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We are concerned with general third-order nonlinear boundary value problems. An existence
theorem of solution is given under weaker conditions. In themeantime, an iterative algorithmwith
global convergence is presented. The higher order derivatives of approximate solution is obtained
by using this method can approximate the corresponding derivatives of exact solution well.

1. Introduction

The third-order boundary value problems arise in the study of draining and coating flows.
In the past few years, third-order boundary value problems with various types of boundary
conditions have been studied in many literatures. For details, see [1–6] and their references
therein. In the last decade or so, several papers [7–12] have been devoted to the study of
third-order differential equations with two point boundary value conditions. In [13], the
authors discussed the solvability of a class of particular third-order nonlinear boundary value
problems:

u(3)(x) − f(x, u(x), u′(x), u′′(x)) = 0, 0 ≤ x ≤ 1,

u(0) = 0, u′(0) = 0, u′(1) = 0.
(1.1)

In this paper, we consider third-order nonlinear equations subject to the other
boundary value conditions:
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u(3)(x) − f(x, u(x), u′, u′′(x)) = 0, 0 ≤ x ≤ 1,

u(1) = 0, u′(0) = 0, u′(1) = 0.
(1.2)

In order to derive the existence theorems for solution of (1.2), we make the following
assumptions H:

(H1) f(x, y, z,w) ∈ [0, 1] × R3 is completely continuous function;

(H2) f(x, y, z,w), fx(x, y, z,w), fy(x, y, z,w), fz(x, y, z,w) and fw(x, y, z,w) are
bounded;

(H3) f(x, y, z,w) > 0 on [0, 1] × R3,

where f(x, y, z,w) ∈ W1[0, 1] as y = y(x) ∈ W1[0, 1], z = z(x) ∈ W1[0, 1], w = w(x) ∈
W1[0, 1], (0 ≤ x ≤ 1,−∞ < y, z,w <∞).

Under weaker conditions, we give an existence theorem. In the meantime, we give
an iterative method of obtaining the solution of (1.2). The method has following features:
firstly, the method is an iterative method in a wide range, that is, the convergence of iterative
sequences is independent of the choice of initial values; secondly, the approximate solution
obtained by using this method can approximate the higher order derivatives of exact solution
well; thirdly, we consider the problem in the reproducing kernel Hilbert space and use
sufficiently the good properties of the space. When we choose an appropriate reproducing
kernel Hilbert space, we can discuss higher-order boundary value problems in a similar
manner.

2. Several Reproducing Kernel Spaces

2.1. The Reproducing Kernel Space W1[0, 1]

The inner product space W1[0, 1] is defined by W1[0, 1] = {u(x) | u(x) is absolutely
continuous real value function in [0, 1], u′(x) ∈ L2[0, 1]}. The inner product and norm in
W1[0, 1] are given, respectively, by

〈u(x), v(x)〉W1
= u(0)v(0) +

∫1

0
u′(x)v′(x)dx, ‖u‖W1

= 〈u(x), u(x)〉1/2. (2.1)

In [14, 15], the author had proved thatW1[0, 1] is a complete reproducing kernel space.
That is, there exists a reproducing kernel function Qx(y) ∈ W1[0, 1], y ∈ [0, 1], for each fixed
x ∈ [0, 1] and any u(y) ∈W1[0, 1], such that 〈u(y), Qx(y)〉W1

= u(x). The reproducing kernel
Qx(y) can be denoted by

Qx

(
y
)

=

⎧
⎨

⎩

1 + y, y ≤ x,
1 + x, y > x.

(2.2)
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2.2. The Reproducing Kernel Space W2[0, 1]

The inner product space W2[0, 1] is defined by W2[0, 1] = {u(x) | u(3) are absolutely
continuous real value functions, u(4) ∈ L2[0, 1], u(1) = 0, u′(0) = 0, u′(1) = 0}. The inner
product and norm inW2[0, 1] are given, respectively, by

〈
u
(
y
)
, v
(
y
)〉

W2
=

3∑

i=0

u(i)(0)v(i)(0) +
∫1

0
u(4)v(4)dy, ‖u‖W2

=
√
〈u, u〉W2

, (2.3)

where u, v ∈W2[0, 1].

Theorem 2.1. The space W2[0, 1] is a reproducing kernel space. That is, for any fixed x ∈ [0, 1],
there exists Tx(y) ∈ W2[0, 1], such that for any u(x) ∈ W2[0, 1], u(x) = 〈u(y), Tx(y)〉W2

. The
reproducing kernel Tx(y) can be denoted by

Tx
(
y
)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
11975695200

(
(−1 + x)2(5040(17410 + 34820x + 4350x2 − 1340x3 − 835x4

+468x5 + 1260
(−191520 − 383040x − 30110x2 + 20200x3 − 5145x4 + 38x5)y2

−140(−892080 − 1784160x + 47340x2 − 30970x3 + 7300x4 + 177x5)y3

−35(−892080 − 1784160x + 47340x2 − 30970x3 + 7300x4 + 177x5)y4

−21(−191520 − 383040x − 30110x2 + 20200x3 − 5145x4 + 38x5)y5

+161
(−55440 − 7570x − 560x2 + 410x3 − 130x4 + 11x5)y6

−(17410 + 34820x + 4350x2 − 1340x3 − 835x4 + 468x5)y7)), y ≤ x,

− 1
11975695200

((−1 + y)2(5040
−161x6(−55440 − 7570y − 560y2 + 410y3 − 130y4 + 11y5)

−1260x2(−191520 − 383040y − 30110y2 + 20200y3 − 5145y4 + 38y5) + 21x5

(−191520 − 383040y − 30110y2 + 20200y3 − 5145y4 + 38y5) + 140x3

(−892080 − 1784160y + 47340y2 − 30970y3 + 7300y4 + 177y5) + 35x4

(−892080 − 1784160y + 47340y2 − 30970y3 + 7300y4 + 177y5) − 5040
(
17410 + 34820y + 4350y2 − 1340y3 − 835y4 + 468y5) + x7

(
17410 + 34820y + 4350y2 − 1340y3 − 835y4 + 468y5))), y > x.

