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This paper uses a fixed point theorem in cones to investigate the multiple positive solutions of a
boundary value problem for second-order impulsive singular differential equations on the half-
line. The conditions for the existence of multiple positive solutions are established.

1. Introduction

Consider the following nonlinear singular Sturm-Liouville boundary value problems for
second-order impulsive differential equation on the half-line:

(
p(t)u′(t)

)′ + f(t, u) = 0, ∀t ∈ J ′+,

Δu′(tk) = Ik(u(tk)), k = 1, 2, . . . , n,

αu(0) − β lim
t→ 0+

p(t)u′(t) = 0,

γu(∞) + δ lim
t→+∞

p(t)u′(t) = 0,

(1.1)

where J = [0,+∞), 0 < t1 < · · · < tn, J+ = (0,+∞), J ′+ = J+ \ {t1, . . . , tn}, f ∈ C[J+ × J+, J+],
p ∈ C[J, J+] ∩ C1[J+, J+] with p > 0 on J+, and

∫+∞
0 (1/p(s))ds < +∞; α, β, γ, δ ≥ 0 with

ρ = βγ + αδ + αγB(0,+∞) > 0, in which B(t, s) =
∫s
t (1/p(σ))dσ. Δu′(tk) = u′(t+

k
) − u′(t−

k
),
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where u′(t−k) and u′(t+k) are, respectively, the left and right limits of u′(t) at tk, k = 1, . . . , n,
1 ≤ n < +∞.

The theory of singular impulsive differential equations has been emerging as an
important area of investigation in recent years. For the theory and classical results, we refer
themonographs to [1, 2] and the papers [3–19] to readers. We point out that in a second-order
differential equation u′′ = f(t, u, u′), one usually considers impulses in the position u and the
velocity u′. However, in the motion of spacecraft one has to consider instantaneous impulses
depending on the position that result in jump discontinuities in velocity, but with no change
in position [20]. The impulses only on the velocity occur also in impulsive mechanics [21].

In recent paper [3], by using the Krasnoselskii’s fixed point theorem, Kaufmann
has discussed the existence of solutions for some second-order boundary value problem
with impulsive effects on an unbounded domain. In [22] Sun et al. and [23] Liu et al.,
respectively, discussed the existence and multiple positive solutions for singular Sturm-
Liouville boundary value problems for second-order differential equation on the half-line.
But the Multiple positive solutions of this case with both singularity and impulses are not to
be studied. The aim of this paper is to fill up this gap.

The rest of the paper is organized as follows. In Section 2, we give several important
lemmas. The main theorems are formulated and proved in Section 3. And in Section 4, we
give an example to demonstrate the application of our results.

2. Several Lemmas

Lemma 2.1 (see [23]). If conditions
∫+∞
0 (1/p(s))ds < +∞ and ρ > 0 are satisfied, then the boundary

value problem

(
p(t)u′(t)

)′ + ν(t) = 0, ∀t ∈ J+,

αu(0) − β lim
t→ 0+

p(t)u′(t) = 0,

γu(∞) + δ lim
t→+∞

p(t)u′(t) = 0

(2.1)

has a unique solution for any ν ∈ L[J+, R]. Moreover, this unique solution can be expressed in the
form

u(t) =
∫∞

0
G(t, s)ν(s)ds, (2.2)

where G(t, s) is defined by

G(t, s) =
1
ρ

⎧
⎨

⎩

(
β + αB(0, s)

)(
δ + γB(t,∞)

)
, 0 ≤ s ≤ t < +∞,

(
β + αB(0, t)

)(
δ + γB(s,∞)

)
, 0 ≤ t ≤ s < +∞.

