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By using variational methods, we study the multiplicity of solutions for Kirchhoff type problems
−(a + b

∫
Ω |∇u|2)Δu = f(x, u), in Ω; u = 0, on ∂Ω. Existence results of two nontrivial solutions and

infinite many solutions are obtained.

1. Introduction

Consider the following Kirchhoff type problems

−
(
a + b

∫

Ω
|∇u|2

)
Δu = f(x, u), in Ω,

u = 0, on ∂Ω,

(1.1)

where Ω is a smooth bounded domain in RN (N = 1, 2, or 3), a, b > 0, and f : Ω × R1 �→ R1

is a Carathéodory function that satisfies the subcritical growth condition

∣
∣f(x, t)

∣
∣ ≤ C

(
1 + |t|p−1

)
for some 2 < p < 2∗ =

⎧
⎨

⎩

2N
N − 2

, N ≥ 3,

+∞, N = 1, 2,
(1.2)

where C is a positive constant.
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It is pointed out in [1] that the problem (1.1) model several physical and biological
systems, where u describes a process which depends on the average of itself (e.g., population
density). Moreover, this problem is related to the stationary analogue of the Kirchhoff
equation

utt −
(
a + b

∫

Ω
|∇u|2

)
Δu = g(x, t), (1.3)

proposed by Kirchhoff [2] as an extension of the classical D’ Alembert’s wave equation
for free vibrations of elastic strings. Kirchhoff’s model takes into account the changes in
length of the string produced by transverse vibrations. Some early studies of Kirchhoff
equations were Bernstein [3] and Pohoẑaev [4]. However, (1.3) received much attention
only after Lions [5] proposed an abstract framework to the problem. Some interesting
results can be found, for example, in [6–13]. Specially, more recently, Alves et al. [14],
Ma and Rivera [10], and He and Zou [9] studied the existence of positive solutions and
infinitely many positive solutions of the problems by variational methods, respectively;
Perera and Zhang [12] obtained one nontrivial solutions of (1.1) by Yang index theory;
Zhang and Perera [13] and Mao and Zhang [11] got three nontrivial solutions (a positive
solution, a negative solution, and a sign-changing solution) by invariant sets of descent
flow.

In the present paper, we are interested in finding multiple nontrivial solutions of the
problem (1.1). Wewill use a three-critical-point theoremdue to Brezis andNirenberg [15] and
a Z2 version of the Mountain Pass Theorem due to Rabinowitz [16] to study the existence of
multiple nontrivial solutions of problem (1.1). Our results are different from the above theses.

2. Preliminaries

Let X := H1
0(Ω) be the Sobolev space equipped with the inner product and the norm

(u, v) =
∫

Ω
∇u · ∇v dx, ‖u‖ = (u, u)1/2. (2.1)

Throughout the paper, we denote by | · |r the usual Lr-norm. Since Ω is a bounded domain, it
is well known that X ↪→ Lr(Ω) continuously for r ∈ [1, 2∗], compactly for r ∈ [1, 2∗). Hence,
for r ∈ [1, 2∗], there exists γr such that

|u|r ≤ γr‖u‖, ∀u ∈ X. (2.2)

Recall that a function u ∈ X is called a weak solution of (1.1) if

(
a + b‖u‖2

)∫

Ω
∇u · ∇v dx =

∫

Ω
f(x, u)v dx, ∀v ∈ X. (2.3)
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Seeking a weak solution of problem (1.1) is equivalent to finding a critical point of C1

functional

Φ(u) :=
a

2
‖u‖2 + b

4
‖u‖4 −Ψ(u), (2.4)

where

Ψ(u) :=
∫

Ω
F(x, u)dx, ∀u ∈ X,

F(x, t) :=
∫ t

0
f(x, s)ds, ∀(x, t) ∈ Ω × R1.

