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The paper studies the singular differential equation (p(t)u′)′ = p(t)f(u), which has a singularity at
t = 0. Here the existence of strictly increasing solutions satisfying sup{|u(t)| : t ∈ [0,∞)} ≥ L > 0 is
proved under the assumption that f has two zeros 0 and L and a superlinear behaviour near −∞.
The problem generalizes some models arising in hydrodynamics or in the nonlinear field theory.

1. Introduction

Let us consider the problem

(
p(t)u′)′ = p(t)f(u), (1.1)

u′(0) = 0, u(∞) = L, (1.2)

where L is a positive real parameter.

Definition 1.1. Let c > 0. A function u ∈ C1([0, c]) ∩ C2((0, c]) satisfying (1.1) on (0, c] is called
a solution of (1.1) on [0, c].

Definition 1.2. Let u be a solution of (1.1) on [0, c] for each c > 0. Then u is called a solution
of (1.1) on [0,∞). If u moreover fulfils conditions (1.2), it is called a solution of problem (1.1),
(1.2).

Definition 1.3. A strictly increasing solution of problem (1.1), (1.2) is called a homoclinic
solution.
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In this paper we are interested in the existence of strictly increasing solutions and, in
particular, of homoclinic solutions. In what follows we assume

f ∈ Liploc(R), f(0) = f(L) = 0, (1.3)

f(x) < 0 for x ∈ (0, L), (1.4)

there exists B < 0 such that f(x) > 0 for x ∈
[
B, 0

)
, (1.5)

F
(
B
)
= F(L), where F(x) = −

∫x

0
f(z)dz, (1.6)

p ∈ C([0,∞)) ∩ C1((0,∞)), p(0) = 0, (1.7)

p′(t) > 0, t ∈ (0,∞), lim
t→∞

p′(t)
p(t)

= 0. (1.8)

Under assumptions (1.3)–(1.8) problem (1.1), (1.2) generalizes some models arising
in hydrodynamics or in the nonlinear field theory (see [1–5]). If a homoclinic solution exists,
many important properties of corresponding models can be obtained. Note that if we extend
the function p(t) in (1.1) from the half-line onto R (as an even function), then any solution
of (1.1), (1.2) has the same limit L as t → −∞ and t → ∞. This is a motivation for
Definition 1.3. Equation (1.1) is singular at t = 0 because p(0) = 0. In [6, 7] we have proved
that assumptions (1.3)–(1.8) are sufficient for the existence of strictly increasing solutions and
homoclinic solutions provided

∫1

0

ds
p(s)

< ∞ or there exists L0 < B such that f(L0) = 0. (1.9)

Here we assume that (1.9) is not valid. Then

f(x) > 0 for x < 0, (1.10)

and the papers [6, 8] provide existence theorems for problem (1.1), (1.2) if f has a sublinear
or linear behaviour near −∞. The case that f has a superlinear behaviour near −∞ is studied
in this paper. To this aim we consider the initial conditions

u(0) = B, u′(0) = 0, (1.11)

where B < 0, and introduce the following definition.

Definition 1.4. Let c > 0 and let u be a solution of (1.1) on [0, c] satisfying (1.11). Then u is
called a solution of problem (1.1), (1.11) on [0, c]. If umoreover fulfils

u′(t) > 0 for t ∈ (0, c], u(c) = L, (1.12)

then u is called an escape solution of problem (1.1), (1.11).
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We have proved in [6, 8] that for sublinear or linear f the existence of a homoclinic
solution follows from the existence of an escape solution of problem (1.1), (1.11). Therefore
our first task here is to prove that at least one escape solution of (1.1), (1.11) exists, provided
(1.3)–(1.8), (1.10), and

f(x) = 0 for x > L (1.13)

hold, and f has a superlinear behaviour near −∞. This is done in Section 2. Using the results
of Section 2 “Theorem 2.10”, and of [6, Theroms 13, 14 and 20] we get the existence of a
homoclinic solution in Section 3.

Note that by Definitions 1.3 and 1.4 just the values of a solution which are less than
L are important for a decision whether the solution is homoclinic or escape one. Therefore
condition (1.13) can be assumed without any loss of generality.

Close problems about the existence of positive solutions have been studied in [9–11].

2. Escape Solutions

In this section we assume that (1.3)–(1.8), (1.10), and (1.13) hold. We will need some lemmas.

