(1) =
m−2∑

i=1

αi(Tu)
(
ηi
)
+

(

1 −
m−2∑

i=1

αi

)

h.
(2.22)

We now apply Schauder fixed point theorem [30] to obtain the existence of a fixed
point for T . To do this, it suffices to verify that T is continuous in Dh and T(Dh) is a compact
set.
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Take u0 ∈ Dh, and let {uk}∞k=1 ⊂ Dh such that

‖uk − u0‖C[0,1] −→ 0 as k −→ ∞. (2.23)

Then for each t ∈ (0, 1),

f(t, uk(t)) −→ f(t, u0(t)) as k −→ ∞. (2.24)

From the definition of T , we have

(Tuk)(t) =
∫1

0
G(t, s)f(s, uk(s))ds +

t

1 −∑m−2
i=1 αiηi

m−2∑

i=1

αi

∫1

0
G
(
ηi, s
)
f(s, uk(s))ds + h. (2.25)

Also, from the conditions (C1) and (C2), we have

f(t, u0(t)) + f(t, uk(t)) ≤ 2f(t, h) for t ∈ (0, 1),
∫1

0
s(1 − s)f(s, h)ds < +∞.

(2.26)

Thus by Lebesgue-dominated convergence theorem, we have

max
t∈[0,1]

|(Tuk)(t) − (Tu0)(t)| ≤
∫1

0
G(s, s)

∣
∣f(s, uk(s)) − f(s, u0(s))

∣
∣ds

+
∑m−2

i=1 αi

1 −∑m−2
i=1 αiηi

∫1

0
G(s, s)

∣
∣f(s, uk(s)) − f(s, u0(s))

∣
∣ds

=

(

1 +
∑m−2

i=1 αi

1 −∑m−2
i=1 αiηi

)∫1

0
s(1 − s)

∣
∣f(s, uk(s)) − f(s, u0(s))

∣
∣ds

−→ 0 as k −→ ∞.

(2.27)

Therefore, T : Dh → Dh is continuous.
Next we need to show that T(Dh) is a relatively compact subset of C[0, 1].
(1) From the definition of T and the conditions (C1) and (C2), for each u ∈ Dh we have

0 < h ≤ (Tu)(t) ≤ (Th)(t) for t ∈ [0, 1]. (2.28)

This implies that T(Dh) is uniformly bounded.
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(2) For each u ∈ Dh, since

(Tu)′(t) = −
∫ t

0
sf(s, u(s))ds +

∫1

t

(1 − s)f(s, u(s))ds

+
1

1 −∑m−2
i=1 αiηi

m−2∑

i=1

αi

∫1

0
G
(
ηi, s
)
f(s, u(s))ds for t ∈ [0, 1],

(2.29)

then

∣
∣(Tu)′(t)

∣
∣ ≤
∫ t

0
sf(s, h)ds +

∫1

t

(1 − s)f(s, h)ds

+
1

1 −∑m−2
i=1 αiηi

m−2∑

i=1

αi

∫1

0
G
(
ηi, s
)
f(s, h)ds

=: M(t) for t ∈ [0, 1].

(2.30)

Obviously M(t) ≥ 0 on [0, 1], and

∫1

0
M(t)dt = 2

∫1

0
s(1 − s)f(s, h)ds +

1

1 −∑m−2
i=1 αiηi

m−2∑

i=1

αi

∫1

0
G
(
ηi, s
)
f(s, h)ds

≤ 2
∫1

0
s(1 − s)f(s, h)ds +

1

1 −∑m−2
i=1 αiηi

m−2∑

i=1

αi

∫1

0
s(1 − s)f(s, h)ds

=

(

2 +
∑m−2

i=1 αi

1 −∑m−2
i=1 αiηi

)∫1

0
s(1 − s)f(s, h)ds < +∞.