(2.5)

Moreover,

〈
Φ′(u), v

〉
=
(
a + b‖u‖2

)∫

Ω
∇u∇v −

∫

Ω
f(x, u)v, ∀u, v ∈ X. (2.6)

Our assumptions lead us to consider the eigenvalue problems

−Δu = λu, in Ω,

u = 0, on ∂Ω,
(2.7)

−‖u‖2Δu = μu3, in Ω,

u = 0, on ∂Ω.
(2.8)

Denote by 0 < λ1 < λ2 < · · · < λk · · · the distinct eigenvalues of the problem (2.7) and by
V1, V2, . . . , Vk, . . . the eigenspaces corresponding to these eigenvalues. It is well known that λ1
can be characterized as

λ1 = inf
{
‖u‖2 : u ∈ X, |u|2 = 1

}
, (2.9)

and λ1 is achieved by ϕ1 > 0.
μ is an eigenvalue of problem (2.8) means that there is a nonzero u ∈ X such that

‖u‖2
∫

Ω
∇u∇v dx = μ

∫

Ω
u3v dx, ∀v ∈ X. (2.10)

This u is called an eigenvector corresponding to eigenvalue μ. Set

I(u) = ‖u‖4, u ∈ S :=
{
u ∈ X :

∫

Ω
u4 = 1

}
. (2.11)
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Denote by 0 < μ1 < μ2 < · · · all distinct eigenvalues of the problem (2.8). Then,

μ1 := inf
u∈S

I(u), (2.12)

μ1 > 0 is simple and isolated, and μ1 can be achieved at some ψ1 ∈ S and ψ1 > 0 in Ω (see
[12, 13]).

We need the following concept, which can be found in [17].

Definition 2.1. Let X be a Banach space and Φ ∈ C1(X,R1). We say that Φ satisfies the (PS)
condition at the level c ∈ R1((PS)c condition for short) if any sequence {un} ⊂ X along with
Φ(un) → c and Φ′(un) → 0 as n → ∞ possesses a convergent subsequence. If Φ satisfies
(PS)c condition for each c ∈ R1, then we say that Φ satisfies the (PS) condition.

In this paper, the following theorems are our main tools, which are Theorem 4 in [15]
and Theorem 9.12 in [16], respectively.

Theorem 2.2. Let X be a real Banach space with a direct sum decomposition X = X1 ⊕ X2, where
k = dimX2 <∞. Let F ∈ C1(X,R1) and satisfy (PS) condition. Assume that there is r > 0 such that

F(u) ≥ 0, for u ∈ X1, ‖u‖ ≤ r,
F(u) ≤ 0, for u ∈ X2, ‖u‖ ≤ r.

(2.13)

Assume also that F is bounded below and

inf
u∈X

F(u) < 0. (2.14)

Then F has at least two nonzero critical points.

Theorem 2.3. Let X be an infinite dimensional real Banach space, and let F ∈ C1(X,R1) be even
and satisfy the PS condition and F(0) = 0. Let X = X1 ⊕ X2, where X2 is finite dimensional, and F
satisfies that

(i) there exist constants ρ, α > 0 such that F|∂Bρ⋂X1
≥ α, where

∂Bρ =
{
u ∈ X : ‖u‖ = ρ}, (2.15)

(ii) for each finite dimensional subspace E1 ⊂ X, the set {u ∈ E1 : F(u) > 0} is bounded.
Then, F possesses an unbounded sequence of critical values.

3. Main Results

We need the following assumptions.

(f1) f(x, t) is odd in t for all x ∈ Ω.
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(f2) There exist δ > 0, ε > 0 and λ ∈ (λk, λk+1), k ∈ N, such that

a(λk + ε)|t|2 ≤ 2F(x, t) ≤ aλ|t|2, ∀x ∈ Ω, |t| ≤ δ, (3.1)

where λk and λk+1 are two consecutive eigenvalues of the problem (2.7).

(f3) There exist δ > 0 and λ ∈ [λk, λk+1), k ∈ N such that

2F(x, t) ≤ aλ|t|2, ∀x ∈ Ω, |t| ≤ δ, (3.2)

where λk and λk+1 are two consecutive eigenvalues of the problem (2.7).

(f4)

lim sup
|t|→∞

F(x, t) − (b/4)μ1|t|4
|t|τ < α, uniformly in x ∈ Ω, (3.3)

where τ ∈ [0, 2] and 0 < 2α < aλ1.

(f5) ∃ν > 4 such that νF(x, t) ≤ tf(x, t), |t| large.

Now, we are ready to state our main results.

Theorem 3.1. If conditions (f2) and (f4) hold, then the problem (1.1) has at least two nontrivial
solutions in X.