(2.4)

2.3. The Reproducing Kernel Space W3[0, 1]

The inner product space W3[0, 1] is defined by W3[0, 1] = {u(x) | u(3) are absolutely
continuous real value functions, u(4) ∈ L2[0, 1], u(0) = 0, u′(0) = 0, u′(1) = 0}. The definitions
of inner product and norm inW3[0, 1] are the same as (2.3).
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Theorem 2.2. The space W3[0, 1] is a reproducing kernel space. That is, for any fixed x ∈ [0, 1],
there exists Rx(y) ∈ W3[0, 1], such that for any u(x) ∈ W3[0, 1], u(x) = 〈u(y), Rx(y)〉W3

. The
reproducing kernel Rx(y) can be denoted by

Rx

(
y
)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− y2

4717440
(−6552xy4 + 936y5 + 420x3(360 − 252y − 63y2 − 6y3 + y4)

+105x4(360 + 60y + 15y2 − 6y3 + y4) − 42x5(360 + 60y + 15y2 − 6y3 + y4)

+7x6(360 + 60y + 15y2 − 6y3 + y4)

+504x2(−540 + 300y + 75y2 + 9y3 + 5y4)), y ≤ x,
x2

4717440
(−936x5 + 6552x4y − 504

(−540 + 300x + 75x2 + 9x3 + 5x4)y2

−420(360 − 252x − 63x2 − 6x3 + x4)y3 − 105
(
360 + 60x + 15x2 − 6x3 + x4)y4

+42
(
360 + 60x + 15x2 − 6x3 + x4)y5

−7(360 + 60x + 15x2 − 6x3 + x4)y6), y > x.

(2.5)

The method of obtaining the reproducing kernel Tx(y), Rx(y) and the proofs of
Theorem 2.1, Theorem 2.2 are given in [16].

3. Preliminaries of Constructing Iterative Method

For the convenience of discussion, let L : W2 → W1, Lu = u(3), then (1.2) can be converted
into the form as follows:

Lu = f
(
x, u, u′, u′′

)
, u ∈W2[0, 1]. (3.1)

Now, we fix û ∈ W2[0, 1] and denote f(x, û, û′, û′′) by f(û). f(û) ∈ W1[0, 1] and f(û)
is a known function. In order to construct the present iterative method, we will consider the
following equation:

Lu = f
(
x, û, û′, û′′

)
, u ∈W2[0, 1], f ∈W1[0, 1]. (3.2)

We convert (3.1) and (3.2) into the following (3.3) and (3.4), respectively,

Lu = f(u), (3.3)

Lu = f(û). (3.4)
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Now, we construct an orthogonal system of functions firstly.
Let ϕi(x) = Qxi(x), where {xi}∞i=1 is dense on [0, 1]. Let ϕ0 = f(û). The orthogonal

system of functions {ϕi(x)}∞i=0 can be derived from Gram-Schmidt orthogonalization process
of {ϕi(x)}∞i=0:

ϕi(x) =
i∑

k=0

αikϕk(x), (3.5)

where ϕ0 = ϕ0 = f(û). In order to emphasize the fact that the first function of orthogonal
system of functions is f(û), we denote ϕi by ϕi(f(û)). Put ψi(x) = L

∗ϕi(x) ∈W2, i = 0, 1, 2, . . . ,
where L∗ is the conjugate operator of L. Similarly, we denote ψi by ψi(f(û)).

Now, we introduce some notations:

Ψn(f(û)) = Span{ψ1(f(û)), ψ2(f(û)), . . . , ψn(f(û))};

Ψ(f(û)) = Span{ψ1(f(û)), ψ2(f(û)), . . .};

Pn :W2 → Ψn(f(û)) is a orthogonal projector;

P :W2 → Ψ(f(û)) is a orthogonal projector;

Ψ⊥
n(f(û)) is the orthogonal complement space of Ψn(f(û));

Ψ⊥(f(û)) is the orthogonal complement space of Ψ(f(û));

gn(f(û)) denotes the element in Ψ⊥
n(f(û)), pick gn(f(û)) = L

∗f(û) − PnL∗f(û);

g(f(û)) denotes the element in Ψ⊥(f(û)), pick g(f(û)) = L∗f(û) − PL∗f(û).

It is easy to obtain the following lemmas.

Lemma 3.1. Suppose that {xi}∞i=1 is dense on [0, 1], then

(10) {ϕi(x)}∞i=0 is a complete system ofW1;

(20) {ϕi(x)}∞i=1 is not a complete system ofW1;

(30) {ψi(x)}∞i=0 is a complete system ofW2;

(40) {ψi(x)}∞i=1 is not a complete system ofW2.

Theorem 3.2. u is the solution of (3.4) if and only if

〈
u, ψ0

(
f(û)

)〉
W2

= ‖f(û)‖2W1
,

〈
u, ψi

(
f(û)

)〉
W2

= 0, i = 1, 2, . . . .
(3.6)
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Proof . (Sufficiency)

From 〈u, ψ0(f(û))〉W2
= ‖f(û)‖2W1

, it follows that

〈
Lu, ϕ0

〉
W1

=
〈
u, L∗ϕ0

〉
W2

=
〈
u, ψ0

〉
W2

=
∥
∥f(û)

∥
∥2
W1

=
〈
f(û), f(û)

〉
W1

=
〈
f(û), ϕ0

〉
W1
. (3.7)

From 〈u, ψi(f(û))〉W2
= 0, i = 1, 2, . . . and 〈ϕ0, ϕi〉W1

= 0, i /= 0, we have

〈
Lu, ϕi

〉
W1

=
〈
u, L∗ϕi

〉
W2

=
〈
u, ψi

〉
W2

= 0 =
〈
ϕ0, ϕi

〉
W1

=
〈
f(û), ϕi

〉
W1
. (3.8)

By the completeness of {ϕi(x)}∞i=0 and (3.7), (3.8), one obtains Lu = f(û).

