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We are concerned with the existence of positive solutions of singular second-order boundary value
problem u

′′
(t) + f(t, u(t)) = 0, t ∈ (0, 1), u(0) = u(1) = 0, which is not necessarily linearizable. Here,

nonlinearity f is allowed to have singularities at t = 0, 1. The proof of our main result is based
upon topological degree theory and global bifurcation techniques.

1. Introduction

Existence and multiplicity of solutions of singular problem

u′′ + f(t, u) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,
(1.1)

where f is allowed to have singularities at t = 0 and t = 1, have been studied by several
authors, see Asakawa [1], Agarwal and O’Regan [2], O’Regan [3], Habets and Zanolin [4],
Xu andMa [5], Yang [6], and the references therein. The main tools in [1–6] are the method of
lower and upper solutions, Leray-Schauder continuation theorem, and the fixed point index
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theory in cones. Recently, Ma [7] studied the existence of nodal solutions of the singular
boundary value problem

u′′ + ra(t)f(u) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,
(1.2)

by applying Rabinowitz’s global bifurcation theorem, where a is allowed to have singularities
at t = 0, 1 and f is linearizable at 0 as well as at ∞. It is the purpose of this paper to study the
existence of positive solutions of (1.1), which is not necessarily linearizable.

Let X be Banach space defined by

X =

{
φ ∈ L1

loc(0, 1) |
∫1

0
t(1 − t)∣∣φ(t)∣∣dt <∞

}
, (1.3)

with the norm

∥∥φ∥∥X =
∫1

0
t(1 − t)∣∣φ(t)∣∣dt. (1.4)

Let

X+ =
{
φ ∈ X | φ(t) ≥ 0, a.e. t ∈ (0, 1)

}
,

Xp =

{
φ ∈ X+ |

∫1

0
t(1 − t)φ(t)dt > 0

}
.

(1.5)

Definition 1.1. A function g : (0, 1) × R → R is said to be an L1
loc-Carathéodory function if it

satisfies the following:

(i) for each u ∈ R, g(·, u) is measurable;

(ii) for a.e. t ∈ (0, 1), g(t, ·) is continuous;
(iii) for any R > 0, there exists hR ∈ Xp, such that

∣∣g(t, u)∣∣ ≤ hR(t), a.e. t ∈ (0, 1), |u| ≤ R. (1.6)

In this paper, we will prove the existence of positive solutions of (1.1) by using the
global bifurcation techniques under the following assumptions.

(H1) Let f : (0, 1) × [0,∞) → [0,∞) be an L1
loc-Carathéodory function and there

exist functions a0(·), a0(·), c∞(·), and c∞(·) ∈ Xp, such that

a0(t)u − ξ1(t, u) ≤ f(t, u) ≤ a0(t)u + ξ2(t, u), (1.7)
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for some L1
loc-Carathéodory functions ξ1, ξ2 defined on (0, 1) × [0,∞)with

ξ1(t, u) = ◦(a0(t)u), ξ2(t, u) = ◦
(
a0(t)u

)
, as u −→ 0, (1.8)

uniformly for a.e. t ∈ (0, 1), and

c∞(t)u − ζ1(t, u) ≤ f(t, u) ≤ c∞(t)u + ζ2(t, u), (1.9)

for some L1
loc-Carathéodory functions ζ1, ζ2 defined on (0, 1) × [0,∞)with

ζ1(t, u) = ◦(c∞(t)u), ζ2(t, u) = ◦(c∞(t)u), as u → ∞, (1.10)

uniformly for a.e. t ∈ (0, 1).
(H2) f(t, u) > 0 for a.e. t ∈ (0, 1) and u ∈ (0,∞).
(H3) There exists function c1(·) ∈ Xp, such that

f(t, u) ≥ c1(t)u, a.e. t ∈ (0, 1), u ∈ [0,∞). (1.11)

Remark 1.2. If a0(·), a0(·), c∞(·), and c∞(·) ∈ C([0, 1], (0,∞)), then (1.8) implies that

ξ1(t, u) = ◦(u), ξ2(t, u) = ◦(u), as u → 0, (1.12)

and (1.10) implies that

ζ1(t, u) = ◦(u), ζ2(t, u) = ◦(u), as u → ∞. (1.13)

The main tool we will use is the following global bifurcation theorem for problem
which is not necessarily linearizable.