Proof. Set

X1 =
∞⊕

i=k+1

Vi, X2 =
k⊕

i=1

Vi. (3.4)

Then, X has a direct sum decomposition X = X1 ⊕X2 with dimX2 <∞. LetMr be such that

|u|r ≥Mr‖u‖, ∀u ∈ X2. (3.5)

Step 1. Φ is weakly lower semicontinuous.
Indeed, we only to show Ψ : X → R is weakly upper semicontinuous. Let {un} ⊂ X,

u ∈ X, un ⇀ u in X. Then, we may assume that

un −→ u in Lr(Ω), r ∈ [1, 2∗). (3.6)

We need to prove

Ψ(u) ≥ lim sup
n→∞

Ψ(un) = inf
k∈N

sup
n≥k

Ψ(un). (3.7)
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If this is false, then

Ψ(u) < lim sup
n→∞

Ψ(un) = inf
k∈N

sup
n≥k

Ψ(un), (3.8)

and hence there exist ε0 > 0 and a subsequence of {un}, still denoted by {un}, such that

ε0 < Ψ(un) −Ψ(u)

=
∫

Ω
[F(x, un) − F(x, u)]dx

=
∫

Ω

∫1

0
f(x, u + s(un − u))(un − u)ds dx

≤
∫

Ω

∫1

0
C
(
|u + s(un − u)|p−1 + 1

)
|un − u|ds dx

≤
∫

Ω
C
[
2p−1

(
|u|p−1 + |un − u|p−1

)
+ 1

]
|un − u|dx

≤
∫

Ω
C2p−1|u|p−1|un − u|dx +

∫

Ω
C2p−1|un − u|pdx +

∫

Ω
C|un − u|dx

−→ 0, as n −→ ∞.

(3.9)

This is a contradiction. Hence, Ψ is weakly upper semicontinuous, and hence Φ is weakly
lower semicontinuous.

Step 2. There exists r > 0, such that

Φ(u) ≥ 0, for u ∈ X1, ‖u‖ ≤ r,
Φ(u) ≤ 0, for u ∈ X2, ‖u‖ ≤ r.

(3.10)

Particularly,

Φ(u) < 0, for u ∈ X2, 0 < ‖u‖ ≤ r. (3.11)

Indeed, by (1.2) and (f2), there exist two positive constants C1, C2 such that

F(x, t) ≤ a

2
λ|t|2 + C1|t|p, (3.12)

F(x, t) ≥ a

2
(λk + ε)|t|2 − C2|t|p. (3.13)
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Thus, for u ∈ X1, the combination of (2.2) and (3.12) implies that

Φ(u) ≥ a

2
‖u‖2 + b

4
‖u‖4 − a

2
λ

∫

Ω
u2dx − C1

∫

Ω
|u|pdx

≥ a

2
‖u‖2 + b

4
‖u‖4 − a

2
λ

λk+1
‖u‖2 −C1γp‖u‖p

=
a

2

(
1 − λ

λk+1

)
‖u‖2 + b

4
‖u‖4 − C1γp‖u‖p.

(3.14)

Then, there exists r1 > 0 such that

Φ(u) ≥ 0, for u ∈ X1, ‖u‖ ≤ r1, (3.15)

due to p > 2 and λ < λk+1. Moreover, for u ∈ X2, the combination of (2.2) and (3.13) implies
that

Φ(u) ≤ a

2
‖u‖2 + b

4
‖u‖4 − a

2
(λk + ε)

∫

Ω
u2dx + C2

∫

Ω
|u|pdx

≤ a

2
‖u‖2 + b

4
‖u‖4 − a

2

(
λk + ε
λk

)
‖u‖2 + C3‖u‖p

= −a
2

(
λk + ε
λk

− 1
)
‖u‖2 + b

4
‖u‖4 + C3‖u‖p,

(3.16)

where C3 = C2γp. Hence, there exists r2 > 0 such that

Φ(u) ≤ 0, for u ∈ X2, ‖u‖ ≤ r2,
Φ(u) < 0, for u ∈ X2, 0 < ‖u‖ ≤ r2.

(3.17)

Lastly, the conclusion follows from choosing r = min{r1, r2}.