(Necessity)

If u is the solution of (3.4), then

〈
Lu − f(û), ϕi

〉
W1

= 0, i = 0, 1, 2, . . . . (3.9)

When i = 0, we have

〈
u, ψ0

〉
W2

=
〈
Lu, ϕ0

〉
W1

=
〈
f(û), ϕ0

〉
W1

=
∥∥f(û)

∥∥2
W1
. (3.10)

When i = 1, 2, . . ., we have

〈
u, ψi

〉
W2

=
〈
Lu, ϕi

〉
W1

=
〈
ϕ0, ϕi

〉
W1

= 0. (3.11)

(3.10) and (3.11) yield (3.6).

In the same way, we can prove the following corollary.

Corollary 3.3. u is the solution of (3.4) if and only if

u =
g
(
f(û)

)∥∥f(û)
∥∥2
W1〈

ψ0
(
f(û)

)
, g
(
f(û)

)〉
W2

. (3.12)
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4. Iterative Formulas

4.1. Iterative Formula I

Pick arbitrarily initial function û = u0 in (3.4) and denote the solution of (3.4) by un+1. Then,
applying Corollary 3.3, one sees that

u1 =
g
(
f(u0)

)∥∥f(u0)
∥
∥2
W1〈

ψ0
(
f(u0)

)
, g
(
f(u0)

)〉
W2

,

u2 =
g
(
f(u1)

)∥∥f(u1)
∥
∥2
W1〈

ψ0
(
f(u1)

)
, g
(
f(u1)

)〉
W2

,

...

un+1 =
g
(
f(un)

)∥∥f(un)
∥∥2
W1〈

ψ0
(
f(un)

)
, g
(
f(un)

)〉
W2

,

(4.1)

where

g
(
f(un)

)
= L∗f(un) − PL∗f(un) ∈ Ψ⊥(f(un)

)
. (4.2)

This is the iterative formula I. However, PL∗f(û) cannot be computed through finite
steps. Thus, we will revise the formula.

4.2. Iterative Formula II

Replacing g with gn in iterative formula I, we derive iterative formula II, that is

un+1 =
gn
(
f(un)

)∥∥f(un)
∥∥2
W1〈

ψ0
(
f(un)

)
, gn
(
f(un)

)〉
W2

, (4.3)

where

gn
(
f(un)

)
= L∗f(un) − PnL∗f(un) ∈ Ψ⊥

n

(
f(un)

)
, n = 0, 1, 2, . . . . (4.4)

Lemma 4.1. Let f(un)) � f(un)/‖f(un)‖W1
and

β = inf
n

∥∥∥ψ0

(
f(un)

)
− Pψ0

(
f(un)

)∥∥∥
W2

=
∥∥ψ0
(
f∗) − Pψ0

(
f∗)∥∥

W2
,

(4.5)

then 〈ψ0(f(un)), gn(f(un))〉W2
≥ β2 > 0.
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Proof. Note that

∥
∥
∥ψ0

(
f(un)

)
− Pnψ0

(
f(un)

)∥∥
∥
2

W2

=
∥
∥
∥ψ0

(
f(un)

)
− Pψ0

(
f(un)

)
+ Pψ0

(
f(un)

)
− Pnψ0

(
f(un)

)∥∥
∥
2

W2
,

(4.6)

since

ψ0

(
f(un)

)
− Pψ0

(
f(un)

)
∈ Ψ⊥

(
f(un)

)
, Pψ0

(
f(un)

)
− Pnψ0

(
f(un)

)
∈ Ψ
(
f(vn)

)
, (4.7)

this gives us

ψ0

(
f(un)

)
− Pψ0

(
f(un)

)
⊥ Pψ0

(
f(un)

)
− Pnψ0

(
f(un)

)
. (4.8)

Thus, (4.6) leads to

∥∥∥ψ0

(
f(un)

)
− Pnψ0

(
f(un)

)∥∥∥
2

W2
=
∥∥∥ψ0

(
f(un)

)
− Pψ0

(
f(un)

)∥∥∥
2

W2

+
∥∥∥Pψ0

(
f(un)

)
− Pnψ0

(
f(un)

)∥∥∥
2

W2

≥
∥∥∥ψ0

(
f(un)

)
− Pψ0

(
f(un)

)∥∥∥
2

W2

≥ ∥∥ψ0
(
f∗) − Pψ0

(
f∗)∥∥2

W2

= β2.

(4.9)

However,

β2 =
∥∥ψ0
(
f∗) − Pψ0

(
f∗)∥∥2

W2

≤
∥∥∥ψ0

(
f(un)

)
− Pψ0

(
f(un)

)∥∥∥
2

W2
≤
∥∥∥ψ0

(
f(un)

)
− Pnψ0

(
f(un)

)∥∥∥
2

W2

=
〈
ψ0

(
f(un)

)
− Pnψ0

(
f(vn)

)
, ψ0

(
f(un)

)
− Pnψ0

(
f(un)

)〉

W2

=
〈
ψ0

(
f(un)

)
, ψ0

(
f(un)

)
− Pnψ0

(
f(un)

)〉

W2

−
〈
Pnψ0

(
f(un)

)
, ψ0

(
f(un)

)
− Pnψ0

(
f(un)

)〉

W2
.

(4.10)

Because 〈Pnψ0(f(un)), ψ0(f(un)) − Pnψ0(f(un))〉W2
= 0, hence

β2 ≤
〈
ψ0

(
f(un)

)
, gn
(
f(un)

)〉

W2
. (4.11)
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Now, we prove β > 0. Suppose that β = 0, then (4.5) gives us

0 =
∥
∥ψ0
(
f∗) − Pψ0

(
f∗)∥∥2

W2

=
〈
ψ0
(
f∗) − Pψ0

(
f∗), ψ0

(
f∗) − Pψ0

(
f∗)〉

W2

=
〈
ψ0
(
f∗) − Pψ0

(
f∗), g

(
f∗)〉

W2

=
〈
ψ0
(
f∗), g

(
f∗)〉

W2
− 〈Pψ0

(
f∗), g

(
f∗)〉

W2
.

