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The classical von Kármán equations governing the boundary layer flow induced by a rotating
disk are solved using the spectral homotopy analysis method and a novel successive linearisation
method. The methods combine nonperturbation techniques with the Chebyshev spectral
collocation method, and this study seeks to show the accuracy and reliability of the two methods
in finding solutions of nonlinear systems of equations. The rapid convergence of the methods is
determined by comparing the current results with numerical results and previous results in the
literature.

1. Introduction

Most natural phenomena can be described by nonlinear equations that, in general, are not
easy to solve in closed form. The search for computationally efficient, robust, and easy to
use numerical and analytical techniques for solving nonlinear equations is therefore of great
interest to researchers in engineering and science. The study of the steady, laminar, and axially
symmetric viscous flow induced by an infinite disk rotating steadily with constant angular
velocity was pioneered by von Kármán [1]. He showed that the Navier-Stokes equations
could be reduced to a set of ordinary differential equations and solved using an approximate
integral method. His solution, however, contained errors that were later corrected by Cochran
[2] by patching together two series expansions.

Numerical and semianalytical methods including the cubic Hermite finite element,
pseudospectral, Galerkin-B-Spline, and Chebyshev-collocation methods have been used
previously to find solutions of the von Kármán equations [3–6]. These methods have
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their shortcomings, including instability, and hence the last few decades have seen the
popularization of a number of new perturbation or nonperturbation techniques such as the
Adomian decomposition method [7], the Lyapunov artificial small parameter method [8],
the homotopy perturbation method [9, 10], and the homotopy analysis method [11].

The homotopy analysis method (HAM) was used recently by Yang and Liao [12] to
find explicit, purely analytic solutions of the swirling von Kármán equations. Turkyilmazoglu
[13] used the homotopy analysis method to solve the equations governing the flow of a
steady, laminar, incompressible, viscous, and electrically conducting fluid due to a rotating
disk subjected to a uniform suction and injection through the walls in the presence of a
uniform transverse magnetic field. For this extended form of the von Kármám problem,
the homotopy analysis method, however, produced secular terms in the series solution.
Turkyilmazoglu [13] overcame this weakness by using initial guesses based on Ackroyd’s
(see the work of Ackroyd [14]) exponentially decaying functions, and a new linear operator
which resulted in a method capable of tracking the shape of the exact solution. An alternative
approach that serves to address these and other limitations of the HAM is the spectral
homotopy analysis method; see the work of Motsa et al. [15, 16]. It is an efficient hybrid
method that blends the HAM algorithm with Chebyshev spectral methods. The method
retains the proven qualities of the HAM while effectively using Chebyshev polynomials as
basis functions to ensure rapid convergence of the solution series. A novel quasilinearisation
method—the successive linearisation method (see the work of Makukula et al. [17] and
Motsa and Sibanda [18])—promises further improvement in accuracy and convergence rates
compared to both the HAM and the SHAM.

In this study we apply the spectral homotopy analysis method (SHAM) and the
successive linearisation method (SLM) to solve the von Kármán equations. The results
are compared with those in the literature [11, 12] and against numerical approximations.
Comparison of current results is further made with the recent results of Turkyilmazoglu
[13] that include suction/injection and an applied magnetic field. We show, inter alia, that
notwithstanding the fact that these two methods may involve more computations per step
than the HAM, both the SHAM and SLM are efficient, robust, and converge much more
rapidly compared to the standard homotopy analysis method.

2. Governing Equations

Our focus in this section is on the original von Kármán equation for the steady, laminar,
axially symmetric viscous flow induced by an infinite disk rotating steadily with angular
velocity Ω about the z-axis with the fluid confined to the half-space z > 0 above the disk. In
cylindrical coordinates (r, θ, z) the equations of motion are given by
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subject to the nonslip boundary conditions on the disk and boundary conditions at infinity

Vθ = rΩ, Vr = Vz = 0, z = 0,

Vr = Vz = 0, z = +∞,
(2.2)

where ρ is the fluid density, ν is the kinematic viscosity coefficient, P̃ is the pressure, Vr , Vθ,
and Vz are the velocity components in the radial, azimuthal, and axial directions, respectively,
and Ω is the constant angular velocity. Using von Kármán’s similarity transformations [1]

