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This paper deals with the existence of triple positive solutions for a type of second-order singular
boundary problems with general differential operators. By using the Leggett-Williams fixed point
theorem, we establish an existence criterion for at least three positive solutions with suitable
growth conditions imposed on the nonlinear term.

1. Introduction

In this paper, we study the existence of triple positive solutions for the following second-order
singular boundary value problems with general differential operators:

u′′(t) + a(t)u′(t) + b(t)u(t) + h(t)f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,
(1.1)

where a ∈ C(0, 1) ∩ L1(0, 1), b ∈ C((0, 1), (−∞, 0)), and h ∈ C((0, 1), [0,∞)) with

∫1

0
t(1 − t)|b(t)|dt <∞,

∫1

0
t(1 − t)h(t)dt <∞. (1.2)

It is easy to see that a, b, and hmay be singular at t = 0 and/or 1.
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When a = b ≡ 0 or a ≡ 0 and b /≡ 0, the two kinds of singular boundary value problems
have been discussed extensively in the literature; see [1–10] and the references therein. Hence,
the problem that we consider is more general and is different from those in previous work.

Furthermore, we will see in the later that the presence of a(t)u′(t) + b(t)u(t) brings us
three main difficulties:

(1) the Green’s function cannot be explicitly expressed;

(2) the equivalence between BVP (1.1) and its associated integral equation has to be
proved;

(3) the compactness of associated integral operator has to be verified.

We will overcome the above mentioned difficulties in Section 2. Also, although the
Leggett-William fixed point theorem is used extensively in the study of triple positive
differential equations, the method has not been used to study this type of second-order
singular boundary value problem with general differential operators. We are concerned with
solving these problems in this paper.

To state our main tool used in this paper, we give some definitions and notations.
Let E be a real Banach space with a cone P . A map α : P → [0,+∞) is said to be a

nonnegative continuous concave functional on P if α is a continuous and

α
(
tx + (1 − t)y) ≥ tα(x) + (1 − t)α(y), (1.3)

for all x, y ∈ P and t ∈ [0, 1]. Let a, b be two numbers such that 0 < a < b and α a nonnegative
continuous concave functional on P . We define the following convex sets:

Pa = {x ∈ P : ‖x‖ < a},
P(α, a, b) = {x ∈ P : a ≤ α(x), ‖x‖ ≤ b}.

(1.4)

Theorem 1.1 (Leggett-Williams fixed point theorem). Let T : Pc → Pc be completely
continuous, and let α be a nonnegative continuous concave functional on P such that α ≤ ‖x‖ for all
x ∈ Pc. Suppose that there exist 0 < d < a < b ≤ c such that

(i) {x ∈ P(α, a, b) : α(x) > a}/= ∅ and α(Tx) > a, for x ∈ P(α, a, b);
(ii) ‖Tx‖ < d, for ‖x‖ < d;
(iii) α(Tx) > a, for x ∈ P(α, a, c) with ‖Tx‖ > b.

Then T has at least three fixed points x1, x2, x3 in Pc satisfying ‖x1‖ < d, a < α(x2), ‖x3‖ > d and
α(x3) < a.

Remark 1.2. We note the existence of triple positive solutions of other kind of boundary value
problems; see He and Ge [11], Zhao et al. [12], Zhang and Liu [13], Graef et al. [14], and the
references therein.

The rest of the paper is organized as follows. In Section 2, we overcome the above-
mentioned difficulties in this work. The main results are formulated and proved in Section 3.
Finally, an example is presented to demonstrate the application of the main theorems in
Section 4.
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2. Preliminaries and Lemmas

Throughout this paper, we assume the following:

(H1) a ∈ C(0, 1) ∩ L1(0, 1);

(H2) b ∈ C((0, 1), (−∞, 0)), and
∫1
0 s(1 − s)|b(s)|ds <∞;

(H3) h : (0, 1) → [0,∞) is continuous and does not vanish identically on any subinterval
of (0, 1), and

∫1
0 s(1 − s)h(s)ds <∞;

(H4) f : [0, 1] × [0,∞) → [0,∞) is continuous.