Theorem A (Rabinowitz, [8]). Let V be a real reflexive Banach space. Let F : R × V → V be
completely continuous, such that F(λ, 0) = 0, for all λ ∈ R. Let a, b ∈ R (a < b), such that u = 0 is
an isolated solution of the following equation:

u − F(λ, u) = 0, u ∈ V, (1.14)

for λ = a and λ = b, where (a, 0), (b, 0) are not bifurcation points of (1.14). Furthermore, assume
that

d(I − F(a, ·), Br(0), 0)/=d(I − F(b, ·), Br(0), 0), (1.15)

where Br(0) is an isolating neighborhood of the trivial solution. Let

S = {(λ, u) : (λ, u) is a solution of (1.14) with u/= 0} ∪ ([a, b] × {0}), (1.16)
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then there exists a continuum (i.e., a closed connected set) C of S containing [a, b] × {0}, and either

(i) C is unbounded in V × R, or

(ii) C ∩ [(R \ [a, b]) × {0}]/= ∅.

To state our main results, we need the following.

Lemma 1.3 (see [1, Proposition 4.7]). Let a ∈ Xp, then the eigenvalue problem

u′′ + λa(t)u = 0, t ∈ (0, 1),

u(0) = u(1) = 0
(1.17)

has a sequence of eigenvalues as follows:

0 < λ1(a) < λ2(a) < · · · < λk(a) < λk+1(a) < · · · , lim
k→∞

λk(a) = ∞. (1.18)

Moreover, for each k ∈ N, λk(a) is simple and its eigenfunction ψk ∈ C1[0, 1] has exactly k − 1 zeros
in (0, 1).

Remark 1.4. Note that ψk ∈ C1[0, 1] and ψk(0) = ψk(1) = 0 for each k ∈ N. Therefore, there
exist constantsMk > 0, such that

∣∣ψk(t)∣∣ ≤Mkt(1 − t), t ∈ [0, 1]. (1.19)

Our main result is the following.

Theorem 1.5. Let (H1)–(H3) hold. Assume that either

λ1(c∞) < 1 < λ1
(
a0
)

(1.20)

or

λ1(a0) < 1 < λ1(c∞), (1.21)

then (1.1) has at least one positive solution.

Remark 1.6. For other references related to this topic, see [9–14] and the references therein.

2. Preliminary Results

Lemma 2.1 (see [15, Proposition 4.1]). For any h ∈ X, the linear problem

u′′(t) + h(t) = 0, t ∈ (0, 1),

u(0) = u(1) = 0
(2.1)
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has a unique solution u ∈W1,1(0, 1) and u′ ∈ ACloc(0, 1), such that

u(t) =
∫1

0
G(t, s)h(s)ds, (2.2)

where

G(t, s) =

⎧⎨
⎩

s(1 − t), 0 ≤ s ≤ t ≤ 1,

t(1 − s), 0 ≤ t ≤ s ≤ 1.
(2.3)

Furthermore, if h ∈ X+, then

u(t) ≥ 0, t ∈ [0, 1]. (2.4)

Let Y = C[0, 1] be the Banach space with the norm ‖u‖ = maxt∈[0,1]|u(t)|, and

E = {u ∈ C[0, 1] | u(0) = u(1) = 0}. (2.5)

Let L : D(L) ⊂ Y → X be an operator defined by

Lu = −u′′, u ∈ D(L), (2.6)

where

D(L) =
{
u ∈W1,1(0, 1) | u′′ ∈ X, u(0) = u(1) = 0

}
. (2.7)

Then, from Lemma 2.1, L−1 : X → C[0, 1] is well defined.