Step 3. Φ is coercive on X, that is, Φ(u) → +∞ as n → ∞, and Φ is bounded from below.
In fact, set

p(x, t) := F(x, t) − b

4
μ1|t|4. (3.18)

Then,

Φ(u) =
a

2
‖u‖2 + b

4
‖u‖4 − b

4
μ1

∫

Ω
u4dx −

∫

Ω
p(x, u)dx, ∀u ∈ X. (3.19)
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Condition (f4) implies that

lim sup
|t|→∞

p(x, t)
|t|τ < α, uniformly in x ∈ Ω, (3.20)

where τ ∈ [0, 2] and 0 < 2α < aλ1. By contradiction, if Φ is not coercive on X, then there exist
a sequence {un} ⊂ X and some constant C4 ∈ R1 such that

‖un‖ −→ ∞, as n −→ ∞, but Φ(un) ≤ C4. (3.21)

By virtue of (3.20), there exist some constantM > 1 such that

−p(x, t) > −α|t|τ , ∀x ∈ Ω, |t| > M. (3.22)

Set Ω1
n = {x ∈ Ω : |un(x)| > M} and Ω2

n = {x ∈ Ω : |un(x)| ≤ M}. Then, the combination of
(3.19)–(3.22) and (1.2) implies that there exists A = A(M) > 0 such that

C4 ≥ Φ(un) =
a

2
‖un‖2 + b

4
‖un‖4 − b

4
μ1

∫

Ω
u4ndx −

∫

Ω
p(x, un)dx

=
a

2
‖un‖2 + b

4

(
‖un‖4 − μ1

∫

Ω
u4ndx

)
+
∫

Ω1
n

−p(x, un)dx +
∫

Ω2
n

−p(x, un)dx

≥ a

2
‖un‖2 −

∫

Ω1
n

α|un(x)|τdx −A

≥ a

2
‖un‖2 −

∫

Ω1
n

α|un(x)|2dx −A

≥ a

2
‖un‖2 −

∫

Ω
α|un(x)|2dx −A

≥
(
a

2
− α

λ1

)
‖un‖2 −A −→ +∞, as n −→ ∞.

(3.23)

This is a contradiction. Therefore, Φ is coercive on X and so Φ is bounded from blew due to
Φ is weakly lower semicontinuous.

Step 4. Φ satisfies (PS) condition; that is, any (PS) sequence has a convergent subsequence.
Indeed, let {un} ⊂ X be a (PS) sequence of Φ. By the coerciveness of Φ we know that

{un} is bounded in X. By the reflexivity of X, we can assume that there exists u ∈ X such that

un ⇀ u in X, un −→ u in Lp(Ω), un(x) −→ u(x) for a.e. x ∈ Ω. (3.24)
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Hence, by (1.2), we know that there is C5 > 0 such that

∫

Ω
f(x, un)(u − un)dx ≤

(∫

Ω

∣
∣f(x, un)

∣
∣p/(p−1)dx

)(p−1)/p(∫

Ω
|u − un|pdx

)1/p

≤ 2C
[∫

Ω

(|un|p + 1
)
dx

](p−1)/p
· |u − un|p

≤ C5|u − un|p −→ 0, as n −→ ∞.

(3.25)

Moreover, since

(
a + b‖un‖2

)∫

Ω
∇un∇(u − un) −

∫

Ω
f(x, un)(u − un)dx

=
〈
Φ′(un), (u − un)

〉 −→ 0, as n −→ ∞,

(3.26)

then

‖un‖ −→ ‖u‖, as n −→ ∞. (3.27)

Hence, un → u in X due to the uniform convexity of X.

Now, the conclusion follows from Theorem 2.2.

Corollary 3.2. If conditions (f2) and

(f ′
4)

lim
|t|→∞

(
F(x, t) − b

4
μ1|t|4

)
= −∞, uniformly in x ∈ Ω (3.28)

hold, then the problem (1.1) has at least two nontrivial solutions in X.

Proof. Note that the condition (f ′
4) implies (f4). Hence, the conclusion follows from

Theorem 3.1.

Remark 3.3. Perera and Zhang [12] only obtained one nontrivial solution of Kirchhoff type
problem (1.1) by Yang index under the conditions

lim
t→ 0

f(x, t)
at

= λ, lim
|t|→+∞

f(x, t)
bt3

= μ, uniformly in x, (3.29)

where λ ∈ (λk, λk+1) and μ ∈ (μm, μm+1) is not an eigenvalue of (2.8), k /=m. We point out the
condition

lim
t→ 0

f(x, t)
at

= λ, uniformly in x (3.30)
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implies the condition (f2), and asm = 0, that is, μ < μ1, the condition

lim
|t|→+∞

f(x, t)
bt3

= μ, uniformly in x (3.31)

implies the condition (f4). Moreover, we allow μ ≡ μ1 is an eigenvalue of (2.8). When m ≥ 1,
The following example shows that there are functions which satisfy (f2) and (f4) and do not
satisfy the condition

(f6) μ ∈ (μm, μm+1) is not an eigenvalue of (2.8).