Lemma 2.1 (see [6, Lemma 3]). For each B < 0, problem (1.1), (1.11) has a unique solution u on
[0,∞) such that

u(t) ≥ B for t ∈ [0,∞). (2.1)

In what follows by a solution of (1.1), (1.11)we mean a solution on [0,∞).

Remark 2.2 (see [6, Remark 4]). Choose a ≥ 0 and A ≤ L, and consider the initial conditions

u(a) = A, u′(a) = 0. (2.2)

Problem (1.1), (2.2) has a unique solution u on [a,∞). In particular, for A = 0 and A = L, we
get u ≡ 0 and u ≡ L, respectively. Clearly, for a > 0, u ≡ 0 and u ≡ L are solutions of (1.1) on
the whole interval [0,∞).

Lemma 2.3. Let B < 0 and let u be a solution of problem (1.1), (1.11) which is not an escape solution.
Let us denote

θ = sup{t > 0 : u < 0 in (0, t)}, b = sup
{
t > 0 : u′ > 0 in (0, t)

}
. (2.3)

Then 0 < θ ≤ b ≤ ∞ holds and pu′ is increasing on (0, θ). If θ < ∞, then θ < b and

max
{
p(t)u′(t) : t ∈ [0, b)

}
= p(θ)u′(θ). (2.4)

Proof. The inequality u(0) < 0 yields θ > 0. By (1.1) and (1.10), we get (pu′)′ = pf(u) > 0
on (0, θ) and hence pu′ is increasing on (0, θ). As p(0)u′(0) = 0, one has pu′ > 0 on (0, θ) and
consequently u′ > 0 on (0, θ). Therefore θ ≤ b.
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Let θ < ∞. Then θ is the first zero of u and u′(θ) > 0. Remark 2.2 yields that u′(θ) = 0
is not possible. This implies that θ < b. As u is strictly increasing on (θ, b) and u is not an
escape solution, we have 0 < u < L on (θ, b). Thus (pu′)′ = pf(u) < 0 on (θ, b) and hence pu′

is decreasing on (θ, b). This gives (2.4).

Lemma 2.4. Let B < 0 and let u be a solution of problem (1.1), (1.11) which is not an escape solution.
Assume that b is given by Lemma 2.3. Then

u(b) ∈ [0, L], u′(b) = 0. (2.5)

Proof. From (1.1), we have

u′′(t) +
p′(t)
p(t)

u′(t) = f(u(t)), t > 0, (2.6)

and, by multiplication and integration over [0, t],

u′2(t)
2

+
∫ t

0

p′(s)
p(s)

u′2(s)ds = F(u(0)) − F(u(t)), t > 0. (2.7)

(1) Assume that b = ∞. The definition of b yields u′ > 0 on (0,∞). Since u is not an
escape solution, it is bounded above and there exists

u(b) = lim
t→∞

u(t) ∈ (B, L]. (2.8)

Therefore the following integral is bounded and, since it is increasing, it has a limit

0 ≤ lim
t→∞

∫ t

0

p′(s)
p(s)

u′2(s)ds ≤ F(B) − F(u(b)) < ∞. (2.9)

So, by (2.7), limt→∞u′2(t) exists. By virtue of (2.8), we get

u′(b) = lim
t→∞

u′(t) = lim
t→∞

u′2(t) = 0. (2.10)

If u(b) /∈ {0, L}, then by (1.4), (1.10) and (2.6) we get limt→∞u′′(t) = u′′(b) = f(u(b))/= 0,
which contradicts (2.10). Hence, u(b) ∈ {0, L}. In particular, if θ is defined as in Lemma 2.3,
then

u(b) = 0 for θ = ∞, u(b) = L for θ < ∞. (2.11)

(2) Assume that b < ∞. Then the continuity of u′ gives u′(b) = 0 and θ of Lemma 2.3
fulfils 0 < θ < b. We deduce that 0 < u < L on (θ, b) as in the proof of Lemma 2.3. Remark 2.2
yields that if u′(b) = 0, then neither u(b) = 0 nor u(b) = L can occur. Therefore u(b) ∈
(0, L).
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Denote

P(t) =
∫ t

0
p(s)ds, t ∈ [0,∞). (2.12)

Lemma 2.5. Let B < 0 and let u be a solution of problem (1.1), (1.11). Further assume maximal b > 0
such that u′(t) > 0 and u(t) ∈ (B, L) for t ∈ (0, b). Then

∫ t

0
2F(u(s))p(s)p′(s)ds = F(u(t))p2(t) +

1
2
p2(t)u′2(t), t ∈ (0, b). (2.13)

For a ∈ [0, 1), let us denote

Q(x) := 2F(x) − a(L − x)f(x), x ∈ (−∞, L]. (2.14)

Then

∫ t

0
Q(u(s))p(s)ds < P(t)

(
2F(u(t)) + u′2(t)

)

+
∫ t

0

(
2p′(s)P(s)

p2(s)
− (a + 1)

)
p(s)u′2(s)ds, t ∈ (0, b).