(2.31)

Thus M ∈ L1(0, 1). From the absolute continuity of integral, we have that for each number
ε > 0, there is a positive number δ > 0 such that for all t1, t2 ∈ [0, 1], if |t1 − t2| < δ, then
|∫ t2t1M(t)dt| < ε. It follows that for all t1, t2 ∈ [0, 1] with |t1 − t2| < δ, we have

|(Tu)(t2) − (Tu)(t1)| =
∣
∣
∣
∣
∣

∫ t2

t1

(Tu)′(t)dt

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

∫ t2

t1

∣
∣(Tu)′(t)

∣
∣dt

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

∫ t2

t1

M(t)dt

∣
∣
∣
∣
∣
< ε. (2.32)

Therefore T(Dh) is equicontinuous on [0, 1]. It follows fromAscoli-Arzela theorem that T(Dh)
is a relatively compact subset of C[0, 1]. Consequently, by Schauder fixed point theorem [30],
T has a fixed point u(t;h) ∈ Dh. Obviously, u(t;h) > h > 0 on (0, 1]. Hence from Lemma 2.3,
u(t;h) is a solution of BVP (2.1)h.

Next, we will show the uniqueness of solution. Let us suppose that u1(t;h), u2(t;h) are
two different solutions of BVP(2.1)h. Then there exists t0 ∈ (0, 1] such that u1(t0;h)/=u2(t0;h).
Without loss of generality, assume that u1(t0;h) > u2(t0;h). Letw(t) := u1(t;h) − u2(t;h), then
w(0) = 0, w(t0) > 0, and hence there exists t1 ∈ [0, t0) such that

w(t1) = 0, w(t) > 0 for t ∈ (t1, t0]. (2.33)
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Further we havew(t) > 0 on (t1, 1]. In fact, assume to the contrary that the conclusion is false.
Then there exists t2 ∈ (t0, 1] such that w(t2) ≤ 0. Thus there exists t3 ∈ (t0, t2] such that

w(t3) = 0, w(t) > 0 for t ∈ [t0, t3). (2.34)

Since w(t1) = 0, w(t) > 0 on (t1, t0], then

w′′(t) = −f(t, u1(t;h)) + f(t, u2(t;h)) ≥ 0 for t ∈ [t1, t3]. (2.35)

It follows from w(t1) = w(t3) = 0 that w(t) ≤ 0 on [t1, t3]. This is a contradiction to w(t) > 0
on (t1, t3).

Now we prove that w(t) ≥ 0 on [0, t1]. In fact, assume to the contrary that the
conclusion is false. Then there exists t4 ∈ (0, t1) such that w(t4) < 0. Since w(0) = w(t1) = 0,
then there exist t5, t6 with 0 ≤ t5 < t4 < t6 ≤ t1 such that

w(t5) = w(t6) = 0, w(t) < 0 for t ∈ (t5, t6). (2.36)

Thus,

w′′(t) = −f(t, u1(t;h)) + f(t, u2(t;h)) ≤ 0 for t ∈ [t5, t6]. (2.37)

It follows from w(t5) = w(t6) that w(t) ≥ 0 on [t5, t6]. This is a contradiction to w(t) < 0 on
(t5, t6).

In summary, we have w(t) ≥ 0 on [0, t1] and w(t) > 0 on (t1, 1]. Thus

w(t) =
∫1

0
G(t, s)

[
f(s, u1(s;h)) − f(s, u2(s;h))

]
ds

+
t

1 −∑m−2
i=1 αiηi

m−2∑

i=1

αi

∫1

0
G
(
ηi, s
)[
f(s, u1(s;h)) − f(s, u2(s;h))

]
ds

≤ 0 for t ∈ (0, 1].

(2.38)

This is a contradiction to w(t) > 0 on (t1, 1]. This completes the proof of the lemma.

Lemma 2.7. Assume that conditions (C0), (C1), and (C2) are satisfied. Then, the unique solution
u(t;h) of BVP(2.1)h is nondecreasing in h.