Example 3.4. Set

f(x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−sτ |t|τ−1 − br|t|3 + sτ + br − aξ, t < −1,
aξt, |t| ≤ 1,

sτ |t|τ−1 + br|t|3 − sτ − br + aξ, t > 1,

(3.32)

where s < α, λk < ξ < λk+1, τ ∈ (1, 2] and r ≤ μ1. It is easy to verify f(x, t) satisfies conditions
(f2) and (f4), but

lim
|t|→+∞

f(x, t)
bt3

= r ≤ μ1, uniformly in x. (3.33)

Certainly, our Theorem 3.1 cannot contain Theorem 1.1 in [12] completely.

Remark 3.5. Zhang and Perera [13] obtained a existence theorem (Theorem 1.1(ii)) of three
solutions (a positive solution, a negative solution, and a sign-changing solution) for (1.1)
under the conditions

lim
|t|→+∞

f(x, t)
bt3

= μ < μ1, μ /= 0, (C1)

∃λ > λ2 : F(x, t) ≥ aλ

2
t2, |t| small. (C2)

But, our condition (f4) is weaker than the condition (C1) and the left hand of our condition
(f2) is weaker than the condition (C2). Moreover, we allow μ ≡ μ1 is an eigenvalue of
(2.8). The above Example 3.4 with k = 1 (i.e, λ1 < ξ < λ2) shows that there are functions
which satisfy all conditions of Theorem 3.1 and do not satisfy Theorem 1.1(ii) in [13]. Hence,
Theorem 1.1(ii) in [13] cannot contain our Theorem 3.1.

Theorem 3.6. Let conditions (f1), (f3), and (f5) hold, then the problem (1.1) has infinite many
solutions in X.
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Proof. Set

X1 =
∞⊕

i=k+1

Vi, X2 =
k⊕

i=1

Vi. (3.34)

Then, X has a direct sum decomposition X = X1 ⊕X2 with dimX2 <∞.

Step 1. There exist constants ρ > 0 and α > 0 such that Φ|∂Bρ⋂X1
≥ α, where Bρ = {u ∈ X :

‖u‖ = ρ}.
Indeed, for u ∈ X1, by (1.2) and (f3), we know (3.12) holds. Hence, by (2.2), we have

Φ(u) ≥ a

2
‖u‖2 + b

4
‖u‖4 − a

2
λ

∫

Ω
u2dx − C1

∫

Ω
|u|pdx

≥ a

2
‖u‖2 + b

4
‖u‖4 − a

2
λ

λk+1
‖u‖2 −C1γp‖u‖p

=
a

2

(
1 − λ

λk+1

)
‖u‖2 + b

4
‖u‖4 − C1γp‖u‖p.

(3.35)

Hence, we can choose small ρ > 0 such that

Φ(u) ≥ a

4

(
1 − λ

λk+1

)
ρ2 := α > 0, (3.36)

whenever u ∈ X1 with ‖u‖ = ρ.

Step 2. For each finite dimensional subspace E1 ⊂ X, the set {x ∈ E1 : Φ(x) ≥ 0} is bounded.
Indeed, by (1.2) and (f5), we know that there exist constants C5, C6 > 0 such that

F(x, t) ≥ C5|t|ν − C6. (3.37)

Hence, for every u ∈ E1 \ {0}, one has

Φ(u) ≤ a

2
‖u‖2 + b

4
‖u‖4 − C5

∫

Ω
|u|νdx + C6|Ω|. (3.38)

Since E1 is finite dimensional, we can choosing R = R(E1) > 0 such that

Φ(u) < 0, ∀u ∈ E1 \ BR. (3.39)

Moreover, by Lemma 2.2(iii) in [13], we know that Φ satisfies PS condition, and Φ is
even due to (f1). Hence, the conclusion follows from Theorem 9.12 in [16].
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Remark 3.7. Zhang and Perera [13] obtained an existence theorem of three solutions for (1.1)
under the condition (f5) and the condition

F(x, t) ≤ aλ1
2
t2, |t| small, (3.40)

which implies our condition (f3). Our Theorem 3.6 obtains the existence of infinite many
solutions of (1.1) in the case adding the condition (f1).
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