(2.15)

Proof. For equality (2.13) see Lemma 4.6 in [8]. Let us prove (2.15). Using the per partes
integration, we get for t ∈ (0, b)

∫ t

0
Q(u(s))p(s)ds =

∫ t

0

(
2F(u(s)) − a(L − u(s))f(u(s))

)
p(s)ds

= 2F(u(t))P(t) + I1 + I2,

(2.16)

where

I1 = 2
∫ t

0
f(u(s))u′(s)P(s)ds, I2 = −a

∫ t

0
(L − u(s))f(u(s))p(s)ds. (2.17)

By multiplication and integration of (1.1) we obtain

2
∫ t

0
u′′(s)u′(s)P(s)ds + 2

∫ t

0
u′2(s)

p′(s)
p(s)

P(s)ds = I1, (2.18)

and by the per partes integration,

I1 = P(t)u′2(t) +
∫ t

0

(
2p′(s)
p(s)

P(s) − p(s)
)
u′2(s)ds. (2.19)
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To compute I2, we use (1.1) and get

I2 = −a
∫ t

0
(L − u(s))

(
p(s)u′(s)

)′ds. (2.20)

By the per partes integration we derive

I2 = −ap(t)u′(t)(L − u(t)) − a

∫ t

0
p(s)u′2(s)ds < −a

∫ t

0
p(s)u′2(s)ds. (2.21)

We have proved that (2.15) is valid.

Lemma 2.6. Let C < B, {Bn}∞n=1 ⊂ (−∞, C) and let {un}∞n=1 be solutions of problem (1.1), (1.11)
with B = Bn, n ∈ N. Let us denote

bn = sup
{
t > 0 : un ∈ (B, L), u′

n > 0 in (0, t)
}
, n ∈ N. (2.22)

Then for each n ∈ N there exists a unique γn ∈ (0, bn) satisfying

un

(
γn
)
= C. (2.23)

If the sequence {γn}∞n=1 is unbounded, then there exists an escape solution in {un}∞n=1.

Proof. Choose n ∈ N. The monotonicity and continuity of un in (0, bn) give a unique γn ∈
(0, bn). If {γn}∞n=1 is unbounded we argue as in the proof of Lemma 4.8 in [8].

Let C < B and let {Bn}∞n=1, {un}∞n=1, {bn}∞n=1 and {γn}∞n=1 be sequences from Lemma 2.6.
Assume that for any n ∈ N, un is not an escape solution of problem (1.1), (1.11). Lemma 2.6
implies that

Γ := sup
{
γn : n ∈ N

}
< ∞. (2.24)

We can assume that that either there exists b0 > 0 such that

bn ≤ b0, n ∈ N, (2.25)

or

bn > Γ + 1, n ∈ N. (2.26)

Otherwise we take a subsequence. Some additional properties of {un}∞n=1 are given in the next
two lemmas.
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Lemma 2.7. Denote

θn := sup{t > 0 : un < 0 in (0, t)}, n ∈ N, (2.27)

and assume that the sequence {θn}∞n=1 is bounded above. Then there exists K > 0 such that

p(t)u′
n(t) ≤ K for t ∈ [0, bn), n ∈ N. (2.28)

Proof. By Lemma 2.4 we have

un(bn) ∈ [0, L], u′
n(bn) = 0, n ∈ N. (2.29)

Step 1 (sequence {p(γn)u′
n(γn)}∞n=1 is bounded). Assume on the contrary that {p(γn)u′

n(γn)}∞n=1
is unbounded. We may write

lim
n→∞

p
(
γn
)
u′
n

(
γn
)
= ∞ (2.30)

(otherwise we take a subsequence). Equality (2.13) yields for n ∈ N and t ∈ (γn, bn),

0 <

∫ t

γn

2F(un(s))p(s)p′(s)ds

= F(un(t))p2(t) +
1
2
p2(t)u′2

n (t) − F
(
un

(
γn
))
p2
(
γn
) − 1

2
p2
(
γn
)
u′2
n

(
γn
)
.