Proof. Let 0 < h2 < h1, and let u(t;h1), u(t;h2) be the solutions of BVP(2.1)h1
and BVP(2.1)h2

,
respectively. We will show

u(t;h1) ≥ u(t;h2) for t ∈ [0, 1]. (2.39)
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Assume to the contrary that the above inequality is false. Then there exists t0 ∈ (0, 1] such that
u(t0;h1) < u(t0;h2). Since u(0;h1) = h1 > h2 = u(0;h2), we have that there exists t1 ∈ (0, t0)
such that

u(t1;h1) = u(t1;h2), u(t;h1) < u(t;h2) for t ∈ (t1, t0]. (2.40)

Next we prove u(t;h1) < u(t;h2) on (t0, 1]. In fact, assume to the contrary that the
conclusion is false. Then there exists t2 ∈ (t0, 1] such that

u(t2;h1) = u(t2;h2), u(t;h1) < u(t;h2) for t ∈ [t0, t2). (2.41)

Hence

u′′(t;h1) − u′′(t;h2) = −f(t, u(t;h1)) + f(t, u(t;h2)) ≤ 0 for t ∈ [t1, t2]. (2.42)

It follows from u(ti;h1) = u(ti;h2), i = 1, 2 that u(t;h1) ≥ u(t;h2) on [t1, t2]. This is a
contradiction to u(t;h1) < u(t;h2) on (t1, t2). Thus u(t;h1) < u(t;h2) on (t1, 1]. This implies
that

u′′(t;h1) − u′′(t;h2) = −f(t, u(t;h1)) + f(t, u(t;h2)) ≤ 0 for t ∈ [t1, 1]. (2.43)

It follows from u′(t1;h1) − u′(t1;h2) ≤ 0 that u′(t;h1) − u′(t;h2) ≤ 0 on [t1, 1]. Hence, from
u(t;h1) < u(t;h2) on (t1, 1], we have u′(1;h1) − u′(1;h2) < 0. Thus

u(1;h1) − u(1;h2) < u
(
ηm−2;h1

) − u
(
ηm−2;h2

)
. (2.44)

There are two cases to consider.

Case 1 (see [t1 ≥ ηm−2]). In this case, we have

u
(
ηi;h1

) − u
(
ηi;h2

) ≥ 0, i = 1, 2, . . . , m − 2. (2.45)

Hence from the boundary conditions of BVP(2.1)h, we have

u(1;h1) − u(1;h2) =
m−2∑

i=1

αiu
(
ηi;h1

)
+

(

1 −
m−2∑

i=1

αi

)

h1

−
m−2∑

i=1

αiu
(
ηi;h2

) −
(

1 −
m−2∑

i=1

αi

)

h2

≥
m−2∑

i=1

αi

(
u
(
ηi;h1

) − u
(
ηi;h2

)) ≥ 0.

(2.46)

This is a contradiction to u(1;h1) − u(1;h2) < 0.
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Case 2 (see [t1 < ηm−2]). In this case, we have

u(1;h1) − u(1;h2) < u
(
ηm−2;h1

) − u
(
ηm−2;h2

)
< 0,

u
(
ηm−2;h1

) − u
(
ηm−2;h2

) ≤ u
(
ηi;h1

) − u
(
ηi;h2

)
, i = 1, 2, . . . , m − 3.

(2.47)

It follows from (C0) that

u(1;h1) − u(1;h2) <
m−2∑

i=1

αi

(
u
(
ηm−2;h1

) − u
(
ηm−2;h2

)) ≤
m−2∑

i=1

αi

(
u
(
ηi;h1

) − u
(
ηi;h2

))
. (2.48)

This is a contradiction to the boundary conditions of BVP(2.1)h.
In summary, we have u(t;h1) ≥ u(t;h2) on [0, 1]. This completes the proof of the

lemma.

3. Main Results

We now state and prove our main results for singular second-order m-point boundary value
problem (1.1), (1.2).

Theorem 3.1. Assume that conditions (C0), (C1), and (C2) are satisfied. Then, SBVP(1.1), (1.2) has
at most one positive solution.

Proof. Suppose that u1(t) and u2(t) are any two positive solutions of SBVP(1.1), (1.2). We now
prove that u1(t) ≡ u2(t) on [0, 1]. To do this, let v(t) = u1(t)−u2(t) on [0, 1]. We will show that
v(t) ≡ 0 on [0, 1]. There are three cases to consider.