(2.3)
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Remark 2.2. It is easy to prove that G(t, s) has the following properties:

(1) G(t, s) is continuous on J+ × J+,

(2) G(t, s) is continuous differentiable on J+ × J+, except t = s,

(3) ∂tG(t, s)|t=s+ − ∂tG(t, s)|t=s− = (p(s))−1,

(4) G(t, s) ≤ G(s, s) ≤ ρ−1(β + αB(0, s))(δ + γB(s,∞)) < +∞,

(5) G(s) = limt→+∞G(t, s) < +∞,

(6) for all t ∈ [a, b] ⊂ (0,+∞), s ∈ [0,+∞), G(t, s) ≥ ωG(s, s), where

w = min
{
β + αB(b,∞)
β + αB(0,∞)

,
δ + γB(b,∞)
δ + γB(0,∞)

}
. (2.4)

Obviously, 0 < ω < 1.

For the interval [a, b], 0 < a < t1, tn < b < ∞, and the corresponding ω in Remark 2.2,
we define PC1[J, R] = {u ∈ C[J, R] :u′ ∈ C[J ′+, R], u′(t−

k
) and u′(t+

k
) exist, and u′(tk) = u′(t−

k
)}.

BPC1[J, R] = {u ∈ PC1[J, R] : limt→∞u(t) exists}. K = {u ∈ BPC1[J, R] : u(t) > 0, t ∈ J+
and mint∈[a,b]u(t) ≥ ω‖u‖}. It is easy to see that BPC1[J, R] is a Banach space with the norm
‖u‖ = supt∈J |u(t)|, and K is a positive cone in BPC1[J, R]. For details of the cone theory, see
[1]. u ∈ PC1[J, R] ∩ C2[J ′+R] is called a positive solution of BVP (1.1) if u(t) > 0 for all t ∈ J
and u(t) satisfies (1.1).

As we know that the Ascoli-Arzela Theorem does not hold in infinite interval J , we
need the following compactness criterion:

Lemma 2.3 (see [22]). Let M ⊂ BPC1[J, R]. Then M is relatively compact in BPC1[J, R] if the
following conditions hold.

(i) M is uniformly bounded in BPC1[J, R].

(ii) The functions from M are equicontinuous on any compact interval of [0,+∞).

(iii) The functions from M are equiconvergent, that is, for any given ε > 0, there exists a
T = T(ε) > 0 such that |f(t) − f(+∞)| < ε, for any t > T , f ∈ M.

The main tool of this work is a fixed point theorem in cones.

Lemma 2.4 (see [4]). Let X be a Banach space and K is a positive cone in X. Assume that Ω1,Ω2

are open subsets of X with 0 ∈ Ω1,Ω1 ⊂ Ω2. Let T : K ∩ (Ω2 \Ω1) → K be a completely continuous
operator such that

(i) ‖Tu‖ ≤ ‖u‖ for all u ∈ K ∩ ∂Ω1.

(ii) there exists a Φ ∈ K such that u/= Tu + λΦ, for all u ∈ K ∩ ∂Ω2 and λ > 0.

Then T has a fixed point in K ∩ (Ω2 \Ω1).

Remark 2.5. If (i) is satisfied for u ∈ K ∩ ∂Ω2 and (ii) is satisfied for u ∈ K ∩ ∂Ω1, then
Lemma 2.4 is still true.



4 Boundary Value Problems

Lemma 2.6 (see [3]). The function u ∈ K ∩ C2[J ′+, R] is a solution of the BVP (1.1) if and only if
u ∈ K satisfies the equation

u(t) =
∫+∞

0
G(t, s)f(s, u(s))ds +

n∑

k=1

G(t, tk)p(tk)Ik(u(tk)), t ∈ J. (2.5)

The proof of this result is based on the properties of the Green function, so we omit it
as elementary.

Define

(Tu)(t) =
∫+∞

0
G(t, s)f(s, u(s))ds +

n∑

k=1

G(t, tk)p(tk)Ik(u(tk)), t ∈ J. (2.6)

Obviously, the BVP (1.1) has a solution u if and only if u ∈ K is a fixed point of the operator
T defined by (2.6).

Let us list some conditions as follows.