(2.31)

Using (1.4), (1.6), (1.10), C < B and the fact that un(t) ∈ (C, L) for t ∈ (γn, bn), we get

F(un(t)) < F(C) for t ∈ (
γn, bn

)
. (2.32)

Consequently, inequality in (2.31) leads to

F(C)p2
(
γn
)
+
1
2
p2
(
γn
)
u′2
n

(
γn
)
< F(C)p2(t) +

1
2
p2(t)u′2

n (t) (2.33)

for t ∈ (γn, bn). Therefore

p2
(
γn
)
u′2
n

(
γn
) − 2F(C)p2(t) < p2(t)u′2

n (t), t ∈ (
γn, bn

)
, n ∈ N. (2.34)

We will consider two cases.

Case 1. If (2.25) holds, then (2.34) gives for n ∈ N

p2
(
γn
)
u′2
n

(
γn
) − 2F(C)p2(b0) < p2(b0)u′2

n (t), t ∈ (
γn, bn

)
. (2.35)
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By (2.30), for each sufficiently large n ∈ N, we get

p2
(
γn
)
u′2
n

(
γn
)
> (2F(C) + 1)p2(b0). (2.36)

Putting it to (2.35), we have 1 ≤ u′
n(bn), contrary to (2.29).

Case 2. If (2.26) holds, then (2.34) gives for n ∈ N

p2
(
γn
)
u′2
n

(
γn
) − 2F(C)p2(Γ + 1) < p2(Γ + 1)u′2

n (t), t ∈ (
γn,Γ + 1

]
. (2.37)

Due to (2.30), we have

p2
(
γn
)
u′2
n

(
γn
)
>
(
2F(C) + (L − C)2

)
p2(Γ + 1) (2.38)

for each sufficiently large n ∈ N. Putting it to (2.37), we get L − C < u′
n(t) for t ∈ (γn,Γ + 1].

Integrating it over [γn,Γ + 1], we obtain L < un(Γ + 1). Equation (1.1) and condition (1.13)
yield u′

n(t) > 0 for t ≥ Γ + 1, and so L < un(bn), contrary to (2.29).
We have proved that there exists K0 > 0 such that

p
(
γn
)
u′
n

(
γn
) ≤ K0, n ∈ N. (2.39)

Step 2 (estimate for pu′
n). Choose n ∈ N. By (2.32) we get

∫ t

γn

2F(un(s))p(s)p′(s)ds < 2F(C)
∫ t

γn

p(s)p′(s)ds < F(C)p2(t), t ∈ (
γn, bn

)
. (2.40)

This together with (2.31) and (2.39) imply

1
2
p2(t)u′2

n (t) < 2F(C)p2(t) +
1
2
K2

0 , t ∈ (
γn, bn

)
. (2.41)

According to (2.27) and Lemma 2.3 we see that θn ∈ (γn, bn) is the first zero of un. Since the
sequence {θn}∞n=1 is bounded above, there exists Γ0 < ∞ such that θn ≤ Γ0, n ∈ N. Then (1.8)
and (2.41) give

1
2
p2(θn)u′2

n (θn) < 2F(C)p2(Γ0) +
1
2
K2

0 . (2.42)
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Put

1
2
K2 = 2F(C)p2(Γ0) +

1
2
K2

0 . (2.43)

Then, by virtue of (2.4), inequality (2.28) is valid.

Lemma 2.8. Consider C < B and Γ satisfying (2.23) and (2.24). Let θn, n ∈ N be given by (2.27).
Assume that

θn > Γ + 2, n ∈ N. (2.44)

Then there exists K ∈ (0,∞) such that

p(t)u′
n(t) ≤ K for t ∈ [0,Γ + 1], n ∈ N. (2.45)

Proof. Assume on the contrary that

sup
{
p(t)u′

n(t) : t ∈ [0,Γ + 1], n ∈ N
}
= ∞. (2.46)

By Lemma 2.3, pu′
n is increasing on (0, θn), n ∈ N. Therefore

sup
{
p(Γ + 1)u′

n(Γ + 1) : n ∈ N
}
= ∞, (2.47)

and therefore there exists n0 ∈ N such that

p(Γ + 1)u′
n0
(Γ + 1) > |C|p(Γ + 2). (2.48)

Moreover (2.23), (2.24), (2.27), (2.44), and the monotonicity of un0 and pu′
n0

yield

un0(t) ∈ (C, 0), p(t)u′
n0
(t) > |C|p(Γ + 2) for t ∈ [Γ + 1,Γ + 2]. (2.49)

Integrating the last inequality over (Γ + 1,Γ + 2), we obtain un0(Γ + 2) − un0(Γ + 1) > |C|, so
|un0(Γ + 1)| > |C|, a contradiction.