Lemma 2.1. Suppose that (H1) and (H2) hold. Then

(i) the initial value problem

u′′(t) + a(t)u′(t) + b(t)u(t) = 0, t ∈ (0, 1),

u(0) = 0, u′(0) = 1,
(2.1)

has a unique solution ϕ ∈ AC[0, 1] ∩ C1[0, 1) and ϕ′ ∈ ACloc[0, 1);

(ii) the initial value problem

u′′(t) + a(t)u′(t) + b(t)u(t) = 0, t ∈ (0, 1),

u(1) = 0, u′(1) = −1,
(2.2)

has a unique solution ψ ∈ AC[0, 1] ∩ C1(0, 1] and ψ ′ ∈ ACloc(0, 1].

Proof. We only prove (i). (ii) can be treated in the same way.
Suppose that ϕ ∈ AC[0, 1] ∩ C1[0, 1) and ϕ′ ∈ ACloc[0, 1) is a solution of (2.1), that is,

ϕ′′(t) + a(t)ϕ′(t) + b(t)ϕ(t) = 0, t ∈ (0, 1),

ϕ(0) = 0, ϕ′(0) = 1.
(2.3)

Let

p(t) = exp

(∫ t
0
a(s)ds

)
. (2.4)

Multiplying both sides of (2.3) by p(t), then

(
p(t)ϕ′(t)

)′ = −p(t)b(t)ϕ(t), t ∈ (0, 1). (2.5)

Since ϕ ∈ C1[0, 1) and ϕ′ ∈ ACloc[0, 1), integrating (2.5) on [0, t], (0 ≤ t < 1), we have

p(t)ϕ′(t) = 1 −
∫ t
0
p(s)b(s)ϕ(s)ds. (2.6)
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Moreover, integrating (2.6) on [0, t], (0 ≤ t ≤ 1), we have

p(t)ϕ(t) = t +
∫ t
0
p(s)a(s)ϕ(s)ds −

∫ t
0

∫ s
0
p(τ)b(τ)ϕ(τ)dτ ds. (2.7)

Let

v(t) =

⎧⎪⎨
⎪⎩
p(t)ϕ(t)

t
, t ∈ (0, 1],

p(0)ϕ′(0), t = 0.
(2.8)

Clearly, v ∈ C[0, 1], and (2.7) reduces to

v(t) = 1 +
1
t

∫ t
0
sa(s)v(s)ds − 1

t

∫ t
0

∫s
0
τb(τ)v(τ)dτ ds. (2.9)

By using Fubini’s theorem, we have

∫ t
0

∫s
0
τb(τ)v(τ)dτds =

∫ t
0
(t − s)sb(s)v(s)ds. (2.10)

Therefore,

v(t) = 1 +
1
t

∫ t
0
sa(s)v(s)ds − 1

t

∫ t
0
(t − s)sb(s)v(s)ds, (2.11)

which implies that v is a solution of integral equation (2.11).
Conversely, if v ∈ C[0, 1] is a solution of (2.11) with v(0) = 1, by reversing the above

argument we could deduce that the function ϕ(t) = tv(t)/p(t) is a solution of (2.1) and satisfy
ϕ ∈ AC[0, 1] ∩ C1[0, 1) and ϕ′ ∈ ACloc[0, 1). Therefore, to prove that (2.1) has a unique
solution, ϕ ∈ AC[0, 1] ∩ C1[0, 1), and ϕ′ ∈ ACloc[0, 1) is equivalent to prove that (2.11) has a
unique solution v ∈ C[0, 1].