(A1) There exist two nonnegative functions: a ∈ C[J+, J], g ∈ C[J, J] such that f(t, u) ≤
a(t)g(u). f(t, u), a(t) may be singular at t = 0. Ik : J → J , k = 1, . . . , n, are
continuous.

(A2) 0 <
∫+∞
0 G(s, s)a(s)ds < +∞, 0 < G(tk, tk)p(tk) < +∞, k = 1, . . . , n.

Lemma 2.7. If (A1)and (A2) are satisfied, then for any bounded open set Ω ⊂ BPC1[J, R], T :
Ω ∩K → K is a completely continuous operator.

Proof. For any bounded open set Ω ⊂ BPC1[J, R], there exists a constant M > 0 such that
‖u‖ ≤ M for any u ∈ Ω.

First, we show that T : Ω ∩ K → K is well defined. Let u ∈ Ω ∩ K. From (A1), we
have SM = max{S1, S2}, where S1 = sup{g(u) : 0 ≤ u ≤ M}, S2 = sup{Ik(u) : 0 ≤ u ≤ M,
k = 1, . . . , n}, and

∫+∞

0
G(t, s)f(s, u(s))ds +

n∑

k=1

G(t, tk)p(tk)Ik(u(tk))

≤ SM

(∫+∞

0
G(s, s)a(s)ds +

n∑

k=1

G(tk, tk)p(tk)

)

< +∞.

(2.7)

Hence, T is well defined. For any t1, t2 ∈ J , we have

∫+∞

0
|G(t1, s) −G(t2, s)|a(s)ds ≤ 2

∫+∞

0
G(s, s)a(s)ds < +∞. (2.8)
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Thus, by the Lebesgue dominated convergence theorem and the fact thatG(s, t) is continuous
on t, we have, for any t1, t2 ∈ J , u ∈ Ω ∩K,

|(Tu)(t1) − (Tu)(t2)|

≤
∫+∞

0
|G(t1, s) −G(t2, s)|f(s, u(s))ds

+
n∑

k=1

|G(t1, tk) −G(t2, tk)|p(tk)Ik(u(tk))

≤ SM

(∫+∞

0
|G(t1, s) −G(t2, s)|a(s)ds +

n∑

k=1

|G(t1, tk) −G(t2, tk)|p(tk)
)

−→ 0, (t1 −→ t2).

(2.9)

Therefore, Tu ∈ C[J, R]. By the property (3) of G(s, t), it is easy to get Tu ∈ PC1[J, R].
On the other hand, by (2.6) we have, for any u ∈ Ω ∩K and t ∈ J+,

∣∣∣∣(Tu)(t) −
∫+∞

0
G(s)f(s, u(s))ds

∣∣∣∣

≤
∫+∞

0

∣∣∣G(t, s) −G(s)
∣∣∣f(s, u(s))ds +

n∑

k=1

∣∣∣G(t, tk) −G(tk)
∣∣∣p(tk)Ik(u(tk))

≤ SM

(∫+∞

0

∣∣∣G(t, s) −G(s)
∣∣∣a(s)ds +

n∑

k=1

∣∣∣G(t, tk) −G(tk)
∣∣∣p(tk)

)

.

(2.10)

Then by (A2), the property (5) of Remark 2.2 and the Lebesgue dominated convergence
theorem, we have

lim
t→+∞

(Tu)(t) =
∫+∞

0
G(s)f(s, u(s))ds +

n∑

k=1

G(tk)p(tk)Ik(u(tk)) < +∞. (2.11)

Thus Tu ∈ BPC1[J, R].
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For any u ∈ Ω ∩K, we get

(Tu)(t) =
∫+∞

0
G(t, s)f(s, u(s))ds +

n∑

k=1

G(t, tk)p(tk)Ik(u(tk))

≤
∫+∞

0
G(s, s)f(s, u(s))ds +

n∑

k=1

G(tk, tk)p(tk)Ik(u(tk)).