(4.12)

Since g(f∗) = L∗f∗ − PL∗f∗ ∈ Ψ⊥(f∗) and Pψ0(f∗) = PL∗f∗ ∈ Ψ(f∗), hence
〈Pψ0(f∗), g(f∗)〉W2

= 0, furthermore, 〈ψ0(f∗), g(f∗)〉W2
= 0, namely, ψ0(f∗) ⊥ g(f∗). Note

here that g(f∗) ∈ Ψ⊥(f∗), one has

ψ0
(
f∗) ∈ Ψ

(
f∗) = Span

{
ψ1
(
f∗), ψ2

(
f∗), . . .

}
. (4.13)

From (30) of Lemma 3.1, we know that {ψi(x)}∞i=0 is a complete system of W2[0, 1]. On the
other hand, by ψ0(f∗) ∈ Ψ(f∗), we obtain {ψi(x)}∞i=1 is a complete system ofW2[0, 1]. This is
a contradiction to (40) of Lemma 3.1, thus, β > 0.

From Lemma 4.1 we know that iterative formula is significative.

5. Existence of Solution for (3.3)

Put û = un in (3.4), then by Corollary 3.3, Lu = f(un) can be written by

u =
g
(
f(un)

)∥∥f(un)
∥∥2

〈
ψ0
(
f(un)

)
, g
(
f(un)

)〉
W2

, (5.1)

Replacing uwith vn, then

Lvn = f(un), (5.2)

vn =
g
(
f(un)

)∥∥f(un)
∥∥2

〈
ψ0
(
f(un)

)
, g
(
f(un)

)〉
W2

. (5.3)

Obviously, iterative formula II can be converted into the form as follows:

Lvn = f(un),

un+1 = αnvn,

vn(1) = v′
n(0) = v

′
n(1) = 0, n ∈N+,

(5.4)
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where

αn =

〈
ψ0
(
f(un)

)
, g
(
f(un)

)〉
W2〈

ψ0
(
f(un)

)
, gn
(
f(un)

)〉
W2

· gn
(
f(un)

)

g
(
f(un)

) , (5.5)

gn
(
f(un)

)
= L∗f(un) − PnL∗f(un) ∈ Ψ⊥

n,

g
(
f(un)

)
= L∗f(un) − PL∗f(un) ∈ Ψ⊥.

(5.6)

Note that by Lemma 4.1 we know

〈
ψ0
(
f(un)

)
, gn
(
f(un)

)〉
W2

=
∥
∥f(un)

∥
∥2
W1

〈
ψ0

(
f(un)

)
, gn
(
f(un)

)〉

W2
≥ ∥∥f(un)

∥
∥2
W1
β2 > 0

(5.7)

in (5.5). Now suppose g(f(un(x))/= 0, if there exists an x, such that g(f(un(x)) = 0, then we
will change definition of αn(x):

αn(x) =

〈
ψ0
(
f(un)

)
, g
(
f(un)

)〉
W2〈

ψ0
(
f(un)

)
, gn
(
f(un)

)〉
W2

· gn
(
f(un)

)
+M

g
(
f(un)

)
+M

, (5.8)

whereM satisfies g(f(un)) +M ≥ α > 0.

Lemma 5.1. A bounded set inW1 is a compacted set in C[0, 1].

Lemma 5.2. For u ∈W2, v ∈W1, one has

∣∣∣u(i)(x)
∣∣∣ ≤ μi‖u‖W2

, i = 0, 1, 2, 3,

|v(x)| ≤ μ‖v‖W1
.

(5.9)

Lemma 5.3. A bounded set inW2 is a compacted set in C3[0, 1].

Lemma 5.4. Let f(un)) � f(un)/‖f(un)‖W1
, then ‖αn − 1‖C3 → 0, (n → ∞).

Proof. (1) Since

∥∥∥ψ0

(
f(un)

)∥∥∥
W2

=

∥∥∥∥∥
ψ0

(
f(un)∥∥f(un)

∥∥
W1

)∥∥∥∥∥
W2

=
1

∥∥f(un)
∥∥
W1

∥∥ψ0(f(un))
∥∥
W2

=
1

∥∥f(un)
∥∥
W1

∥∥L∗f(un)
∥∥
W2

≤ 1
∥∥f(un)

∥∥
W1

∥∥f(un)
∥∥
W1

‖L‖ = ‖L‖, (5.10)



Boundary Value Problems 11

∥
∥
∥g
(
f(un)

)
− gn

(
f(un)

)∥∥
∥
W2

=
1

∥
∥f(un)

∥
∥
W1

∥
∥g(f(un)) − gn(f(un))

∥
∥
W2

=
1

∥
∥f(un)

∥
∥
W1

‖PL∗(f(un)
) − PnL∗f((un))‖W2

≤ 1
∥
∥f(un)

∥
∥
W1

‖P − Pn‖
∥
∥L∗f(un)

∥
∥

≤ 1
∥
∥f(un)

∥
∥
W1

∥
∥f(un)

∥
∥
W1

‖L‖‖P − Pn‖ −→ 0, (n −→ ∞),

(5.11)

hence, by Lemma 4.1, one gets

∣∣∣∣∣

〈
ψ0
(
f(un)

)
, g
(
f(un)

)〉
W2〈

ψ0
(
f(un)

)
, gn
(
f(un)

)〉
W2

− 1

∣∣∣∣∣

=

∣∣∣∣∣∣∣

〈
ψ0

(
f(un)

)
, g
(
f(un)