Lemma 2.9. Let real sequences {Bn}∞n=1, {κn}∞n=1, {σn}∞n=1 be given and assume that

lim
n→∞

Bn = −∞, {κn}∞n=1 ⊂
[
1
2
, 1
]
, {σn}∞n=1 ⊂

[
1
2
, 1
]
. (2.50)

Let k ≥ 2 and

1 < r <
k + 2
k − 2

(2.51)
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(for k = 2 we assume r ∈ (1,∞)) be such that

0 < lim
x→−∞

|x|r
f(x)

< ∞. (2.52)

Assume that Q is given by (2.14) with a ∈ (0, 2/(r + 1)). Then

lim
n→∞

Q(κnBn)
( |Bn|
f(σnBn)

)k/2

= ∞. (2.53)

Proof. By (2.50), limn→∞κnBn = limn→∞σnBn = −∞. Condition (2.52) yields that there exists
λ ∈ (0,∞) such that

lim
x→−∞

|x|r
f(x)

= λ, lim
x→−∞

F(x)

|x| r+1
=

1
(r + 1)λ

. (2.54)

Therefore

lim
x→−∞

2F(x)
(L − x)f(x)

= 2 lim
x→−∞

|x|
L − x

F(x)

|x|r+1
|x|r
f(x)

=
2

r + 1
. (2.55)

Hence

lim
x→−∞

Q(x) = lim
x→−∞

(L − x)f(x)
(

2F(x)
(L − x)f(x)

− a

)

= a0 lim
x→−∞

(L − x)f(x),
(2.56)

where a0 := 2/(r + 1) − a > 0. Consequently,

lim
n→∞

Q(κnBn)
( |Bn|
f(σnBn)

)k/2

= a0 lim
n→∞

(L − κnBn)f(κnBn)
( |Bn|
f(σnBn)

)k/2

= a0 lim
n→∞

(L − κnBn)
f(κnBn)
|κnBn|r

( |σnBn|r
f(σnBn)

)k/2

κr
n

1

σrk/2
n

|Bn|r−(k/2)(r−1)

≥ a0

(
1
2

)r+1

λk/2−1 lim
n→∞

|Bn|r0 ,

(2.57)

where r0 = r + 1 − k(r − 1)/2 > 0, because r is less than the critical value (k + 2)/(k − 2). We
have proved (2.53).
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Now we are ready to prove the following main result of this paper.

Theorem 2.10. Assume that

lim
t→ 0+

p′(t)
tk−2

∈ (0,∞) (2.58)

for some k ≥ 2. Further, let r and f be such that (2.51) and (2.52) are valid. Then there exists B < B
such that the corresponding solution of problem (1.1), (1.11) is an escape solution.

Proof. Assumption (2.51) implies (k − 2)/k < 2/(r + 1) < 1, and hence we can choose a ∈
((k−2)/k, 2/(r +1)) and defineQ by (2.14). According to (1.4), (1.10), and (2.56), there exists
C < B such that Q(x) > 0 for x ∈ (−∞, C) ∪ (0, L]. Consequently, we can find Q̃ ∈ [0,∞) such
that

Q(x) ≥ −Q̃ for x ∈ (−∞, L]. (2.59)

Let {Bn}∞n=1, {un}∞n=1, {bn}∞n=1, {γn}∞n=1 be sequences defined in Lemma 2.6. Moreover, let

lim
n→∞

Bn = −∞. (2.60)

Assume that for any n ∈ N, un is not an escape solution of problem (1.1), (1.11). By Lemma 2.4
we have

un(bn) ∈ [0, L], u′
n(bn) = 0, n ∈ N. (2.61)

Condition (2.60) gives n0 ∈ N such that

Bn < 2C for n ∈ N, n ≥ n0. (2.62)

Choose an arbitrary n ≥ n0. We will construct a contradiction.