Vr = rΩF
(
η
)
, Vθ = rΩG

(
η
)
,

Vz =
√
νΩH

(
η
)
, P̃ = −ρνΩP

(
η
)
,

(2.3)

where η = z
√
Ω/ν is a nondimensional distance measured along the axis of rotation, the

governing partial differential equations (2) reduce to a set of ordinary differential equations:

F ′′ − F ′H − F2 +G2 = 0, (2.4)

G′′ −G′H − 2FG = 0, (2.5)

H ′′ −HH ′ + P ′ = 0, (2.6)

2F +H ′ = 0, (2.7)

subject to the boundary conditions

F(0) = F(∞) = 0, G(0) = 1, G(∞) = 0, H(0) = 0. (2.8)

Substituting (2.7) into (2.4) and (2.5) yields

H ′′′ −H ′′H +
1
2
H ′H ′ − 2G2 = 0,

G′′ −HG′ +H ′G = 0,

(2.9)

subject to the boundary conditions

H(0) = H ′(0) = H ′(∞) = 0, G(0) = 1, G(∞) = 0. (2.10)
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Equations (2.9) with the prescribed boundary conditions (2.10) are sufficient to give the three
components of the flow velocity. The pressure distribution, if required, can be obtained from
(2.6). This fully coupled and highly nonlinear system was solved using the spectral homotopy
analysis method and the successive linearisation method. The results were validated using
the Matlab bvp4c numerical routine and against results in the literature.

3. The Spectral Homotopy Analysis Method

Following Boyd [19], we begin by transforming the domain of the problem from [0,∞) to
[−1, 1] using the domain truncation method. This approximates [0,∞) by the computational
domain [0, L] where L is a fixed length that is taken to be larger than the thickness of
the boundary layer. The interval [0, L] is then transformed to the domain [−1, 1] using the
algebraic mapping

ξ =
2η
L
− 1, ξ ∈ [−1, 1]. (3.1)

For convenience we make the boundary conditions homogeneous by applying the
transformations

H
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η
)
,

G
(
η
)
= g(ξ) +G0

(
η
)
,

(3.2)

where H0(η) and G0(η) are chosen so as to satisfy boundary conditions (2.10). The chain rule
gives
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Substituting (3.2) and (3.3)-(3.4) in the governing equations gives

a0h
′′′ + a1h

′′ + a2h
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4
L2
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)
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η
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(3.5)
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where prime denotes derivative with respect to ξ and
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(3.6)

As initial guesses we employ the exponentially decaying functions used by Yang and Liao
[12], namely,

H0
(
η
)
= e−η + ηe−η − 1,

G0
(
η
)
= e−η.

(3.7)

The initial solution is obtained by solving the linear parts of (3.5), namely,

a0h
′′′
0 + a1h

′′
0 + a2h

′
0 + a3g0 + a4h0 = φ1

(
η
)
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′′
0 + b1h

′
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η
)
,

(3.8)

subject to

h0(−1) =
2
L
h′0(−1) =

2
L
h′0(1) = 0, g0(−1) = 0, g0(1) = 0. (3.9)

The system (3.8)-(3.9) is solved using the Chebyshev pseudospectral method where the
unknown functions h0(ξ) and g0(ξ) are approximated as truncated series of Chebyshev
polynomials of the form

h0(ξ) ≈ hN0
(
ξj
)
=

N∑
k=0

ĥkT1,k
(
ξj
)
, j = 0, 1, . . . ,N,

g0(ξ) ≈ gN0
(
ξj
)
=

N∑
k=0

ĝkT2,k
(
ξj
)
, j = 0, 1, . . . ,N,

(3.10)

where T1,k and T2,k are the kth Chebyshev polynomials with coefficients ĥk and ĝk,
respectively, ξ0, ξ1, . . . , ξN are Gauss-Lobatto collocation points defined by

ξj = cos
πj

N
, j = 0, 1, . . . ,N, (3.11)
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and N + 1 is the number of collocation points. Derivatives of the functions h0(ξ) and g0(ξ) at
the collocation points are represented as

drh0

dξr
=

N∑
k=0

Dr
kjh0
(
ξj
)
,

drg0

dξr
=

N∑
k=0

Dr
kjg0
(
ξj
)
, (3.12)

where r is the order of differentiation and D is the Chebyshev spectral differentiation matrix
(see, e.g., [20, 21]). Substituting (3.10)–(3.12) in (3.8)-(3.9) yields

AF0 = Φ, (3.13)

subject to the boundary conditions

2
L

N∑
k=0

D0kh0(ξk) = 0,
2
L

N∑
k=0

DNkh0(ξk) = 0, h0(ξN) = 0, (3.14)

g0(ξ0) = 0, g0(ξN) = 0, (3.15)
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A =
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b1D + b3I b0D2 + b2D + b4I

)
,
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,
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)
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)
, φ2
(
η0
)
, φ2
(
η1
)
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,
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, i = 0, 1, 2, 3, 4.