To do this, we endow the following norm in C[0, 1]:

‖v‖∗ = sup
t∈[0,1]

∣∣∣∣∣v(t) exp
(
−
∫ t
0
[|a(s)| + s(1 − s)|b(s)|]ds

)∣∣∣∣∣. (2.12)

Let K : C[0, 1] → C[0, 1] be operator defined by

Kv(t) = 1 +
1
t

∫ t
0
sa(s)v(s)ds − 1

t

∫ t
0
s(t − s)b(s)v(s)ds. (2.13)
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Since

∣∣∣∣∣
1
t

∫ t
0
sa(s)v(s)ds

∣∣∣∣∣ ≤
∫ t
0
|v(s)a(s)|ds −→ 0, t −→ 0,

∣∣∣∣∣
1
t

∫ t
0
s(t − s)b(s)v(s)ds

∣∣∣∣∣ ≤
∫ t
0
s(1 − s)|b(s)v(s)|ds −→ 0, t −→ 0,

(2.14)

then, K is well defined. Set

D(t) = exp

(
−
∫ t
0
[|a(s)| + s(1 − s)|b(s)|]ds

)
. (2.15)

Then, for any z, w ∈ C[0, 1],

|Kz(t) −Kw(t)| =
∣∣∣∣∣
1
t

∫ t
0
[sa(s) − s(t − s)b(s)](z(s) −w(s))ds

∣∣∣∣∣

≤
∫ t
0
[|a(s)| + s(1 − s)|b(s)|]|z(s) −w(s)|D(s)

1
D(s)

ds

≤
∫ t
0
[|a(s)| + s(1 − s)|b(s)|] 1

D(s)
ds · ‖z −w‖∗

=
(

1
D(t)

− 1
)
‖z −w‖∗,

(2.16)

and subsequently,

D(t)|Kz(t) −Kw(t)| ≤ (1 −D(t)) · ‖z −w‖∗. (2.17)

Thus,

‖Kz −Kw‖∗ ≤ (1 −D(t)) · ‖z −w‖∗. (2.18)

Since 0 ≤ 1−D(t) < 1,K has a unique fixed point v ∈ C[0, 1] by Banach contraction principle.
That is, (2.11) has a unique solution v ∈ C[0, 1].

Remark 2.2. Lemma 2.1 generalizes Theorem 2.1of [1], where a ≡ 0.

Lemma 2.3. Suppose that (H1) and (H2) hold. Then

(i) ϕ is nondecreasing in [0, 1];

(ii) ψ is nonincreasing in [0, 1].

Proof. We only prove (i). (ii) can be treated in the same way.
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Suppose on the contrary that ϕ is not nondecreasing in [0, 1]. Then there exists τ0 ∈
(0, 1) such that

ϕ(τ0) = max
{
ϕ(t) | t ∈ [0, 1]

}
> 0, ϕ′(τ0) = 0, ϕ′′(τ0) ≤ 0. (2.19)

This together with the equation ϕ′′(t) + a(t)ϕ′(t) + b(t)ϕ(t) = 0 implies that

ϕ′′(τ0) = −b(τ0)ϕ(τ0) > 0, (2.20)

which is a contradiction!

Remark 2.4. From Lemmas 2.1 and 2.3, there exist positive constants C1, C2, D1, and D2 such
that

D1t ≤ ϕ(t) ≤ C1t, D2(1 − t) ≤ ψ(t) ≤ C2(1 − t), t ∈ [0, 1]. (2.21)

In fact, since

lim
t→ 0

ϕ(t)
t

= ϕ′(0) = 1 > 0, (2.22)

we have that ϕ(t)/t ∈ C[0, 1] and ϕ(t)/t ≥ 0, t ∈ [0, 1]. Then, there exist constants C1 > 0 and
D1 ≥ 0, such that

D1 ≤
ϕ(t)
t

≤ C1, t ∈ [0, 1], (2.23)

that is

D1t ≤ ϕ(t) ≤ C1t, t ∈ [0, 1]. (2.24)

In the following, we will show that D1 > 0. Suppose on the contrary, if there exist t∗ ∈ (0, 1],
such that

ϕ(t∗)
t∗

= min
t∈[0,1]

ϕ(t)
t

= D1 = 0, (2.25)

then, ϕ(t∗) = 0, which is a contradiction!
The other inequality can be treated in the same manner.