(2.12)

So

‖Tu‖ ≤
∫+∞

0
G(s, s)f(s, u(s))ds +

n∑

k=1

G(tk, tk)p(tk)Ik(u(tk)). (2.13)

On the other hand, for t ∈ [a, b]we obtain

(Tu)(t) ≥ ω

(∫+∞

0
G(s, s)f(s, u(s))ds +

n∑

k=1

G(tk, tk)p(tk)Ik(u(tk))

)

≥ ω‖Tu‖. (2.14)

Thus T : Ω ∩K → K.
Next, we prove that T is continuous. Let un → u0 in Ω ∩ K, then ‖un‖ ≤ M (n =

1, 2, . . .).We prove that Tun → Tu0. For any ε > 0, by (A2), there exists a constantA0 > 0 such
that

SM

∫+∞

A0

G(s, s)a(s)ds ≤ ε

6
. (2.15)

On the other hand, by the continuities of f(t, u) on (0, A0] × (0,M] and the continuities of Ik
on J , for the above ε > 0, there exists a δ > 0 such that, for any u, v ∈ (0,M], |u − v| < δ,

∣∣f(t, u) − f(t, v)
∣∣ <

ε

3

(∫A0

0
G(s, s)ds

)−1
, t ∈ (0, A0],

G(tk, tk)p(tk)|Ik(u(tk)) − Ik(v(tk))| < ε

3n
.

(2.16)

From ‖un − u0‖ → 0, for the above δ, there exists a sufficiently large number N such that,
when n > N, we have

|un(t) − u0(t)| ≤ ‖un − u0‖ < δ, t ∈ (0, A0],

|un(tk) − u0(tk)| ≤ ‖un − u0‖ < δ.

(2.17)
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Therefore, by (2.15)–(2.17), we have, for n > N,

‖Tun − Tu0‖ ≤
∫+∞

0
G(s, s)

∣
∣f(s, un(s)) − f(s, u0(s))

∣
∣ds

+
n∑

k=1

G(tk, tk)p(tk)|Ik(un(tk)) − Ik(u0(tk))|

≤ 2SM

∫+∞

A0

G(s, s)a(s)ds +
∫A0

0
G(s, s)

∣
∣f(s, un(s)) − f(s, u0(s))

∣
∣ds

+
n∑

k=1

G(tk, tk)p(tk)|Ik(u(tk)) − Ik(u0(tk))|

≤ ε

3
+
ε

3
+
ε

3
= ε.

(2.18)

This implies that the operator T is continuous.
Finally we show that T : Ω ∩ K → K is a compact operator. In fact for any bounded

set D ⊂ Ω, there exists a constant M1 > 0 such that ‖u‖ ≤ M1 for any u ∈ D ∩ K. Hence, we
obtain

‖Tu‖ ≤ SM1

(∫+∞

0
G(s, s)a(s)ds +

n∑

k=1

G(tk, tk)p(tk)

)

< +∞. (2.19)

Therefore, T(D ∩ K) is uniformly bounded in BPC1[J, R].
Given r > 0, for any u ∈ D∩K, as the proof of (2.9), we can get that {Tu : u ∈ D∩K} are

equicontinuous on [0, r]. Since r > 0 is arbitrary, {Tu : u ∈ D ∩K} are locally equicontinuous
on J+. By (2.6), (A1), (A2), and the Lebesgue dominated convergence theorem, we have

|Tu(t) − Tu(+∞)| ≤ SM1

(∫+∞

0

∣∣∣G(t, s) −G(s)
∣∣∣a(s)ds +

n∑

k=1

∣∣∣G(t, tk) −G(tk)
∣∣∣p(tk)

)

−→ 0, (t −→ +∞).