(3.16)

The superscript T denotes the transpose, diag is a diagonal matrix, and I is an identity matrix
of size (N + 1) × (N + 1). We implement boundary conditions (3.14) in rows 1, N, and N + 1
of A in columns 1 through to N + 1 by setting all entries in the remaining columns to be zero.
The second set (3.15) is implemented in rows N + 2 and 2(N + 1), respectively, by setting
A(N + 2,N + 2) = 1, A(2(N + 1), 2(N + 1)) = 1 and setting all other columns to be zero. We
further set entries of Φ in rows 1, N, N + 1, N + 2, and 2(N + 1) to zero.

The values of [F0(ξ1), F0(ξ2), . . . , F0(ξN−1)] are determined from the equation

F0 = A−1Φ, (3.17)

which provides the initial approximation for the solution of (3.5).
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We now seek the approximate solutions of (3.5) by first defining the following linear
operators:

Lh
[
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ξ; q
)
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∂ξ3
+ a1

∂2h̃

∂ξ2
+ a2

∂h̃

∂ξ
+ a3g̃ + a4h̃,

Lg
[
h̃
(
ξ; q
)
, g̃
(
ξ; q
)]

= b0
∂2g̃

∂ξ2
+ b1

∂h̃

∂ξ
+ b2

∂g̃

∂ξ
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(3.18)

where q ∈ [0, 1] is the embedding parameter and h̃(ξ; q) and g̃(ξ; q) are unknown functions.
The zeroth-order deformation equations are given by

(
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)
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]
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}
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)
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}
,

(3.19)

where � is the nonzero convergence controlling auxiliary parameter and Nh and Ng are
nonlinear operators given by
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(3.20)

The mth-order deformation equations are given by

Lh
[
hm(ξ) − χmhm−1(ξ)

]
= �Rh

m,

Lg
[
gm(ξ) − χmgm−1(ξ)

]
= �R

g
m,

(3.21)

subject to the boundary conditions

hm(−1) = h′m(−1) = h′m(1) = 0, gm(−1) = gm(1) = 0, (3.22)
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where

Rh
m(ξ) = a0h

′′′
m−1 + a1h

′′
m−1 + a2h

′
m−1 + a3gm−1 + a4hm−1

+
m−1∑
n=0

(
2
L2
h′nh

′
m−1−n −

4
L2
hnh

′′
m−1−n − 2gngm−1−n

)
− φ1

(
η
)(

1 − χm
)
,

R
g
m(ξ) = b0g

′′
m−1 + b1h

′
m−1 + b2g

′
m−1 + b3hm−1 + b4gm−1

+
2
L

m−1∑
n=0

(
hng

′
m−1−n − g

′
nhm−1−n

)
− φ2

(
η
)(

1 − χm
)
,

(3.23)

χm =

⎧⎨
⎩

0, m ≤ 1,

1, m > 1.
(3.24)

Applying the Chebyshev pseudospectral transformation to (3.21)–(3.23) gives

AFm =
(
χm + �

)
AFm−1 − �

(
1 − χm

)
Φ + �Qm−1, (3.25)

subject to the boundary conditions

N∑
k=0

D0khm(ξk) = 0,
N∑
k=0

DNkhm(ξk) = 0, hm(ξN) = 0,

gm(ξ0) = 0, gm(ξN) = 0,

(3.26)

where A and Φ are as defined in (3.16) and

Fm =
[
hm(ξ0), hm(ξ1), . . . , hm(ξN), gm(ξ0), gm(ξ1), . . . , gm(ξN)

]T
,

Qm−1 =

⎛
⎜⎜⎜⎜⎝

m−1∑
n=0

[
2
L2 (Dhn)(Dhm−1−n) −

4
L2
hn
(
D2hm−1−n

)
− 2gngm−1−n

]
2
L

m−1∑
n=0

[
(Dhn)gm−1−n −

(
Dgn
)
hm−1−n

]

⎞
⎟⎟⎟⎟⎠.