Lemma 2.5. Suppose that (H1), (H2), and (H3) hold. Then

lim
t→ 0

ϕ(t)
∫1

t

ψ(s)h(s)ds = 0, lim
t→ 1

ψ(t)
∫ t
0
ϕ(s)h(s)ds = 0. (2.26)
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Proof. We only prove the first equality; the other can be treated in the same way. From
Remark 2.4 and (H3), we have

0 ≤ ϕ(t)
∫1

t

ψ(s)h(s)ds ≤ C2ϕ(t)
∫1

t

(1 − s)h(s)ds. (2.27)

Lemma 2.1of [2] together with the facts that ϕ ∈ C1[0, 1) and (H3) implies that

lim
t→ 0

ϕ(t)
∫1

t

(1 − s)h(s)ds = 0. (2.28)

Combining (2.27) and (2.28), we have

lim
t→ 0

ϕ(t)
∫1

t

ψ(s)h(s)ds = 0. (2.29)

Lemma 2.6. Suppose that (H1), (H2), and (H3) hold. Then the problem

u′′(t) + a(t)u′(t) + b(t)u(t) + h(t) = 0, t ∈ (0, 1),

u(0) = u(1) = 0
(2.30)

has a unique solution

u(t) =
∫1

0
G(t, s)q(s)h(s)ds, (2.31)

where

q(s) = exp
(∫s

1/2
a(τ)dτ

)
,

G(t, s) =
1
ρ

⎧⎨
⎩
ϕ(s)ψ(t), 0 ≤ s ≤ t ≤ 1,

ϕ(t)ψ(s), 0 ≤ t ≤ s ≤ 1,

ρ = ϕ′
(
1
2

)
ψ

(
1
2

)
− ϕ
(
1
2

)
ψ ′
(
1
2

)
.

(2.32)

Moreover, u(t) > 0 on (0, 1).

Proof. By Lemma 2.3 and (2.32), we have

G(t, s) ≤ G(s, s), t, s ∈ [0, 1]. (2.33)

This together with Remark 2.4 implies that the right side of (2.31) iswell defined.
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Now we check that the function

u(t) =
∫ t
0

1
ρ
ϕ(s)ψ(t)q(s)h(s)ds +

∫1

t

1
ρ
ψ(s)ϕ(t)q(s)h(s)ds (2.34)

satisfies (2.30). In fact,

u′(t) = ψ ′(t)
∫ t
0

1
ρ
ϕ(s)q(s)h(s)ds + ϕ′(t)

∫1

t

1
ρ
ψ(s)q(s)h(s)ds,

u′′(t) = ψ ′′(t)
∫ t
0

1
ρ
ϕ(s)q(s)h(s)ds + ψ ′(t)

1
ρ
ϕ(t)q(t)h(t)

+ ϕ′′(t)
∫1

t

1
ρ
ψ(s)q(s)h(s)ds − ϕ′(t)

1
ρ
ψ(t)q(t)h(t).

(2.35)

Therefore,

u′′(t) + a(t)u′(t) + b(t)u(t) =
1
ρ
q(t)h(t)

∣∣∣∣ϕ(t) ψ(t)
ϕ′(t) ψ ′(t)

∣∣∣∣

=
1
ρ
q(t)h(t)

∣∣∣∣∣∣∣∣∣

ϕ

(
1
2

)
ψ

(
1
2

)

ϕ′
(
1
2

)
ψ ′
(
1
2

)

∣∣∣∣∣∣∣∣∣
exp

(
−
∫ t
1/2

a(s)ds

)

= −h(t).