)〉

W2〈
ψ0

(
f(un)

)
, gn
(
f(un)

)〉

W2

− 1

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

〈
ψ0

(
f(un)

)
, g
(
f(un)

)
− gn

(
f(un)

)〉

W2〈
ψ0

(
f(un)

)
, gn
(
f(un)

)〉

W2

∣∣∣∣∣∣∣

≤ 1
β2

∣∣∣∣
〈
ψ0

(
f(un)

)
, g
(
f(un)

)
− gn

(
f(un)

)〉

W2

∣∣∣∣,
(
β > 0

)

≤ 1
β2

∥∥∥ψ0

(
f(un)

)∥∥∥
W2

∥∥∥g
(
f(un)

)
− gn

(
f(un)

)∥∥∥
W2

−→ 0, (n −→ ∞),

(5.12)

namely,

〈
ψ0
(
f(un)

)
, g
(
f(un)

)〉
W2〈

ψ0
(
f(un)

)
, gn
(
f(un)

)〉
W2

−→ 1 (n −→ ∞). (5.13)

(2) Note that

∥∥∥g
(
f(unk)

)∥∥∥
W2

=
∥∥∥L∗
(
f(unk)

)
− PL∗

(
f(unk)

)∥∥∥
W2

≤
∥∥∥L∗
(
f(unk)

)∥∥∥
W2

+
∥∥∥PL∗

(
f(unk)

)∥∥∥
W2

≤ 2‖L‖,
(5.14)

∥∥∥gnk
(
f(unk)

)∥∥∥
W2

=
∥∥∥L∗
(
f(unk)

)
− PnkL∗

(
f(unk)

)∥∥∥
W2

≤
∥∥∥L∗
(
f(unk)

)∥∥∥
W2

+
∥∥∥PnkL

∗
(
f(unk)

)∥∥∥
W2

≤ 2‖L‖,
(5.15)
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thus, by Lemma 5.3, there exists {nkj}∞j=1 of {nk}
∞
k=1, such that

gnkj

(
f
(
unkj

))
C3

−→ g∗(x)/= 0. (5.16)

By (5.11), it follows that

∥
∥
∥gnkj

(
f
(
unkj

))
− g
(
f
(
unkj

))∥∥
∥
C3

≤M
∥
∥
∥gnkj

(
f
(
unkj

))
− g
(
f
(
unkj

))∥∥
∥
W2

=M
∥
∥
∥gn
(
f(un)

)
− g
(
f(un)

)∥∥
∥
W2

−→ 0, (n −→ ∞).

(5.17)

Therefore,

lim
n→∞

∥∥∥∥∥
gn
(
f(un)

)

g
(
f(un)

) − 1

∥∥∥∥∥
C3

= lim
n→∞

∥∥∥∥∥
gn(f(un))

g(f(un))
− 1

∥∥∥∥∥
C3

= lim
n→∞

∥∥∥∥∥∥∥

gn
(
f(un)

)
− g
(
f(un)

)

g
(
f(un)

)

∥∥∥∥∥∥∥
C3

= lim
k→∞

∥∥∥∥∥∥∥

gnk

(
f(unk)

)
− g
(
f(unk)

)

g
(
f(unk)

)

∥∥∥∥∥∥∥
C3

=

∥∥∥∥∥∥∥

limj→∞
∥∥∥gnkj

(
f
(
unkj

))
− g
(
f
(
unkj

))∥∥∥

limj→∞g
(
f
(
unkj

))

∥∥∥∥∥∥∥
C3

=
1

∥∥g∗(x)
∥∥
C3

lim
j→∞

∥∥∥gnkj

(
f
(
unkj

))
− g
(
f
(
unkj

))∥∥∥
C3
.

= 0.

(5.18)

In the similar manner, one gets

lim
n

∥∥∥∥∥
gn
(
f(un)

)

g
(
f(un)

) − 1

∥∥∥∥∥
C3

= 0. (5.19)

Combining the above argument, we obtain

lim
n

∥∥∥∥∥
gn
(
f(un)

)

g
(
f(un)

) − 1

∥∥∥∥∥
C3

= 0. (5.20)

The lemma is complete from (5.13) and (5.20).
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Lemma 5.5. ‖un‖W2
≤M‖vn‖W2

.

Lemma 5.6. If f(x, y, z,w) satisfies condition H, then ‖vn‖W2
, ‖un‖W2

are bounded. (Technique of
proof is similar to the Lemma 7.1 in appendix).

Lemma 5.7. If θn ∈ (0, 1) and v′′
n(θn) = 0, then θn does not infinitely go closer to 1, as there exists

θ ∈ (0, 1), such that θn < θ < 1.

Proof. Since v′
n(0) = 0 and v′

n(1) = 0, there exists θn ∈ (0, 1), such that v′′
n(θn) = 0.

Suppose θn → 1, as n → ∞. By Lemmas 5.3 and 5.6, there exists v(x) such that
‖vn − v‖C3 → 0; thus |vn(x) − v(x)| → 0, |v′

n(x) − v′(x)| → 0, |v′′
n(x) − v′′(x)| → 0. Since

v′
n(0) = 0, v′

n(1) = 0, v′′
n(θn) = 0, it follows that v′(0) = 0, v′(1) = 0, v′′(1) = 0. Hence there

exists an η ∈ (0, 1), such that v′′(η) = 0, thus there exists an ξ ∈ (η, 1), such that v(3)(ξ) = 0. By
(5.4), Lvn(x) = f(x, un(x), u′n(x), u

′′
n(x)), taking limit for n on both sides, we have

Lv(x) = f
(
x, u(x), u′(x), u′′(x)

)
, (5.21)

thus f(ξ, u(ξ), u′(ξ), u′′(ξ)) = v(3)(ξ) = 0; this is a contradiction to (H3).