(3.27)

Boundary conditions (3.26) are implemented in matrix A on the left-hand side of (3.25) in
rows 1, N, N + 1, N + 2, and 2(N + 1), respectively, as before with the initial solution above.
The corresponding rows, all columns, of A on the right-hand side of (3.25), Φ and Qm−1 are
all set to be zero. This results in the following recursive formula for m ≥ 1:

Fm =
(
χm + �

)
A−1ÃFm−1 + �A−1[Qm−1 −

(
1 − χm

)
Φ
]
. (3.28)

The matrix Ã is the matrix A on the right-hand side of (3.25) but with the boundary conditions
incorporated by setting the first, N, N + 1, N + 2, and 2(N + 1), rows and columns to zero.
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Thus, starting from the initial approximation, which is obtained from (3.17), higher-order
approximations Fm(ξ) for m ≥ 1 can be obtained through recursive formula (3.28).

4. Successive Linearisation Method

The spectral homotopy analysis method, just like the original HAM, depends for its conver-
gence rate on the careful selection of an embedded arbitrary parameter �. Turkyilmazoglu
[13] showed that the solution of the von Kármán problem by the homotopy analysis
method is prone to wild oscillations when suction/injection is present. In this section we
apply the successive linearisation method that requires no artificial parameters to control
convergence to solve the governing equations (2.9)-(2.10). The method assumes that the
unknown functions H(η) and G(η) can be expanded as

H
(
η
)
= Hi

(
η
)
+

i−1∑
n=0

hn
(
η
)
, G

(
η
)
= Gi

(
η
)
+

i−1∑
n=0

gn
(
η
)
, i = 1, 2, 3, . . . , (4.1)

where Hi, Gi are unknown functions and hn and gn (n ≥ 1) are approximations that are
obtained by recursively solving the linear part of the equation system that results from
substituting (4.1) in the governing equations (2.9)-(2.10). Substituting (4.1) in the governing
equations gives

H ′′′i − a1,i−1H
′′
i + a2,i−1H

′
i − a3,i−1Hi − 4a4,i−1Gi −H ′′i Hi +

1
2
H ′iH

′
i − 2G2

i = ri−1,

G′′i − b1,i−1G
′
i + b2,i−1Gi + b3,i−1H

′
i − b4,i−1Hi −HiG

′
i +H

′
iGi = si−1,

(4.2)

where the coefficient parameters ak,i−1, bk,i−1 (k = 1, . . . , 4), ri−1, and si−1 are defined as

a1,i−1 =
i−1∑
n=0

hn, a2,i−1 =
i−1∑
n=0

h′n, a3,i−1 =
i−1∑
n=0

h′′n, a4,i−1 =
i−1∑
n=0

gn,

b1,i−1 =
i−1∑
n=0

hn, b2,i−1 =
i−1∑
n=0

h′n, b3,i−1 =
i−1∑
n=0

gn, b4,i−1 =
i−1∑
n=0

g ′n,

ri−1 = −
[
i−1∑
n=0

h′′′n −
i−1∑
n=0

h′′n

i−1∑
n=0

hn +
1
2

i−1∑
n=0

h′n

i−1∑
n=0

h′n − 2
i−1∑
n=0

gn
i−1∑
n=0

gn

]
,

si−1 = −
[
i−1∑
n=0

g ′′n −
i−1∑
n=0

hn
i−1∑
n=0

g ′n +
i−1∑
n=0

h′n

i−1∑
n=0

gn

]
.

(4.3)
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To facilitate direct comparison of the methods, we use the same initial approximations as in
the case of the spectral homotopy analysis method of Yang and Liao [12]:

h0
(
η
)
= −1 + e−η + ηe−η g0

(
η
)
= e−η. (4.4)

The solutions for hn, gn, i − 1 ≥ n ≥ 1, are obtained by successively solving the linearized
form of (4.2), namely,

h′′′i − a1,i−1h
′′
i + a2,i−1h

′
i − a3,i−1hi − 4a4,i−1gi = ri−1,

g ′′i − b1,i−1g
′
i + b2,i−1gi + b3,i−1h

′
i − b4,i−1hi = si−1,

(4.5)

subject to the boundary conditions

hi(0) = h′i(0) = h
′
i(∞) = gi(0) = gi(∞) = 0. (4.6)