(2.36)

Equation (2.34) and Lemma 2.5 imply that

u(0) = lim
t→ 0

u(t) = 0, u(1) = lim
t→ 1

u(t) = 0. (2.37)

Since G(t, s) > 0 for t, s ∈ (0, 1), then

u(t) =
∫1

0
G(t, s)q(s)h(s)ds > 0, t ∈ (0, 1). (2.38)

Let Y = C[0, 1] with the norm

‖u‖∞ = max
t∈[0,1]

|u(t)|, (2.39)

and let P be a cone in C[0, 1] defined by

P = {u ∈ C[0, 1] : u(t) ≥ 0, t ∈ [0, 1]}. (2.40)
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Lemma 2.7. Suppose that (H1)–(H3) hold and u is a positive solution of (2.30). Then

u(t) ≥ ‖u‖γ(t), t ∈ [0, 1], (2.41)

where

γ(t) = min
t∈[0,1]

{
ϕ(t)∥∥ϕ∥∥ ,

ψ(t)∥∥ψ∥∥
}
. (2.42)

Furthermore, for any δ ∈ (0, 1/2), there exists corresponding γδ > 0 such that

u(t) ≥ γδ‖u‖, t ∈ [δ, 1 − δ]. (2.43)

Proof. In fact, if 0 < t ≤ s < 1, then

G(t, s)
G(s, s)

=
ϕ(t)
ϕ(s)

≥ ϕ(t)∥∥ϕ∥∥ , (2.44)

and if 0 < s ≤ t < 1, then

G(t, s)
G(s, s)

=
ψ(t)
ψ(s)

≥ ψ(t)∥∥ψ∥∥ . (2.45)

Combining this and G(t, s) ≤ G(s, s), t, s ∈ [0, 1], we have

u(t) =
∫1

0
G(t, s)q(s)h(s)ds ≥ γ(t)

∫1

0
G(s, s)q(s)h(s)ds

≥ γ(t)‖u‖, t ∈ [0, 1].

(2.46)

Take

γδ = min
{
γ(t) : t ∈ [δ, 1 − δ]}. (2.47)

Then Lemma 2.3 guarantees that γδ > 0, and Lemma 2.7 guarantees that (2.43) holds.

Remark 2.8. From Lemma 2.7 and Remark 2.4, we have

G(t, s) ≥ γ(t)G(s, s) ≥ D1D2

ρ
γ(t)s(1 − s), t, s ∈ [0, 1]. (2.48)

Now, for any u ∈ P , we can define the operator T : C[0, 1] → C[0, 1] by

Tu(t) =
∫1

0
G(t, s)q(s)h(s)f(s, u(s))ds, t ∈ [0, 1]. (2.49)
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Lemma 2.9. Let (H1)–(H4) hold. Then T : P → P is a completely continuous operator.

Proof. From (H3) and (H4) and Lemma 2.6, it is easy to see that T : P → P , and T is
continuous by the Lebesgue’s dominated convergence theorem.

Let B ⊆ P be any bounded set. Then (H3) and (H4) imply that T(B) is a bounded set
in P .

Since

(Tu)′(t) = ψ ′(t)
∫ t
0

1
ρ
ϕ(s)q(s)h(s)f(s, u(s))ds

+ ϕ′(t)
∫1

t

1
ρ
ψ(s)q(s)h(s)f(s, u(s))ds,

(2.50)

then this together with the similar proof of Lemma 2.1of [2] yields

(Tu)′ ∈ L1[0, 1]. (2.51)

From this fact, it is easy to verify that T(B) is equicontinuous. Therefore, by the Arzela-Ascoli
theorem, T : P → P is a completely continuous operator.

3. Main Result

Let α : P → [0,∞) be nonnegative continuous concave functional defined by

α(u) = min
t∈[δ,1−δ]

u(t), u ∈ P. (3.1)

We notice that, for each u ∈ P , α(u) ≤ ‖u‖, and also that by Lemma 2.6, u ∈ P is a solution of
(1.1) if and only if u is a fixed point of the operator T .