Lemma 2.2. Let a ∈ Xp and ψ1 be the first eigenfunction of (1.17). Then for all u ∈ D(L), one has

∫1

0
u′′(t)ψ1(t)dt =

∫1

0
u(t)ψ ′′

1(t)dt. (2.8)

Proof. For any δ ∈ (0, 1/2), integrating by parts, we have

∫1−δ

δ

u′′(t)ψ1(t)dt = u′ψ1
∣∣1−δ
δ − uψ ′

1

∣∣1−δ
δ +

∫1−δ

δ

u(t)ψ ′′
1(t)dt. (2.9)

Since u ∈ D(L) and ψ1 ∈ C1[0, 1], then

lim
δ→ 0

u(δ)ψ ′
1(δ) = lim

δ→ 0
u(1 − δ)ψ ′

1(1 − δ) = 0. (2.10)
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Therefore, we only need to prove that

lim
δ→ 0

u′(δ)ψ1(δ) = 0, lim
δ→ 0

u′(1 − δ)ψ1(1 − δ) = 0. (2.11)

Let us deal with the first equality, the second one can be treated by the same way. Note that
u ∈ D(L), then

(
tu′(t)

)′ = u′ + tu′′ ∈ L1(0, δ), (2.12)

which implies that tu′(t) ∈ AC[0, δ]. Then tu′(t) is bounded on [0, δ]. Now, we claim that

lim
t→ 0

t
∣∣u′(t)∣∣ = 0. (2.13)

Suppose on the contrary that limt→ 0t|u′(t)| = a > 0, then for δ small enough, we have

t
∣∣u′(t)∣∣ ≥ a

2
, t ∈ [0, δ]. (2.14)

Therefore,

∞ >

∫δ

0

∣∣u′(t)∣∣dt ≥ ∫δ

0

a

2t
dt = ∞, (2.15)

which is a contradiction. Combining (1.19)with (2.13), we have

∣∣u′(δ)ψ1(δ)
∣∣ ≤M1(1 − δ)δ

∣∣u′(δ)∣∣ −→ 0, δ → 0. (2.16)

This completes the proof.

Remark 2.3. Under the conditions of Lemma 2.2, for the later convenience, (2.8) is equivalent
to

〈
Lu, ψ1

〉
=
〈
u, Lψ1

〉
. (2.17)

Lemma 2.4 (see [1, Lemma 2.3]). For every ρ ∈ X+, the subset K defined by

K = L−1({φ ∈ X | ∣∣φ(t)∣∣ ≤ ρ(t), a.e. t ∈ (0, 1)
})

(2.18)

is precompact in C[0, 1].

Let Σ ⊂ R
+ × E be the closure of the set of positive solutions of the problem

Lu = λf(t, u). (2.19)
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We extend the function f to an L1
loc-Carathéodory function f defined on (0, 1) × R by

f(t, u) =

⎧⎨
⎩

f(t, u), (t, u) ∈ (0, 1) × [0,∞),

f(t, 0), (t, u) ∈ (0, 1) × (−∞, 0).
(2.20)

Then f(t, u) ≥ 0 for u ∈ R and a.e. t ∈ (0, 1). For λ ≥ 0, let u be an arbitrary solution of the
problem

Lu = λf(t, u). (2.21)

Since λf(t, u(t)) ≥ 0 for a.e. t ∈ (0, 1), Lemma 2.2 yields u(t) ≥ 0 for t ∈ [0, 1]. Thus, u is a
nonnegative solution of (2.19), and the closure of the set of nontrivial solutions (λ, u) of (2.21)
in R

+ × E is exactly Σ.
Let g : (0, 1) × R → R be an L1

loc-Carathéodory function. Let N̂ : E → X be the
Nemytskii operator associated with the function g as follows:

N̂(u)(t) = g(t, u(t)), u ∈ E. (2.22)

Lemma 2.5. Let g(t, u) ≥ 0 on [0, 1] × R. Let u ∈ D(L) be such that Lu ≥ λN̂(u) in (0, 1), λ ≥ 0.
Then,

u(t) ≥ 0, t ∈ (0, 1). (2.23)

Moreover, u(t) > 0, t ∈ (0, 1), whenever u/≡ 0.