Once each hi, gi (i ≥ 1) has been found, the approximate solutions for H(η) and G(η) are
obtained as

H
(
η
)
≈

M∑
n=0

hn
(
η
)
, G

(
η
)
≈

M∑
n=0

gn
(
η
)
, (4.7)

where M is the order of the SLM approximation. In coming up with (4.7), we have assumed
that

lim
i→∞

Hi = lim
i→∞

Gi = 0. (4.8)

Equations (4.5)-(4.6) can be solved using analytical techniques (whenever possible) or any
numerical method. In this work the equations were solved using the Chebyshev spectral
collocation method in the manner described in the previous section. This leads to the matrix
equation

Ai−1Yi = Ri−1, (4.9)

where Ai−1 is a (2N + 2) × (2N + 2) square matrix and Yi and Ri−1 are (2N + 2) × 1 column
vectors defined by

Ai−1 =
[
A11 A12

A21 A22

]
, Yi =

[
Hi

Gi

]
, Ri−1 =

[
ri−1

si−1

]
, (4.10)
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with

Hi = [hi(ξ0), hi(ξ1), . . . , hi(ξN−1), hi(ξN)]T ,

Gi =
[
gi(ξ0), gi(ξ1), . . . , gi(ξN−1), gi(ξN)

]T
,

ri−1 = [ri−1(ξ0), ri−1(ξ1), . . . , ri−1(ξN−1), ri−1(ξN)]T ,

si−1 = [si−1(ξ0), si−1(ξ1), . . . , si−1(ξN−1), si−1(ξN)]T ,

A11 = D3 − a1,i−1D2 + a2,i−1D − a3,i−1,

A12 = −4a4,i−1,

A21 = b3,i−1D − b4,i−1,

A22 = D2 − b1,i−1D + b2,i−1.

(4.11)

In the above definitions, ak,i−1, bk,i−1 (k = 1, . . . , 4) are diagonal matrices of size (N+1)×(N+1)
andD = (2/L)DwithD being the Chebyshev spectral differentiation matrix. After modifying
the matrix system (4.9) to incorporate boundary conditions, the solution is obtained as

Yi = A−1
i−1Ri−1. (4.12)

5. MHD Swirling Boundary Layer Flow

The study of the magnetohydrodynamic swirling boundary layer flow over a rotating disk
with suction or injection through the porous surface of the disk has recently been undertaken
by Turkyilmazoglu [13]. In this case the Navier-Stokes equations reduce to a set of ordinary
differential equations

F ′′ − F ′H − F2 +G2 −mF = 0, (5.1)

G′′ −G′H − 2FG −mG = 0, (5.2)

H ′′ −HH ′ + P ′ = 0, (5.3)

2F +H ′ = 0, (5.4)

subject to the boundary conditions

F(0) = F(∞) = 0, G(0) = 1, G(∞) = 0, H(0) = −s, (5.5)

where m is the magnetic interaction parameter due to the externally applied magnetic field
and s denotes uniform suction (s > 0) or blowing (s < 0) through the surface of the disk.

Turkyilmazoglu [13] utilized a twin strategy, using Ackroyd’s series expansion and
the homotopy analysis method to find purely analytic solutions to (5.1)–(5.5). In this study
we use the SLM to obtain solutions to this system of equations.
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Table 1: Comparison of H(∞) at different orders of the HAM [12], Homotopy-Padé [11], SHAM, and the
SLM approximations when � = −1, L = 20, and N = 60.

Order HAM [12] [m,m] Hom-Padé [11] Order SHAM Order SLM Numerical
0 −1 [5, 5] −0.885308 2 −0.884944 1 −0.871912 −0.884474
5 −0.9173 [10, 10] −0.884475 4 −0.884449 2 −0.884521
10 −0.8747 [15, 15] −0.884474 6 −0.884476 3 −0.884474
15 −0.8833 [20, 20] −0.884474 8 −0.884474 4 −0.884474
20 −0.8845 [25, 25] −0.884474 10 −0.884474 5 −0.884474

Eliminating F in (5.1) and (5.2) using (5.4) gives the following system of equations:

H ′′′ −H ′′H +
1
2
H ′H ′ − 2G2 −mH ′ = 0, (5.6)