For convenience we introduce the following notations. Let

m = ρ ·
(
C1C2

∫1

0
s(1 − s)q(s)h(s)ds

)−1
,

η =
1
ρ
D1D2 min

t∈[δ,1−δ]
γ(t)

∫1−δ

δ

s(1 − s)q(s)h(s)ds.
(3.2)

Theorem 3.1. Assume that (H1)–(H4) hold. Let 0 < a < b < b/γδ ≤ c, and suppose that f satisfies
the following conditions:

(S1) f(t, u) < ma, for t ∈ [0, 1], u ∈ [0, a];

(S2) f(t, u) > b/η, for t ∈ [δ, 1 − δ], u ∈ [b, b/γδ];

(S3) f(t, u) < mc, for t ∈ [0, 1], u ∈ [0, c].

Then the boundary value problem (1.1) has at least three positive solutions u1, u2, u3 in Pc satisfying
‖u1‖ < a, b < α(u2), ‖u3‖ > a, and α(u3) < b.
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Proof. From Lemma 2.9, T : P → P is a completely continuous operator. If u ∈ Pc, then
‖u‖ ≤ c, and assumption (S3) implies that f(t, u) < mc, t ∈ [0, 1]. Therefore

‖Tu‖ = max
t∈[0,1]

|Tu(t)| = max
t∈[0,1]

∫1

0
G(t, s)q(s)h(s)f(s, u(s))ds

≤ C1C2

ρ
mc

∫1

0
s(1 − s)q(s)h(s)ds

≤ c.

(3.3)

Hence, T : Pc → Pc. In the same way, if u ∈ Pa, then T : Pa → Pa. Therefore, condition (ii) of
Leggett-williams fixed-point theorem holds.

To check condition (i) of Leggett-Williams fixed-point theorem, choose u(t) = b/γδ, t ∈
[0, 1]. It is easy to see that u ∈ P(α, b, b/γδ) and α(u) = α(b/γδ) > b. so,

{
u ∈ P

(
α, b,

b

γδ

)
: α(u) > b

}
/= ∅. (3.4)

Hence, if u ∈ P(α, b, b/γδ), then b ≤ u(t) ≤ b/γδ, t ∈ [δ, 1 − δ]. From assumption (S2) and
Remark 2.8, we have

min
t∈[δ,1−δ]

Tu(t) = min
t∈[δ,1−δ]

∫1

0
G(t, s)q(s)h(s)f(s, u(s))ds

≥ min
t∈[δ,1−δ]

∫1−δ

δ

G(t, s)q(s)h(s)f(s, u(s))ds

>
b

η
· min
t∈[δ,1−δ]

∫1−δ

δ

G(t, s)q(s)h(s)ds

>
bD1D2

ηρ
min

t∈[δ,1−δ]
γ(t)

∫1−δ

δ

s(1 − s)q(s)h(s)ds

= b.

(3.5)

Finally, we assert that if u ∈ P(α, b, c) and ‖Tu‖ > b/γδ, then α(Tu) > b. To see this, suppose
that u ∈ P(α, b, c) and ‖Tu‖ > b/γδ, then

min
t∈[δ,1−δ]

Tu(t) = min
t∈[δ,1−δ]

∫1

0
G(t, s)q(s)h(s)f(s, u(s))ds

≥ γδ
∫1

0
G(s, s)q(s)h(s)f(s, u(s))ds

≥ γδmax
t∈[0,1]

∫1

0
G(s, s)q(s)h(s)f(s, u(s))ds

= γδ‖Tu‖ > b.

(3.6)
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To sum up, all the conditions of Leggett-williams fixed-point theorem are satisfied. Therefore,
T has at least three fixed points, that is, problem (1.1) has at least three positive solutions
u1, u2, u3 in Pc satisfying ‖u1‖ < a, b < α(u2), ‖u3‖ > a and α(u3) < b.