(2.20)

Hence, the functions from {Tu : u ∈ D ∩K} are equiconvergent. By Lemma 2.3, we have that
{Tu : u ∈ D∩K} is relatively compact in BPC1[J, R]. Therefore, T : Ω ∩ K → K is completely
continuous. This completed the proof of Lemma 2.7.
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3. Main Results

For convenience and simplicity in the following discussion, we use the following notations:

f0 = lim inf
u→ 0

min
t∈[a,b]

f(t, u)
u

, g0 = lim inf
u→ 0

g(u)
u

, I0(k) = lim inf
u→ 0

p(tk)Ik(u)
u

,

f∞ = lim inf
u→∞

min
t∈[a,b]

f(t, u)
u

, g∞ = lim inf
u→∞

g(u)
u

, I∞(k) = lim inf
u→∞

p(tk)Ik(u)
u

,

Iq(k) = lim sup
u→ q

p(tk)Ik(u)
u

, g∞ = lim sup
u→∞

g(u)
u

, I∞(k) = lim sup
u→∞

p(tk)Ik(u)
u

,

gq = lim sup
u→ q

g(u)
u

, g0 = lim sup
u→ 0

g(u)
u

, I0(k) = lim sup
u→ 0

p(tk)Ik(u)
u

,

(3.1)

Theorem 3.1. Let (A1)and (A2) hold. Then the BVP (1.1) has at least two positive solutions
satisfying 0 < ‖u1‖ < q < ‖u2‖ if the following conditions hold:

(H1) ω(f0
∫b
aG(s, s)ds+

∑n
k=1 G(tk, tk)I0(k)) > 1, ω(f∞

∫b
aG(s, s)ds+

∑n
k=1 G(tk, tk)·I∞(k)) >

1,

(H2) there exists a q > 0 such that gq
∫+∞
0 G(s, s)a(s)ds +

∑n
k=1 G(tk, tk)Iq(k) < 1, for all

ωq ≤ u ≤ q, a.e. t ∈ [0,+∞).

Proof. By the definition of f0 and I0, for any ε > 0, there exist r ∈ (0, q) such that

f(t, u) ≥ (1 − ε)f0u, ∀‖u‖ ≤ r, t ∈ [a, b],

p(tk)Ik(u) ≥ (1 − ε)I0(k)u,

(1 − ε)ω

(

f0

∫b

a

G(s, s)ds +
n∑

k=1

G(tk, tk)I0(k)

)

≥ 1, ∀‖u‖ ≤ r.

(3.2)

Define the open sets

Ωr =
{
u ∈ BPC1[J, R] : ‖u‖ < r

}
. (3.3)

Let Φ ≡ 1, then Φ ∈ K. Now we prove that

u/= Tu + λΦ, ∀u ∈ K ∩ ∂Ωr , λ > 0. (3.4)
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If not, then there exist u0 ∈ K ∩ ∂Ωr and λ0 > 0 such that u0 = Tu0+λ0Φ. Let μ = mint∈[a,b]u0(t),
then for any t ∈ [a, b],we have

u0(t) = (Tu0)(t) + λ0

=
∫+∞

0
G(t, s)f(s, u0(s))ds +

n∑

k=1

G(t, tk)p(tk)Ik(u0(tk)) + λ0

≥ ω

∫+∞

0
G(s, s)f(s, u0(s))ds +ω

n∑

k=1

G(tk, tk)p(tk)Ik(u0(tk)) + λ0

> (1 − ε)μω

(

f0

∫b

a

G(s, s)ds +
n∑

k=1

G(tk, tk)I0(k)

)

+ λ0

≥ μ + λ0.

(3.5)

This implies μ > μ + λ0, a contradiction. Therefore, (3.4) holds.
That by the definition of f∞ and I∞, for any ε > 0 there exist R > q such that

f(t, u) ≥ (1 − ε)f∞u, ∀‖u‖ ≥ R, t ∈ [a, b],

p(tk)Ik(u) ≥ (1 − ε)I∞(k)u,

(1 − ε)ω

(

f∞

∫b

a

G(s, s)ds +
n∑

k=1

G(tk, tk)I∞(k)

)

≥ 1, ∀‖u‖ ≥ R.