Case 1 (see [v(1) > 0]). In this case, we have that v(t) ≥ 0 on [0, 1]. In fact, assume to the
contrary that the conclusion is false. Then, there exists t0 ∈ (0, 1) such that v(t0) < 0. Since
v(0) = 0 and v(1) > 0, then there exist t1, t2 ∈ [0, 1) with t1 < t0 < t2 such that

v(t) < 0 on (t1, t2), v(t1) = v(t2) = 0. (3.1)

Thus

v′′(t) = u′′
1(t) − u′′

2(t) = −f(t, u1(t)) + f(t, u2(t)) ≤ 0 for t ∈ (t1, t2). (3.2)

Hence v(t) ≥ 0 on [t1, t2], which is a contradiction to v(t) < 0 on (t1, t2). Therefore v(t) ≥ 0 on
[0, 1]. Consequently

v′′(t) = −f(t, u1(t)) + f(t, u2(t)) ≥ 0 for t ∈ (0, 1). (3.3)

Thus v(t) is convex on [0, 1]. Since v(1) > 0 and

v(1) = u1(1) − u2(1) =
m−2∑

i=1

αiu1
(
ηi
) −

m−2∑

i=1

αiu2
(
ηi
)
=

m−2∑

i=1

αiv
(
ηi
)
, (3.4)
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then there exists i0 ∈ {1, 2, . . . , m − 2} such that

v
(
ηi0
)
= max

{
v
(
ηi
)
: i = 1, 2, . . . , m − 2

}
> 0, (3.5)

and hence from (C0) and 0 < ηi0 < 1, we have

v(1) ≤
m−2∑

i=1

αiv
(
ηi0
) ≤ v

(
ηi0
)
<

1
ηi0

v
(
ηi0
)
, (3.6)

which is a contradiction to that v(t) is convex on [0, 1].

Case 2 (see [v(1) = 0]). In this case, we have that v(t) ≡ 0 on [0, 1]. In fact, assume to the
contrary that the conclusion is false. Then, there exists t0 ∈ (0, 1) such that v(t0)/= 0. We may
assume without loss of generality that v(t0) > 0. Then from v(0) = v(1) = 0, there exist
t1, t2 ∈ [0, 1] with t1 < t0 < t2 such that

v(t) > 0 on (t1, t2), v(t1) = v(t2) = 0. (3.7)

Thus

v′′(t) = −f(t, u1(t)) + f(t, u2(t)) ≥ 0 for t ∈ (t1, t2). (3.8)

Since v(t1) = v(t2) = 0, then

v(t) ≤ 0 for t ∈ (t1, t2), (3.9)

which is a contradiction to that v(t) > 0 on (t1, t2).

Case 3 (see [v(1) < 0]). In this case, similar to the proof of Case 1 we can easily show that
v(t) ≤ 0 on [0, 1]. Consequently

v′′(t) = −f(t, u1(t)) + f(t, u2(t)) ≤ 0 for t ∈ (0, 1). (3.10)

Thus v(t) is concave on [0, 1]. Since v(1) =
∑m−2

i=1 αiv(ηi) < 0, then there exists i1 ∈ {1, 2, . . . , m−
2} such that v(ηi1) = min{v(ηi) : i = 1, 2, . . . , m − 2} < 0, and hence from 0 < ηi1 < 1, we have

v(1) ≥
m−2∑

i=1

αiv
(
ηi1
) ≥ v

(
ηi1
)
>

1
ηi1

v
(
ηi1
)
, (3.11)

which is a contradiction to that v(t) is concave on [0, 1].

In summary, v(t) ≡ 0 on [0, 1], that is, u1(t) ≡ u2(t) on [0, 1]. This completes the proof
of the theorem.
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Theorem 3.2. Assume that conditions (C0), (C1), and (C2) are satisfied. Then SBVP(1.1), (1.2) has
exactly one positive solution.

Proof. The uniqueness of positive solution to SBVP(1.1), (1.2) follows from Theorem 3.1
immediately. Thus we only need to show the existence.