Step 1 (inequality for u′
n). Since un is increasing on (0, bn), (2.62) gives a unique γn ∈ (0, γn)

satisfying

un

(
γn
)
=

1
2
Bn. (2.63)

By (2.59) we have

∫ t

0
Q(un(s))p(s)ds >

∫ γn

0
Q(un(s))p(s)ds − Q̃

∫ t

γn

p(s)ds, t ∈ [
γn, bn

)
, (2.64)
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because Q(un(t)) > 0 for t ∈ (γn, γn). Further, there exists κn ∈ [1/2, 1] satisfying

Q(κnBn) = min
{
Q(x) : x ∈

[
Bn,

Bn

2

]}
. (2.65)

Therefore, according to (2.12),

∫ t

0
Q(un(s))p(s)ds > Q(κnBn)P

(
γn
) − Q̃P(t), t ∈ [

γn, bn
)
. (2.66)

Let us put

In(t) =
∫ t

0

(
2p′(s)P(s)

p2(s)
− (a + 1)

)
p(s)u′2

n (s)ds, t ∈ (0, bn). (2.67)

Then inequalities (2.15) and (2.66) imply

Q(κnBn)P
(
γn
) − Q̃P(t) < P(t)

(
2F(un(t)) + u′2

n (t)
)
+ In(t), t ∈ [

γn, bn
)
. (2.68)

Step 2 (estimate of P(γn) from below). Since un is a solution of (1.1) on [0,∞), we have

u′
n(t) =

1
p(t)

∫ t

0
p(s)f(un(s))ds, t ∈ (

0, γn
]
. (2.69)

Therefore

f(σnBn)
P(t)
p(t)

≥ u′
n(t) ≥ f

(
ρnBn

)P(t)
p(t)

, t ∈ (
0, γn

]
, (2.70)

where ρn, σn ∈ [1/2, 1], are such that

f
(
ρnBn

)
= min

{
f(x) : x ∈

[
Bn,

Bn

2

]}
,

f(σnBn) = max
{
f(x) : x ∈

[
Bn,

Bn

2

]}
.

(2.71)

Integrating (2.70) over (0, γn), we get

f(σnBn)
∫ γn

0

P(s)
p(s)

ds ≥ 1
2
|Bn| ≥ f

(
ρnBn

)
∫ γn

0

P(s)
p(s)

ds. (2.72)
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Hence

2r−1
∣
∣ρnBn

∣
∣r

f
(
ρnBn

)
1

|Bn|r−1
≥
∫ γn

0

P(s)
p(s)

ds. (2.73)

By (2.52), (2.60) and r > 1, we deduce that

lim
n→∞

∫ γn

0

P(s)
p(s)

ds = 0. (2.74)

Since P(t)/p(t) > 0 for t > 0, we get

lim
n→∞

γn = 0. (2.75)

Due to (2.58), there exists μ ∈ (0,∞) such that limt→ 0+p
′(t)/((k − 1)tk−2) = μ. Then

limt→ 0+p(t)/tk−1 = μ and limt→ 0+kP(t)/tk = μ. Hence for each ε ∈ (0, μ) there exists δ > 0
such that, for t ∈ (0, δ],

(
μ − ε

)
(k − 1)tk−2 < p′(t) <

(
μ + ε

)
(k − 1)tk−2,

(
μ − ε

)
tk−1 < p(t) <

(
μ + ε

)
tk−1,

(
μ − ε

) tk

k
< P(t) <

(
μ + ε

) tk

k
.

(2.76)

Consequently

P(t)
p(t)

<
t
(
μ + ε

)

k
(
μ − ε

) ,
p′(t)P(t)
p2(t)

<
k − 1
k

(
μ + ε

μ − ε

)2

, t ∈ (0, δ]. (2.77)

Having in mind (2.75), we can choose n0 in (2.62) such that for all n ≥ n0 the inequality γn ≤ δ
holds. Hence (2.72) and the first inequality in (2.77) yield

|Bn|
2f(σnBn)

<

∫ γn

0

s
(
μ + ε

)

k
(
μ − ε

)ds =
γ2n

(
μ + ε

)

2k
(
μ − ε

) . (2.78)

Put μ2
0 = k(μ − ε)/(μ + ε). Then μ2

0|Bn|/f(σnBn) ≤ γ2n, and

γn ≥ μ0

( |Bn|
f(σnBn)

)1/2

. (2.79)

On the other hand, by (2.76),

P
(
γn
)
=
∫ γn

0
p(t)dt >

∫ γn

0

(
μ − ε

)
tk−1dt =

μ − ε

k
γkn. (2.80)
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By (2.79), this yields

P
(
γn
)
>

μ − ε

k
μk
0

( |Bn|
f(σnBn)

)k/2

=: μ̃0

( |Bn|
f(σnBn)