(3.6)

Define the open sets:

ΩR =
{
u ∈ BPC1[J, R] : ‖u‖ < R

}
. (3.7)

As the proof of (3.4), we can get that

u/= Tu + λΦ, ∀x ∈ K ∩ ∂ΩR, λ > 0. (3.8)

On the other hand, for any ε > 0, choose q in (H2) such that

(1 + ε)

(

gq

∫+∞

0
G(s, s)a(s)ds +

n∑

k=1

G(tk, tk)Iq(k)

)

≤ 1, ωq ≤ u ≤ q. (3.9)

By the definition of gq, Iq, for the above ε > 0, there exists δ > 0, when u ∈ (q − δ, q + δ); thus,
we have

g(u) ≤ (1 + ε)gqu,

p(tk)Ik(u) ≤ (1 + ε)Iq(k)u.
(3.10)
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Define

Ωq =
{
u ∈ BPC1[J, R] : ‖u‖ < q

}
. (3.11)

Then, for any u ∈ K ∩ ∂Ωq and t ∈ [0,+∞), we can obtain

(Tu)(t) =
∫+∞

0
G(t, s)f(s, u(s))ds +

n∑

k=1

G(t, tk)p(tk)Ik(u(tk))

≤
∫+∞

0
G(s, s)a(s)g(u(s))ds +

n∑

k=1

G(tk, tk)p(tk)Ik(u(tk))

≤ (1 + ε)

(

gq

∫∞

0
G(s, s)a(s)ds +

n∑

k=1

G(tk, tk)Iq(k)

)

‖u‖

≤ ‖u‖.

(3.12)

Therefore, ‖Tu‖ ≤ ‖u‖.
Thus, we can obtain the existence of two positive solutions u1 and u2 satisfying 0 <

‖u1‖ < q < ‖u2‖ by using Lemma 2.4 and Remark 2.5, respectively.

Using a similar proof of Theorem 3.1, we can get the following conclusions.

Theorem 3.2. Let (A1) and (A2) hold. Then the BVP (1.1) has at least two positive solutions
satisfying 0 < ‖u1‖ < q < ‖u2‖ if the following conditions hold:

(H3) g0
∫+∞
0 G(s, s)a(s)ds+

∑n
k=1 G(tk, tk)I0(k)<1, g∞∫+∞

0 G(s, s)a(s)ds+
∑n

k=1 G(tk)I∞(k) <
1,

(H4) there exists q > 0 such that ω(fq
∫b
aG(s, s)ds +

∑n
k=1 G(tk, tk)Iq(k)) > 1, for all ωq ≤ u ≤

q, a.e. t ∈ [0,+∞).

Corollary 3.3. In Theorems 3.1 and 3.2, if conditions (H1) and (H3) are replaced by (H∗
1) and (H

∗
3),

respectively, then the conclusions also hold.

(H∗
1) f0 = +∞, or

∑n
k=1 I0(k) = +∞; f∞ = +∞ or

∑n
k=1 I∞(k) = +∞,

(H∗
3) g

∞ = 0,
∑n

k=1 I
∞(k) = 0, g0 = 0,

∑n
k=1 I

0(k) = 0.

Remark 3.4. Notice that, in the above conclusions, we suppose that the singularity only exist
in f(t, u), that is, ‖f(t, u)‖ → +∞ as t → 0. If we permit ‖f(t, u)‖ → +∞ as t → 0+ or
u → 0+ and ‖Ik(uk)‖ → +∞ as uk → 0+, then the discussion will be much more complex.
Now we state the corresponding results.

Let us define the following.

(A∗
1) There exist four nonnegative functions a, g ∈ C[J+, J], b, h ∈ C[J, J] such that

b(t)h(u) ≤ f(t, u) ≤ a(t)g(u), and h(u) is nondecreasing on J . Ik : J+ → J ,
k = 1, . . . , n, are continuous.