Lemma 5.8. If f(x, y, z,w) satisfies condition H, then ‖un+1 − un‖C2 → 0 as n → ∞. (see
Lemma 7.3 in the appendix)

Theorem 5.9 (Existence). If f(x, y, z,w) satisfies condition H, then the solution of (1.2) exists in
W2[0, 1].

Proof. From Lemma 5.6, ‖un‖W3
≤ M, so by Lemma 5.3, {un(x)} is compact in C3[0, 1], then

there exists convergent subsequence {unk(x)} of {un(x)}, such that ‖unk − u‖C3 → 0, in the
similar manner, there exists v(x), such that ‖vnk − v‖ C3 → 0, thus |unk(x) − u(x)| → 0,
|vnk(x) − v(x)| → 0, as k → ∞.

By Lemma 5.4, |αnk − 1| → 0, as k → ∞ and by Lemma 5.8, |unk+1(x) − unk(x)| → 0,
then |unk+1(x) − u(x)| ≤ |unk+1(x) − unk(x)| + |unk(x) − u(x)| → 0; thus

v(x) = lim
k→∞

vnk(x) = lim
k→∞

1
αnk

unk+1 = lim
k→∞

1
αnk

· lim
k→∞

unk+1 = 1 · lim
k→∞

unk = u(x). (5.22)

From (5.4) and (5.22), Lu(x) = f(x, u(x), u′(x), u′′(x)), the solution of (1.2) exists. Since
f(x, u(x), u′(x), u′′(x)) ∈W1[0, 1], thus u(x) ∈W2[0, 1].

Theorem 5.10. If f(x, y, z,w) satisfies condition H and the solution u(x) of (1.2) is unique, then
the sequence {un(x)}∞n=1 is convergent to u(x), and ‖u(k)n (x) − u(k)(x)‖C → 0, k = 0, 1, 2, 3.

Proof. Suppose that {un(x)}∞n=1 is not convergent to u(x), since ‖un‖W2
is bounded, we can

choose two subsequences {unk(x)}∞k=1, {unj (x)}∞j=1 of {un(x)}∞n=1 such that unk(x) → u1(x),
unj (x) → u2(x) and u1(x)/=u2(x), From Theorem 5.9, u1(x) and u2(x) are the solutions of
(1.2), this contradicts the uniqueness of solution of (1.2). consequently, ‖un − u‖C → 0.

In the same way, we can verify ‖u(k)n − u(k)‖C → 0, n → ∞, k = 1, 2, 3.
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Table 1: Relative errors E(x) at n = 10.

Node E(x) Node E(x) Node E(x)
1/10 4.71412E-03 1/5 1.23304E-03 3/10 1.74306E-03
2/5 4.25259E-03 1/2 6.10987E-03 3/5 7.10274E-03
7/10 6.88828E-03 4/5 4.62244E-03 9/10 3.53199E-03

6. Numerical Example

Now we present a numerical example for solving (1.2) in the reproducing kernel space
W2[0, 1]. All computations are performed by the Mathematica 5.0.

Example 6.1. Let us consider the following equation:

u3(x) = xu′′(x) + u′(x) + xu(x) + u2(x),

u(1) = u′(0) = u′(1) = 0,
(6.1)

where x ∈ [0, 1]. The true solution is u(x) = x(x − 1). Using our method, 10 points are chosen

on [0, 1] and we calculate the relative errors E(x) def= ‖(u(x) − un(x))/u(x)‖C. The numerical
results are presented in Table 1 which shows the method given in the paper is efficient.

7. Appendix

In order to obtain proofs of Lemma 5.6 and Lemma 5.8, firstly, we give an expression of
solution of (1.1). For any initial value function u0(x) ∈W3[0, 1],

vn(x) =
∫x

0
dt

∫ t

0
dη

∫η

0
f
(
ξ, un−1(ξ), u′n−1(ξ), u

′′
n−1(ξ)

)
dξ

− 1
2
x2
∫1

0
dη

∫η

0
f
(
ξ, un−1(ξ), u′n−1(ξ), u

′′
n−1(ξ)

)
dξ,

un(x) = P̃nvn, n = 1, 2, . . . ,

(7.1)

where P̃n :W3 → Ψn(f(û)) is a orthogonal projector.

Lemma 7.1. If f(x, y, z,w) satisfies condition H, then ‖vn‖W3
, ‖un‖W3

are bounded.

Proof. By (H2), |f(x, un−1(x), u′n−1(x), u′′n−1(x))| ≤M, from (7.1),

∣∣v′
n(x)

∣∣

=

∣∣∣∣∣

∫x

0
dη

∫η

0
f
(
ξ, un−1(ξ), u′n−1(ξ), u

′′
n−1(ξ)

)
dξ − x

∫1

0
dη

∫η

0
f
(
ξ, un−1(ξ), u′n−1(ξ), u

′′
n−1(ξ)

)
dξ

∣∣∣∣∣
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≤
∫x

0
dη

∫η

0

∣
∣
∣f
(
ξ, un−1(ξ), u′n−1(ξ), u

′′
n−1

′(ξ)
)∣∣
∣dξ

+ |x|
∫1

0
dη

∫η

0

∣
∣f
(
ξ, un−1(ξ), u′n−1(ξ), u

′′
n−1(ξ)

)∣∣dξ

≤M1
2

∣
∣
∣x2
∣
∣
∣ + |x|M1

2
≤M.

(7.2)

Using this method, |v′′
n(x)| ≤ (3/2)M, |v(3)

n (x)| ≤ M. By Lemma 5.4, |α(i)n |, i = 0, 1, 2, 3
are bounded, then |un(x)| = |αn−1vn−1(x)|, |u′n(x)| = |α′n−1vn−1 + αn−1v′

n−1|, |u′′n(x)| = |α′′n−1vn−1 +
2α′n−1v

′
n−1 + αn−1v

′′
n−1| and |u(3)n (x)| = |α(3)n−1vn−1 + 3α′n−1v

′′
n−1 + 3α′′n−1v

′
n−1 + αn−1v

(3)
n−1| are bounded,

thus by (H2), |v(4)
n (x)| = |fx + fyu′n−1(x) + fzu′′n−1(x) + fwu

(3)
n−1(x)| is bounded. Consequently,

we know that ‖vn‖W3
is bounded by the definition of ‖ · ‖W3 , and by Lemma 5.5, ‖un‖W3

is
bounded.