Theorem 3.2. Assume that (H1)–(H4) hold. Let 0 < a1 < b1 < b1/γδ < a2 < b2 < b2/γδ < · · · <
an, n ∈ N, and suppose that f satisfies the following conditions:

(A1) f(t, u) < mai, for t ∈ [0, 1], u ∈ [0, ai], 1 ≤ i ≤ n;
(A2) f(t, u) > bi/η, for t ∈ [δ, 1 − δ], u ∈ [bi, bi/γδ], 1 ≤ i ≤ n − 1.

Then the boundary value problem (1.1) has at least 2n − 1 positive solutions.

Proof. When n = 1, it follows from condition (A1) that T : Pa1 → Pa1 , which means that T has
at least one fixed point u1 ∈ Pa1 by the Schauder fixed-point Theorem. When n = 2, it is clear
that Theorem 3.1 holds (with c1 = a2). Then we can obtain at least three positive solutions
u1, u2, and u3 satisfying ‖u1‖ ≤ a1, ψ(u2) > b1 and ‖u3‖ > a1 with ψ(u3) < b1. Following this
way, we finish the proof by the induction method.

4. Example

Consider the following boundary value problem:

u′′(t) − 2u′(t) − 3u(t) + h(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,
(4.1)

where

h(t) =
1

t(1 − t) ,

f(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u

4
, u ∈ [0, 1],

41u
4

− 10, u ∈ [1, 2],

21
2
, u ∈ [2, 30],

(u − 9)(1 + 2u)
2(31 + u)

, u ≥ 30.

(4.2)

Then, by computation, we have

ϕ(t) =
1
4

(
et − e−3t

)
, ψ(t) =

1
4

(
e(1−t) − e−3(1−t)

)
,

ρ =
1
8e3
(
e2 − 1

)(
e2 + 3

)
, q(t) = e−2t+1.

(4.3)
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Furthermore, for t ∈ [0, 1],

√
3
3
t ≤ ϕ(t) ≤ t,

√
3
3

(1 − t) ≤ ψ(t) ≤ 1 − t. (4.4)

In fact, let α(t) = et − e−3t − (4
√
3/3)t, then α(0) = 0, and α′(t) = et + 3e−3t − 4

√
3/3. It is easy to

compute that

min
t∈[0,1]

(
et + 3e−3t

)
=

4
√
3

3
. (4.5)

Then, α(t) ≥ 0, t ∈ [0, 1], that is

ϕ(t) ≥
√
3
3
t, t ∈ [0, 1]. (4.6)

The other inequalities in (4.4) can be proved by the same method.
Thus, we can choose thatC1 = C2 = 1,D1 = D2 =

√
3/3 and δ = ln

√
2. By computation,

we have

γ(t) =
4e3

e4 − 1
min
{
ϕ(t), ψ(t)

}
,

γδ = min
t∈[δ,1−δ]

γ(t) =
3
√
2e3

4
(
e4 − 1

) ≈ 0.39747 . . . .

(4.7)

Let a = 1/4, b = 2, and c = 20. Then, we can compute

m =
e3 + 3
4e2

≈ 0.78107 · · · ,

η =

√
2e5
(
e2 − 4

)
(e2 − 1)

(
e4 − 1

)
(e2 + 3)

≈ 0.19994 · · · .
(4.8)

Consequently,

f(u) ≤ 1
4
· 1
4
<

1
4
m = ma, u ∈

[
0,

1
4

]
,

f(u) =
21
2
>

2
η
=
b

η
, u ∈

[
2,

2
γδ

]
⊂ [2, 10],

f(u) ≤ 21
2
< 20m, u ∈ [0, 20].

(4.9)
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Therefore, all the conditions of Theorem 3.1 are satisfied, then problem (4.1) has at least three
positive solutions u1, u2, and u3 satisfying

‖u1‖ ≤ 1
4
, ψ(u2) > 2, ‖u3‖ > 1

4
with ψ(u3) < 2. (4.10)
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