(A∗
2) 0 <

∫+∞
0 G(s, s)a(s)ds < +∞,

∫+∞
0 G(s, s)b(s)ds ≥ (u∗/ωh∗), 0 < G(tk, tk)p(tk) <

+∞, k = 1, . . . , n,where u∗ ∈ K, h∗ = h(0).
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Theorem 3.5. Suppose (A∗
1)and (A∗

2) hold, then the BVP (1.1) has at least two positive solutions
satisfying u∗ < ‖u1‖ < q < ‖u2‖ if (H1) and (H2) hold.

Proof. Define Q = {u ∈ K : u(t) ≥ u∗, for all t ∈ J}. We only need to proove T : Ω ∩Q → Q is
a completely continuous operator. Then the rest of the proof is the same as that Theorem 3.1.
Notice that

(Tu)(t) ≥ ω

∫+∞

0
G(s, s)f(s, u(s))ds ≥ ωh∗

∫+∞

0
G(s, s)b(s)ds ≥ u∗, (3.13)

and change S1, S2 to S1 = sup{g(u) : u∗ ≤ u ≤ M}, S2 = sup{Ik(u) : u∗ ≤ u ≤ M, k = 1 . . . , n},
then the same as the proof of Lemma 2.7, it is easy to compute that T : Ω ∩ Q → Q is a
completely continuous operator.

Corresponding to Theorem 3.2 and Corollary 3.3, there are Theorem 3.6 and
Corollary 3.7. We just list here without proof.

Theorem 3.6. Suppose (A∗
1)and (A∗

2) hold, then the BVP (1.1) has at least two positive solutions
satisfying u∗ < ‖u1‖ < q < ‖u2‖, if (H3) and (H4) hold.

Corollary 3.7. In Theorems 3.5 and 3.6, if conditions (H1) and (H3) are replaced by (H∗
1) and (H

∗
3),

respectively, then the conclusions also hold.

4. Example

To illustrate how our main results can be used in practice we present the following example.

Example 4.1. Consider the following boundary value problem:

(
etu′(t)

)′ + |ln t| = 0, ∀t ∈ J+, t /= 1,

Δu′∣∣
t1=1

= u2(1),

u(0) = 0, u(∞) = 0.

(4.1)

Conclusion 1. BVP (4.1) has at least two positive solutions u1, u2 satisfying 0 < ‖u1‖ < 1/2 <
‖u2‖.

Proof. Let p(t) = et, g(u) = 1, f(t, u) = a(t) = | ln t|, I(u) = u2. Then by simple computation we
have

G(t, s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫s

0
e−σdσ

∫+∞

t

e−σdσ, 0 ≤ s ≤ t < +∞,

∫ t

0
e−σdσ

∫+∞

s

e−σdσ, 0 ≤ t ≤ s < +∞,

(4.2)
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where ρ = 1. Furthermore,
∫+∞
0 (1/p(σ))dσ =

∫+∞
0 e−σdσ = 1 < +∞ and

0 <

∫+∞

0
G(s, s)a(s)ds =

∫+∞

0

(
1 − e−s

)
e−s|ln s|ds < +∞,

0 < G(t1, t1)p(t1) = 1 − e−1 < +∞.

(4.3)

Let [a, b] = [1, 2] ⊂ (0,+∞). Then ω = e−2. Thus (A1) and (A2) are satisfied. It is easy to get
that f0 = +∞, I∞(1) = +∞. Let q = 1/2. Then

gq

∫+∞

0
G(s, s)a(s)ds +

n∑

k=1

G(tk, tk)Iq(k) < 1. (4.4)

Hence, (H∗
1) and (H2) are satisfied. Therefore, by Corollary 3.3, problem (4.1) has at least two

positive solutions u1, u2 satisfying 0 < ‖u1‖ < 1/2 < ‖u2‖. The proof is completed.
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