Let {hj}∞j=1 be a decreasing sequence that converges to the number 0. Then from
Lemma 2.6, BVP(2.1)hj

has a unique solution u(t;hj) := uj(t). From Lemma 2.7 and (2.11)h,
we have that for each j < k,

0 ≤ uj(t) − uk(t) ≤ hj − hk for t ∈ [0, 1]. (3.12)

Thus there exists u ∈ C[0, 1] such that

lim
j→∞

uj(t) = u(t) ≥ 0, uniformly on [0, 1]. (3.13)

It is easy to see that u(t) satisfies boundary conditions (1.2).
Now we prove that

u(t) > 0 for t ∈ (0, 1]. (3.14)

At first, we prove that

u
(
ηi0
)
= max

{
u
(
ηi
)
: i = 1, 2, . . . , m − 2

}
> 0, (3.15)

where i0 ∈ {1, 2, . . . , m − 2}. In fact, assume to the contrary that the conclusion is false. Then

u(1) =
m−2∑

i=1

αiu
(
ηi
)
= 0. (3.16)

From the fact that each function in the sequence {uj}∞j=1 is concave, we have that u(t) is
concave. It follows from u(0) = u(ηi0) = u(1) = 0 that u(t) ≡ 0 on [0, 1]. Thus when j is
large enough, uj(t) is small enough such that uj(t) ≤ h1 on [0, 1]. Hence from condition (C1),
we have

uj

(
ηi0
)
=
∫1

0
G
(
ηi0 , s

)
f
(
s, uj(s)

)
ds

+
ηi0

1 −∑m−2
i=1 αiηi

m−2∑

i=1

αi

∫1

0
G
(
ηi, s
)
f
(
s, uj(s)

)
ds + hj

>

∫1

0
G
(
ηi0 , s

)
f(s, h1)ds > 0.

(3.17)
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Let j → ∞, we have

u
(
ηi0
) ≥
∫1

0
G
(
ηi0 , s

)
f(s, h1)ds > 0. (3.18)

This is a contradiction to u(ηi0) = 0. Thus u(ηi0) > 0, and hence u(1) > 0. Since u(t) is concave,
then u(t) > 0 on (0, 1]. Since

uj(t) =
∫1

0
G(t, s)f

(
s, uj(s)

)
ds +

t

1 −∑m−2
i=1 αiηi

m−2∑

i=1

αi

∫1

0
G
(
ηi, s
)
f
(
s, uj(s)

)
ds + hj , (3.19)

then passing to the limit, by Monotone convergence theorem [31], we have

u(t) =
∫1

0
G(t, s)f(s, u(s))ds +

t

1 −∑m−2
i=1 αiηi

m−2∑

i=1

αi

∫1

0
G
(
ηi, s
)
f(s, u(s))ds. (3.20)

Therefore by Lemma 2.4, u(t) is a positive solution of SBVP(1.1), (1.2). This completes the
proof of the theorem.

Finally, we give an example to which our results can be applicable.

Example 3.3. Consider the singular nonlinear second-orderm-point boundary value problem:

u′′ +
1

tβ1(1 − t)β2u2−β1
= 0, t ∈ (0, 1),

u(0) = 0, u(1) =
m−2∑

i=1

αiu
(
ηi
)
,

(3.21)

where m ≥ 3, 0 < η1 < η2 < · · · < ηm−2 < 1, αi > 0 (i = 1, 2, . . . , m − 2),
∑m−2

i=1 αi ≤ 1, and
β1, β2 ∈ (0, 2).

Let

f(t, u) =
1

tβ1(1 − t)β2u2−β1
for (t, u) ∈ (0, 1) × (0,+∞). (3.22)

Obviously, the function f(t, u) is singular at t = 0, 1 and u = 0. It is easy to verify that f(t, u)
satisfies conditions (C1) and (C2). So from Theorem 3.2, SBVP(3.21) has exactly one positive
solution. However, we note that Theorem 2 in [7] cannot guarantee that SBVP(3.21) has a
unique positive solution, since

∫1

0
t(1 − t)f(t, λt(1 − t))dt = +∞ for λ > 0. (3.23)
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