Lemma 7.2. If f(x, y, z,w) satisfies condition H, then |v′′
n+1(0)−v′′

n(0)| → 0, |vn+1(0)−vn(0)| → 0,
as n → ∞.

Proof. By Lemma 5.4, ‖αn‖C3 ≤M1, and from Lemmas 5.2 and 5.6, ‖vn‖C3 ≤M2, then

|un+1(x) − un(x)| = |αnvn(x) − αn−1vn−1(x)|

= |αnvn(x) − αnvn−1 + αnvn−1 − αn−1vn−1(x)|

≤ ‖αn‖C3
|vn(x) − vn−1(x)| + ‖vn−1‖C3

|αn − αn−1|

≤M1(|vn(x) − vn−1(x)| +M2|αn − αn−1|)

≤M1
(|vn(x) − vn−1(x)| +

∣∣v′
n(x) − v′

n−1(x)
∣∣ +
∣∣v′′

n(x) − v′′
n−1(x)

∣∣) + ρn,

(7.3)

where ρn =M2‖αn − αn−1‖C3 , by Lemma 5.4, ‖αn − αn−1‖C3 → 0, then ρn → 0.
In the similar manner,

∣∣u′n+1(x) − u′n(x)
∣∣ ≤M1

(|vn(x) − vn−1(x)| +
∣∣v′

n(x) − v′
n−1(x)

∣∣ +
∣∣v′′

n(x) − v′′
n−1(x)

∣∣) + ρn,

∣∣u′′n+1(x) − u′′n(x)
∣∣ ≤ 2M1

(|vn(x) − vn−1(x)| +
∣∣v′

n(x) − v′
n−1(x)

∣∣ +
∣∣v′′

n(x) − v′′
n−1(x)

∣∣) + 2ρn,
(7.4)

|un+1(x) − un(x)| +
∣∣u′n+1(x) − u′n(x)

∣∣ +
∣∣u′′n+1(x) − u′′n(x)

∣∣

≤ 4M1
(|vn(x) − vn−1(x)| +

∣∣v′
n(x) − v′

n−1(x)
∣∣ +
∣∣v′′

n(x) − v′′
n−1(x)

∣∣) + 4ρn.
(7.5)
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Since Lvn(x) = v
(3)
n (x) = f(x, un−1(x), u′n−1(x), u

′′
n−1(x)), then

v′′
n(x) =

∫x

θn

f
(
ξ, un−1(ξ), u′n−1(ξ), u

′′
n−1(ξ)

)
dξ,

v′
n(x) =

∫x

0
dη

∫η

θn

f
(
ξ, un−1(ξ), u′n−1(ξ), u

′′
n−1(ξ)

)
dξ,

vn(x) =
∫x

0
dt

∫ t

0
dη

∫η

θn

f
(
ξ, un−1(ξ), u′n−1(ξ), u

′′
n−1(ξ)

)
dξ,

(7.6)

where θn ∈ (0, 1) and v′′
n(θn) = 0. When x ∈ (θ, 1], θ is in Lemma 5.7, from H(2), let M3 =

max{fy, fz, fw},

|vn+1(x) − vn(x)| ≤
∣∣∣∣∣

∫x

0
dt

∫ t

0
dη

∫η

θn+1

f
(
ξ, un(ξ), u′n(ξ), u

′′
n(ξ)
)
dξ

−
∫x

0
dt

∫ t

0
dη

∫η

θn

f
(
ξ, un−1(ξ), u′n−1(ξ), u

′′
n−1(ξ)

)
dξ

∣∣∣∣∣

≤
∫x

0
dt

∫ t

0
dη

∫η

θn+1

∣∣f
(
ξ, un(ξ), u′n(ξ), u

′′
n(ξ)
) − f(ξ, un−1(ξ), u′n−1(ξ), u′′n−1(ξ)

)∣∣dξ

+

∣∣∣∣∣

∫x

0
dt

∫ t

0
dη

∫θn

θn+1

f
(
ξ, un−1(ξ), u′n−1(ξ), u

′′
n−1(ξ)

)
dξ

∣∣∣∣∣

≤
∫x

0
dt

∫ t

0
dη

∫η

0

∣∣f
(
ξ, un(ξ), u′n(ξ), u

′′
n(ξ)
) − f(ξ, un−1(ξ), u′n−1(ξ), u′′n−1(ξ)

)∣∣dξ

+M|θn+1 − θn|

≤M3

∫1

0
dt

∫1

0
dη

∫x

0
|un(ξ) − un−1(ξ)| +

∣∣u′n(ξ) − u′n−1(ξ)
∣∣

+
∣∣u′′n(ξ) − u′′n−1(ξ)

∣∣dξ + M̃n

≤M3

∫x

0
|un(ξ) − un−1(ξ)| +

∣∣u′n(ξ) − u′n−1(ξ)
∣∣ +
∣∣u′′n(ξ) − u′′n−1(ξ)

∣∣dξ + M̃n,

(7.7)

where M̃n = M|θn+1 − θn|, we suppose {θn} is convergent, otherwise, we can take the
convergent subsequence of {θn}, thus M̃n → 0 (n → ∞). By doing this,

∣∣v′
n+1(x) − v′

n(x)
∣∣

≤M3

∫x

0
|un(ξ) − un−1(ξ)| +

∣∣u′n(ξ) − u′n−1(ξ)
∣∣ +
∣∣u′′n(ξ) − u′′n−1(ξ)

∣∣dξ + M̃n,
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∣
∣v′′

n+1(x) − v′′
n(x)