LetN : E → X be the Nemytskii operator associated with the function f as follows:

N(u)(t) = f(t, u), u ∈ E. (2.24)

Then (2.21), with λ ≥ 0, is equivalent to the operator equation

u = λL−1N(u), u ∈ E, (2.25)

that is,

u(t) = λ
∫1

0
G(t, s)N(u(s))ds, u ∈ E. (2.26)

Lemma 2.6. Let (H1) and (H2) hold. Then the operator L−1N : C[0, 1] → C[0, 1] is completely
continuous.
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Proof. From (1.10) in (H1), there exists R > 0, such that, for a.e. t ∈ (0, 1) and |u| > R,

|ζ1(t, u)| ≤ 1
2
c∞(t)u, |ζ2(t, u)| ≤ 1

2
c∞(t)u. (2.27)

Since f is an L1
loc-Carathéodory function, then there exists hR ∈ Xp, such that, for a.e. t ∈ (0, 1)

and |u| ≤ R, |f(t, u)| ≤ hR(t). Therefore, for a.e. t ∈ (0, 1) and u ∈ R, we have

∣∣∣f(t, u)∣∣∣ ≤ 3
2
c∞(t)u + hR(t). (2.28)

For convenience, let T = L−1N. We first show that T : C[0, 1] → C[0, 1] is continuous.
Suppose that um → u in C[0, 1] as m → ∞. Clearly, f(t, um) → f(t, u) as m → ∞ for a.e.
t ∈ (0, 1) and there existsM > 0 such that ‖um‖ ≤M for everym ∈ N. It is easy to see that

|Tum(t) − Tu(t)| ≤
∫1

0
s(1 − s)

∣∣∣f(s, um(s)) − f(s, u(s))∣∣∣ds,
∣∣∣f(s, um(s)) − f(s, u(s))∣∣∣ ≤ 3c∞(s)M + 2hR(s), a.e. s ∈ (0, 1).

(2.29)

By the Lebesgue dominated convergence theorem, we have that Tum → Tu in C[0, 1] as
m → ∞. Thus, L−1N is continuous.

Let D be a bounded set in C[0, 1]. Lemma 2.4 together with (2.28) shows that T(D) is
precompact in C[0, 1]. Therefore, T is completely continuous.

In the following, we will apply the Leray-Schauder degree theory mainly to the
mapping Φλ : E → E,

Φλ(u) = u − λL−1N(u). (2.30)

For R > 0, let BR = {u ∈ E : ‖u‖ < R}, let deg(Φλ, BR, 0) denote the degree of Φλ on BR with
respect to 0.

Lemma 2.7. Let Λ ⊂ R
+ be a compact interval with [λ1(a0), λ1(a0)] ∩ Λ = ∅, then there exists a

number δ1 > 0 with the property

Φλ(u)/= 0, ∀u ∈ Y : 0 < ‖u‖ ≤ δ1, ∀λ ∈ Λ. (2.31)

Proof. Suppose to the contrary that there exist sequences {μn} ⊂ Λ and {un} in Y : μn → μ∗ ∈
Λ, un → 0 in Y , such that Φμn(un) = 0 for all n ∈ N, then, un ≥ 0 in [0, 1].
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Set vn = un/‖un‖. Then Lvn = μn‖un‖−1N(un) = μn‖un‖−1f(t, un) and ‖vn‖ = 1. Now,
from condition (H1), we have the following:

a0(t)un − ξ1(t, un) ≤ f(t, un) ≤ a0(t)un + ξ2(t, un), (2.32)

and accordingly

μn

(
a0(t)vn − ξ1(t, un)

‖un‖
)

≤ μn
f(t, un)
‖un‖ ≤ μn

(
a0(t)vn +

ξ2(t, un)
‖un‖

)
. (2.33)

Let ϕ0 and ϕ0 denote the nonnegative eigenfunctions corresponding to λ1(a0) and
λ1(a0), respectively, then we have from the first inequality in (2.33) that

〈
μn

(
a0(t)vn − ξ1(t, un)

‖un‖
)
, ϕ0

〉
≤
〈
μn
f(t, un)
‖un‖ , ϕ0

〉
=
〈
Lvn, ϕ0

〉
. (2.34)

From Lemma 2.2, we have that

〈
Lvn, ϕ0

〉
=
〈
vn, Lϕ0

〉
= λ1(a0)

〈
vn, a0(t)ϕ0

〉
. (2.35)

Since un → 0 in E, from (1.12), we have that

ξ1(t, un)
‖un‖ −→ 0, as ‖un‖ −→ 0. (2.36)