)k/2

. (2.81)

Step 3 (estimate of {In}∞n=n0
). The inequality a > (k − 2)/k gives a + 1 > 2(k − 1)/k. Hence

there exists ε ∈ (0, μ) such that

a + 1 =
2(k − 1)

(
μ + ε

)2

k
(
μ − ε

)2 . (2.82)

Having in mind (2.76), we choose δ to this ε and then, by the second inequality in (2.77), we
obtain

2p′(t)P(t)
p2(t)

< a + 1, for t ∈ (0, δ]. (2.83)

Therefore

In(t) < 0 for t ∈ (0, δ], n ∈ N, n ≥ n0. (2.84)

By Lemmas 2.7 and 2.8 there exists K > 0 such that

p(t)u′
n(t) ≤ K, for t ∈ Jn, n ∈ N. (2.85)

Here Jn = [0, bn), n ∈ N, if (2.25) holds and Jn = [0,Γ + 1], n ∈ N, if (2.26) holds. In addition
there exists b̃ > Γ + 1 such that Jn ⊂ [0, b̃], n ∈ N. (Note that if {θn}∞n=1 in Lemma 2.8 is not
bounded but does not fulfil (2.44), we work with a proper subsequence fulfilling (2.44).) By
virtue of (2.84) and (2.85)we get

In(t) ≤ K2
∫ t

δ

(
2p′(s)P(s)

p2(s)
− (a + 1)

)
1

p(s)
ds, for t ∈ Jn, t ≥ δ, n ∈ N, n ≥ n0. (2.86)

Inequalities (2.84) and (2.86) yield

In(t) < K2b̃
1

p(δ)

⎛

⎜
⎝

2p′
(
b̃
)
P
(
b̃
)

p2(δ)
+ a + 1

⎞

⎟
⎠ =: K̃, for t ∈ Jn, n ∈ N, n ≥ n0. (2.87)
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Step 4 (final contradictions). Putting (2.81) and (2.87) to (2.68) and using (1.6), (1.10) and
C < B, we obtain

Q(κnBn)
( |Bn|
f(σnBn)

)k/2

μ̃0 − P(t)
(
Q̃ + 2F(C)

)
− K̃

< P(t)u′2
n (t), for t ∈ [

γn, bn
)
, n ∈ N, n ≥ n0.

(2.88)

First, let us assume that (2.26) holds and Jn = [0,Γ+1], n ∈ N. So, conditions (2.85), and (2.88)
yield

Q(κnBn)
( |Bn|
f(σnBn)

)k/2

μ̃0 − P(Γ + 1)
(
Q̃ + 2F(C)

)
− K̃

< P(Γ + 1)u′2
n (Γ + 1) < K2 P(Γ + 1)

p2(Γ + 1)
< ∞, for n ∈ N, n ≥ n0.

(2.89)

Letting n → ∞ we get a contradiction to (2.53).
Finally, let us assume that (2.25) holds and Jn = [0, bn), n ∈ N. Then (2.61), (2.88), and

Jn ⊂ [0, b̃] yield

Q(κnBn)
( |Bn|
f(σnBn)

)k/2

μ̃0 − P
(
b̃
)(

Q̃ + 2F(C)
)
− K̃

< P
(
b̃
)
u′2
n (bn) = 0, for n ∈ N, n ≥ n0,

(2.90)

contrary to (2.53).

Remark 2.11. We assume that k ≥ 2 in Theorem 2.10. In particular for k = 2 and p(t) = ct,
c > 0, the function f can behave in neighbourhood of −∞ as a function |x|r for arbitrary r > 1.

Now, let (2.58) hold for k < 2. Then limt→ 0+t
k−1/p(t) ∈ (0,∞) and therefore

∫1

0

ds
p(s)

=
∫1

0

sk−1

p(s)
1

sk−1
ds < ∞, (2.91)

which is the first condition in (1.9). We have proved in [6, 7] that, in this case, assumptions
(1.3)–(1.8) are sufficient for the existence of an escape solution.