∣
∣

≤M3

∫x

0
|un(ξ) − un−1(ξ)| +

∣
∣u′n(ξ) − u′n−1(ξ)

∣
∣ +
∣
∣u′′n(ξ) − u′′n−1(ξ)

∣
∣dξ + M̃n,

|vn+1(x) − vn(x)| +
∣
∣v′

n+1(x) − v′
n(x)

∣
∣ +
∣
∣
∣v′′

n+1(x) − v′′
n(x)

∣
∣
∣

≤ 3M3

∫x

0
|un(ξ) − un−1(ξ)| +

∣
∣u′n(ξ) − u′n−1(ξ)

∣
∣ +
∣
∣u′′n(ξ) − u′′n−1(ξ)

∣
∣dξ + 3M̃n

≤ 3M3

∫x

0
4M1

(|vn(ξ) − vn−1(ξ)| +
∣
∣v′

n(ξ) − v′
n−1(ξ)

∣
∣ +
∣
∣v′′

n(ξ) − v′′
n−1(ξ)

∣
∣) + 4ρndξ + 3M̃n

≤M
∫x

0
|vn(ξ) − vn−1(ξ)| +

∣
∣v′

n(ξ) − v′
n−1(ξ)

∣
∣ +
∣
∣v′′

n(ξ) − v′′
n−1(ξ)

∣
∣dξ + ρn,

(7.8)

whereM = 12M1M3, ρn = 12M3ρn + 3M̃n, lim
n→∞

ρn = 0.

When n = 1, |v2(x) − v1(x)| + |v′
2(x) − v′

1(x)| + |v′′
2(x) − v′′

1(x)| ≤Mx‖v1 − v0‖C2 + ρ1.
When n = 2,

|v3(x) − v2(x)| +
∣∣v′

3(x) − v′
2(x)
∣∣ +
∣∣v′′

3(x) − v′′
2(x)

∣∣

≤M
∫x

0
|v2(ξ) − v1(ξ)| +

∣∣v′
2(ξ) − v′

1(ξ)
∣∣ +
∣∣v′′

2(ξ) − v′′
1(ξ)
∣∣dξ + ρ2

≤M
∫x

0

(
Mξ‖v1 − v0‖C2 + ρ1

)
dξ + ρ2 ≤

(
xM
)2

2
‖v1 − v0‖C2 +Mρ1x + ρ2.

(7.9)

Generally,

|vn+1(x) − vn(x)| +
∣∣v′

n+1(x) − v′
n(x)

∣∣ +
∣∣v′′

n+1(x) − v′′
n(x)

∣∣

≤

(
xM
)n

n!
‖v1 − v0‖C2 +

n∑

k=0

(
xM
)k

k!
ρn−k

≤

(
M
)n

n!
‖v1 − v0‖C2 +

[n/2]∑

k=0

(
M
)k

k!
ρn−k +

n∑

k=[n/2+1]

(
M
)k

k!
ρn−k

≤

(
M
)n

n!
‖v1 − v0‖C2 + ρ̃n

[n/2]∑

k=0

(
M
)k

k!
+ ρ

n∑

k=[n/2+1]

(
M
)k

k!
−→ 0, as n −→ ∞,

(7.10)

where [·] denotes the integral part of “·”, ρ = max{ρ0, ρ1, . . . , ρn−[n/2+1]}, ρ̃n =
max{ρn, ρn−1, . . . , ρn−[n/2]}, limn→∞ρ̃n = 0. Thus, ‖vn+1(x) − vn(x)‖C2 → 0, as n → ∞,
x ∈ (θ, 1].



18 Boundary Value Problems

Let vn(x) = vn(1 − x), then ‖vn+1(x) − vn(x)‖C2 → 0, as ‖vn+1(1 − x) − vn(1 − x)‖C2 →
0, x ∈ (θ, 1]. Thus ‖vn+1(x) − vn(x)‖C2 → 0, x ∈ [0, 1 − θ). Therefore, |v′′

n+1(0) − v′′
n(0)| →

0, |vn+1(0) − vn(0)| → 0, as n → ∞.

After this transformation, the above result holds for (1.2). Next, we will give an
equivalent representation of the solution of (1.2).

vn(x) = vn(0) +
∫x

0
dt

∫ t

0
dη

∫η

0
f
(
ξ, un−1(ξ), u′n−1(ξ), u

′′
n−1(ξ)

)
dξ

− 1
2
x2
∫1

0
dη

∫η

0
f
(
ξ, un−1(ξ), u′n−1(ξ), u

′′
n−1(ξ)

)
dξ,

un(x) = Pnvn, n = 1, 2, . . . .

(7.11)

Lemma 7.3. If f(x, y, z,w) satisfies condition H, then ‖un+1 − un‖C2 → 0, as n → ∞.

Proof. By (7.11), v′′
n(0) = −∫10dη

∫η
0f(ξ, un − 1(ξ), u′n−1(ξ), u

′′
n−1(ξ))dξ, then

vn(x) =
∫x

0
dt

∫ t

0
dη

∫η

0
f
(
ξ, un−1(ξ), u′n−1(ξ), u

′′
n−1(ξ)

)
dξ +

1
2
x2v′′

n(0) + vn(0). (7.12)

From Lemma 7.2 and by using the same method, we can prove that
‖vn+1(x) − vn(x)‖C2 → 0, x ∈ [0, 1]. By Lemma 5.4 and un = αn−1vn−1, it follows that
‖un+1 − un‖C2 → 0, as n → ∞.

8. Conclusion

In this paper, we have shown the easier verification conditions for the existence of nonlinear
third-order two-point boundary value problems. Themethod presented in this paper is based
on the reproducing kernel space. We have presented reproducing kernel theorem for solving
the nonlinear third-order two-point boundary value problems. Our results cannot be deduced
trivially from any of the earlier published results and it is a pity that most of the people have
not paid enough attention to the reproducing kernel theorem.
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