By the fact that ‖vn‖ = 1, we conclude that vn ⇀ v in E. Thus,

〈
vn, a0(t)ϕ0

〉 −→ 〈
v, a0(t)ϕ0

〉
. (2.37)

Combining this and (2.35) and letting n → ∞ in (2.34), it follows that

〈
μ∗a0(t)v, ϕ0

〉 ≤ λ1(a0)〈a0(t)ϕ0, v
〉
, (2.38)

and consequently

μ∗ ≤ λ1(a0). (2.39)

Similarly, we deduce from second inequality in (2.33) that

λ1
(
a0
)
≤ μ∗. (2.40)

Thus, λ1(a0) ≤ μ∗ ≤ λ1(a0). This contradicts μ∗ ∈ Λ.
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Corollary 2.8. For λ ∈ (0, λ1(a0)) and δ ∈ (0, δ1), deg(Φλ, Bδ, 0) = 1.

Proof. Lemma 2.7, applied to the interval Λ = [0, λ], guarantees the existence of δ1 > 0, such
that for δ ∈ (0, δ1),

u − τλL−1N(u)/= 0, u ∈ E : 0 < ‖u‖ ≤ δ, τ ∈ [0, 1]. (2.41)

This together with Lemma 2.6 implies that for any δ ∈ (0, δ1),

deg(Φλ, Bδ, 0) = deg(I, Bδ, 0) = 1, (2.42)

which ends the proof.

Lemma 2.9. Suppose λ > λ1(a0), then there exists δ2 > 0 such that for all u ∈ E with 0 < ‖u‖ ≤ δ2,
for all τ ≥ 0,

Φλ(u)/= τϕ0, (2.43)

where ϕ0 is the nonnegative eigenfunction corresponding to λ1(a0).

Proof. Suppose on the contrary that there exist τn ≥ 0 and a sequence {un}with ‖un‖ > 0 and
un → 0 in E such that Φλ(un) = τnϕ0 for all n ∈ N. As

Lun = λN(un) + τnλ1(a0)a0(t)ϕ0 (2.44)

and τnλ1(a0)a0(t)ϕ0 ≥ 0 in (0, 1), it concludes from Lemma 2.2 that

un(t) ≥ 0, t ∈ [0, 1]. (2.45)

Notice that un ∈ D(L) has a unique decomposition

un = wn + snϕ0, (2.46)

where sn ∈ R and 〈wn, a0(t)ϕ0〉 = 0. Since un ≥ 0 on [0, 1] and ‖un‖ > 0, we have from (2.46)
that sn > 0.

Choose σ > 0, such that

σ <
λ − λ1(a0)

λ
. (2.47)

By (H1), there exists r1 > 0, such that

|ξ1(t, u)| ≤ σa0(t)u, a.e. t ∈ (0, 1), u ∈ [0, r1]. (2.48)
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Therefore, for a.e. t ∈ (0, 1), u ∈ [0, r1],

f(t, u) ≥ a0(t)u − ξ1(t, u) ≥ (1 − σ)a0(t)u. (2.49)

Since ‖un‖ → 0, there existsN∗ > 0, such that

0 ≤ un ≤ r1, ∀n ≥N∗, (2.50)

and consequently

f(t, un) ≥ (1 − σ)a0(t)un, ∀n ≥N∗. (2.51)

Applying (2.51), it follows that

snλ1(a0)
〈
ϕ0, a0(t)ϕ0

〉
=
〈
un, Lϕ0

〉
=
〈
Lun, ϕ0

〉
= λ

〈
N(un), ϕ0

〉
+ τnλ1(a0)

〈
a0(t)ϕ0, ϕ0

〉
≥ λ〈N(un), ϕ0

〉 ≥ λ〈(1 − σ)a0(t)un, ϕ0
〉

= λ(1 − σ)〈a0(t)ϕ0, un
〉

= λ(1 − σ)sn
〈
a0(t)ϕ0, ϕ0

〉
.

(2.52)

Thus,

λ1(a0) ≥ λ(1 − σ). (2.53)

This contradicts (2.47).

Corollary 2.10. For λ > λ1(a0) and δ ∈ (0, δ2), deg(Φλ, Bδ, 0) = 0.