Example 2.12. Let α ∈ (−1, 1) and p(t) = t3 + α sin t3, t ∈ [0,∞). Then p′(t) = 3t2(1 + α cos t3)
and

lim
t→ 0+

p′(t)
t2

= lim
t→ 0+

3
(
1 + α cos t3

)
= 3(1 + α). (2.92)

Hence, for k = 4 condition (2.58) is satisfied. The critical value (k + 2)/(k − 2) is equal to 3. By
Theorem 2.10, if f fulfils (2.52)with r ∈ (1, 3), problem (1.1), (1.11) has an escape solution.
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Example 2.13. Let p(t) = t ln(t + 1), t ∈ [0,∞). Then p′(t) = ln(t + 1) + t/(t + 1) and

lim
t→ 0+

p′(t)
t

= lim
t→ 0+

(
ln(t + 1)

t
+

1
t + 1

)
= 2. (2.93)

Hence, for k = 3 condition (2.58) is satisfied. The critical value (k + 2)/(k − 2) is equal to 5. By
Theorem 2.10, if f fulfils (2.52)with r ∈ (1, 5), problem (1.1), (1.11) has an escape solution.

3. Homoclinic Solutions

Having an escape solution we can deduce the existence of a homoclinic solution by the same
arguments as in [6]. For completeness we bring here the main ideas. Remember that our basic
assumptions (1.3)–(1.8), (1.10) and (1.13) are fulfilled in this section.

By Lemma 11 in [6], a solution u of problem (1.1), (1.11) is homoclinic if and only if

sup{u(t) : t ∈ [0,∞)} = L. (3.1)

By Theorem 16 in [6], a solution u of problem (1.1), (1.11) is an escape solution if and only if

sup{u(t) : t ∈ [0,∞)} > L. (3.2)

The third type of solutions of problem (1.1), (1.11) is characterized in the next definition.

Definition 3.1. A solution u of problem (1.1), (1.11) is called damped, if

sup{u(t) : t ∈ [0,∞)} < L. (3.3)

The following properties of damped and escape solutions are important for the
existence of homoclinic solutions.

Theorem 3.2 (see [6, Theorem 13] (on damped solutions)). Let B be of (1.5) and (1.6). Assume
that u is a solution of problem (1.1), (1.11) with B ∈ [B, 0). Then u is damped.

Theorem 3.3 (see [6, Theorem 14]). LetMd be the set of all B < 0 such that corresponding solutions
of problem (1.1), (1.11) are damped. Then Md is open in (−∞, 0).

Theorem 3.4 (see [6, Theorem 20]). LetMe be the set of all B < 0 such that corresponding solutions
of problem (1.1), (1.11) are escape ones. ThenMe is open in (−∞, 0).

Having these theorems we get the main result of this section.

Theorem 3.5 (On a homoclinic solution). Assume that the assumptions of Theorem 2.10 are
satisfied. Then problem (1.1), (1.2) has a homoclinic solution.

Proof. By Theorems 3.2 and 3.3, the setMd is nonempty and open in (−∞, 0). By Theorem 3.4,
the setMe is open in (−∞, 0). Using Theorem 2.10, we get thatMe is nonempty. Therefore the
set Mh = (−∞, 0) \ (Md ∪Me) is nonempty and if B ∈ Mh, then the corresponding solution
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of problem (1.1), (1.11) is neither damped nor an escape solution. Therefore sup{u(t) : t ∈
[0,∞)} = L, and by Lemma 11 in [6], such solution u is homoclinic.

The proof of Theorem 3.5 implies that if problem (1.1), (1.11) has an escape solution,
then it has also a homoclinic solution. Hence the following corollary is true.

Corollary 3.6. Assume that the assumptions of Theorem 2.10 are satisfied. Let problem (1.1), (1.11)
have no homoclinic solution. Then it has no escape solution.

If we assume (2.51) and (2.52), then the growth of f at −∞ is less than the critical value
(k + 2)/(k − 2). This is necessary for the existence of homoclinic solutions of some types of
(1.1). See the next example.

Example 3.7. Let k, r ∈ N, k > 2, r > 1. Consider (1.1), where p(t) = tk−1 and f(x) = (1 − x)r −
(1 − x) for x ≤ 1 and f(x) = 0 for x > 1. Then p and f satisfy conditions (1.3)–(1.8), (1.10),
(1.13), (2.52) and (2.58) with L = 1. By Theorem 3.5, if

r <
k + 2
k − 2

, (3.4)

then problem (1.1), (1.11) has a homoclinic solution. But if

r ≥ k + 2
k − 2

, (3.5)

then we have proved in [12] that problem (1.1), (1.11) has no homoclinic solution and
consequently no escape solution.
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[6] I. Rachůnková and J. Tomeček, “Bubble-type solutions of nonlinear singular problems,”Mathematical
and Computer Modelling, vol. 51, no. 5-6, pp. 658–669, 2010.



18 Boundary Value Problems
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