Proof. Let 0 < δ ≤ δ2, where δ2 is the number asserted in Lemma 2.9. AsΦλ is bounded in Bδ,
there exists c > 0 such that Φλ(u)/= cϕ0, for all u ∈ Bδ. By Lemma 2.9, one has

Φλ(u)/= τcϕ0, u ∈ ∂Bδ, τ ∈ [0, 1]. (2.54)

This together with Lemma 2.6 implies that

deg(Φλ, Bδ, 0) = deg
(
Φλ − cϕ0, Bδ, 0

)
= 0. (2.55)

Now, using Theorem A, we may prove the following.
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Proposition 2.11. [λ1(a0), λ1(a0)] is a bifurcation interval from the trivial solution for (2.30). There
exists an unbounded component C of positive solutions of (2.30) which meets [λ1(a0), λ1(a0)] × {0}.
Moreover,

C ∩
[(

R \
[
λ1
(
a0
)
, λ1(a0)

])
× {0}

]
= ∅. (2.56)

Proof. For fixed n ∈ N with λ1(a0) − (1/n) > 0, let us take that an = λ1(a0) − (1/n), bn =
λ1(a0)+(1/n) and δ̂ = min{δ1, δ2}. It is easy to check that, for 0 < δ < δ̂, all of the conditions
of Theorem A are satisfied. So there exists a connected component Cn of solutions of (2.30)
containing [an, bn] × {0}, and either

(i) Cn is unbounded, or
(ii) Cn ∩ [(R \ [an, bn]) × {0}]/= ∅.

By Lemma 2.7, the case (ii) can not occur. Thus, Cn is unbounded bifurcated from [an, bn]×{0}
in R × E. Furthermore, we have from Lemma 2.7 that for any closed interval I ⊂ [an, bn] \
[λ1(a0), λ1(a0)], if u ∈ {y ∈ E | (λ, y) ∈ Σ, λ ∈ I}, then ‖u‖ → 0 in E is impossible. So Cn
must be bifurcated from [λ1(a0), λ1(a0)] × {0} in R × E.

3. Proof of the Main Results

Proof of Theorem 1.5. It is clear that any solution of (2.30) of the form (1, u) yields solutions u
of (1.1). We will show that C crosses the hyperplane {1} × E in R × E. To do this, it is enough
to show that C joins [λ1(a0), λ1(a0)] × {0} to [λ1(c∞), λ1(c∞)] × {∞}. Let (ηn, yn) ∈ C satisfy

ηn +
∥∥yn∥∥ −→ ∞. (3.1)

We note that ηn > 0 for all n ∈ N since (0, 0) is the only solution of (2.30) for λ = 0 and
C ∩ ({0} × E) = ∅.

Case 1. consider the following:

λ1(c∞) < 1 < λ1
(
a0
)
. (3.2)

In this case, we show that the interval

(
λ1(c∞), λ1

(
a0
))

⊆ {λ ∈ R | (λ, u) ∈ C}. (3.3)

We divide the proof into two steps.

Step 1. We show that {ηn} is bounded.
Since (ηn, yn) ∈ C, Lyn = ηnf(t, yn). From (H3), we have

Lyn ≥ ηnc1(t)yn. (3.4)
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Let ϕ denote the nonnegative eigenfunction corresponding to λ1(c1).
From (3.4), we have

〈
Lyn, ϕ

〉 ≥ ηn〈c1(t)yn, ϕ〉. (3.5)

By Lemma 2.2, we have

λ1(c1)
〈
yn, c1(t)ϕ

〉
=
〈
yn, Lϕ

〉 ≥ ηn〈c1(t)ϕ, yn〉. (3.6)

Thus,

ηn ≤ λ1(c1). (3.7)

Step 2. We show that C joins [λ1(a0), λ1(a0)] × {0} to [λ1(c∞), λ1(c∞)] × {∞}.
From (3.1) and (3.7), we have that ‖yn‖ → ∞. Notice that (2.30) is equivalent to the

integral equation

yn(t) = ηn

∫1

0
G(t, s)f

(
s, yn(s)

)
ds, (3.8)

which implies that

ηn

∫1

0
G(t, s)

[
c∞(s)yn(s) + ζ2

(
s, yn(s)

)]
ds ≥ yn(t)

≥ ηn
∫1

0
G(t, s)

[
c∞(s)yn(s) − ζ1

(
s, yn(s)

)]
ds.

(3.9)

We divide the both sides of (3.9) by ‖yn‖ and set vn = yn/‖yn‖. Since vn is bounded in E,
there exist a subsequence of {vn} and v∗ ∈ E with v∗ ≥ 0 and v∗ /≡ 0 on (0, 1), such that

ηn −→ η∗, vn
ω
⇀ v∗ in E, (3.10)

relabeling if necessary. Thus, (3.9) yields that

η∗
∫1

0
G(t, s)c∞(s)v∗(s)ds ≥ v∗(t) ≥ η∗

∫1

0
G(t, s)c∞(s)v∗(s)ds. (3.11)
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Let ϕ∞ and ϕ∞ denote the nonnegative eigenfunctions corresponding to λ1(c∞) and
λ1(c∞), respectively, then it follows from the second inequality in (3.11) that

λ1(c∞)
〈
c∞ϕ∞, v∗〉 = 〈

Lϕ∞, v∗〉 = 〈−ϕ′′
∞, v

∗〉 = −
∫1

0
ϕ′′
∞(t)v

∗(t)dt

≥ −
∫1

0
ϕ′′
∞(t)η

∗
∫1

0
G(t, s)c∞(s)v∗(s)dsdt

= −η∗
∫1

0
c∞(s)v∗(s)

∫1

0
G(t, s)ϕ′′

∞(t)dtds

= η∗
∫1

0
c∞(s)v∗(s)ϕ∞(s)ds

= η∗
〈
c∞ϕ∞, v∗〉,

(3.12)

and consequently

η∗ ≤ λ1(c∞). (3.13)

Similarly, we deduce from the first inequality in (3.11) that

λ1(c∞) ≤ η∗. (3.14)

Thus,

λ1(c∞) ≤ η∗ ≤ λ1(c∞). (3.15)

So C joins [λ1(a0), λ1(a0)] × {0} to [λ1(c∞), λ1(c∞)] × {∞}.

Case 2. λ1(a0) < 1 < λ1(c∞).
In this case, if (ηn, yn) ∈ C is such that

lim
n→∞

(
ηn +

∥∥yn∥∥) = ∞,

lim
n→∞

ηn = ∞,
(3.16)

then

(λ1(a0), λ1(c∞)) ⊆ {λ ∈ (0,∞) | (λ, u) ∈ C}, (3.17)

and moreover,

({1} × E) ∩ C/= ∅. (3.18)
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Assume that {ηn} is bounded, applying a similar argument to that used in Step 2 of
Case 1, after taking a subsequence and relabeling if necessary, it follows that

ηn −→ η∗ ∈ [λ1(c∞), λ1(c∞)],
∥∥yn∥∥ −→ ∞, as n −→ ∞. (3.19)

Again C joins [λ1(a0), λ1(a0)] × {0} to [λ1(c∞), λ1(c∞)] × {∞} and the result follows.

Remark 3.1. Lomtatidze [13, Theorem 1.1] proved the existence of solutions of singular two-
point boundary value problems as follows:

u′′(t) = g(t, u),

u(a) = 0, u(b) = 0,
(3.20)

under the following assumptions:
(A1)

g(t, x) ≤ h1(t)x, 0 < x < δ,

g(t, x) ≥ h2(t)x, x >
1
δ
,

(3.21)

where hi : (a, b) → R(i = 1, 2) satisfies the following condition:

∫b

a

(t − a)(b − t)|hi(t)|dt < +∞ (i = 1, 2), (3.22)

(A2) For i = 1, 2, let vi be the solution of singular IVPs

v′′(t) = hi(t)v, v(a) = 0, v′(a) = 1, (3.23)

satisfying v1 has at least one zero in (a, b] and v2 has no zeros in (a, b].
It is worth remarking that (A1)-(A2) imply Condition (1.21) in Theorem 1.5. However,

Condition (1.21) is easier to be verified than (A1)-(A2) since λ1(c∞) and λ1(a0) are easily
estimated by Rayleigh’s Quotient.

The language of eigenvalue of singular linear eigenvalue problem did not occur until
Asakawa [1] in 2001. The first part of Theorem 1.5 is new.
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