G′′ −HG′ +H ′G −mG = 0, (5.7)

subject to the boundary conditions

H(0) = −s, H ′(0) = H ′(∞) = 0, G(0) = 1, G(∞) = 0. (5.8)

The SLM is applied to (5.6) to (5.8) in the manner described in Section 4, and for brevity we
omit the finer details. The intrinsic parameters of the SLM are essentially the same as those
defined in Section 4 except for the following:

a2,i−1 =
i−1∑
n=0

h′n −m, b2,i−1 =
i−1∑
n=0

h′n −m,

ri−1 = −
[
i−1∑
n=0

h′′′n −
i−1∑
n=0

h′′n

i−1∑
n=0

hn +
1
2

i−1∑
n=0

h′n

i−1∑
n=0

h′n − 2
i−1∑
n=0

gn
i−1∑
n=0

gn −m
i−1∑
n=0

h′n

]
,

si−1 = −
[
i−1∑
n=0

g ′′n −
i−1∑
n=0

hn
i−1∑
n=0

g ′n +
i−1∑
n=0

h′n

i−1∑
n=0

gn −m
i−1∑
n=0

gn

]
.

(5.9)

An appropriate initial approximation for finding H(η) in this case is

h0
(
η
)
= −s − 1 + e−η + ηe−η. (5.10)

6. Results and Discussion

In this section we present the results for the velocity distributionsH(η) andG(η). To check the
accuracy of the successive linearisation method and the spectral homotopy analysis method,
comparison is made with numerical solutions obtained using the Matlab bvp4c routine,
which is an adaptive Lobatto quadrature scheme (see [22]). The current results are compared
with previously published results by Liao [11], Yang and Liao [12], and Turkyilmazoglu [13].
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Table 2: Comparison of P(∞) − P(0) obtained at different orders for the HAM [12], SHAM, and SLM
approximations when � = −1, L = 20, and N = 60.

HAM [12]
order

P(∞) − P(0)
order

SHAM order P(∞) − P(0) SLM P(∞) − P(0) Numerical

0 0.3901 2 0.391563 1 0.380115 0.391147

5 0.3910 4 0.391125 2 0.391189

10 0.3911 6 0.391149 3 0.391147

15 0.3911 8 0.391147 4 0.391147

20 0.3911 10 0.391147 5 0.391147

Table 3: Comparison of F ′(0) at different orders for the SLM approximations when L = 20, N = 60 against
the results of [13] for different s values when m = 1.

s 1st order 2nd order 3rd order 4th order Numerical Reference [13]
−2.0 0.28399669 0.29148466 0.29148082 0.29148082 0.29148082 0.29148086
−1.0 0.31835562 0.32165707 0.32166220 0.32166220 0.32166220 0.32166220
0.0 0.31619804 0.30929864 0.30925799 0.30925798 0.30925798 0.30925798
1.0 0.26848288 0.25115842 0.25104369 0.25104397 0.25104397 0.25104397
2.0 0.19789006 0.18779923 0.18871806 0.18871902 0.18871902 0.18871903

The results presented in this work were generated using mostlyN = 60 collocation points and
L = 20.

Table 1 gives a comparison of the values of H(∞) obtained at different orders of
the SLM and the SHAM approximations against the homotopy analysis method results,
the homotopy-Padé results, and the numerical results. Our finding is that the SLM results
converge most rapidly to the numerical result of −0.884474. Full convergence is achieved at
the very low third order. Comparatively, convergence (to 6 decimal places) was achieved at
the twentieth order using the homotopy analysis method and at the fifteenth order in the case
of the homotopy-Padé method. When the same � value is used, convergence of the spectral
homotopy analysis method is achieved at the eighth order compared to the twentieth order
for the homotopy analysis method approximations. This suggests that the SLM is a very
useful computational tool that converges much more rapidly than the homotopy analysis
method, the homotopy-Padé method, and the spectral homotopy analysis method, although,
the SLM may, in fact, require more computations per step than the other methods.

Table 2 gives a comparison of the pressure difference P(∞)−P(0) at different orders of
the homotopy analysis method, SHAM, and SLM against the numerical results. A similar
pattern as in Table 1 emerges where the SLM results converge rapidly to the numerical
result of 0.391147 with full convergence achieved at the third order. In the case of the HAM,
convergence up to four decimal places was achieved at the tenth order. For the same � values,
the SHAM converges at the sixth order.

Tables 3–6 give a comparison between the SLM and the results reported by
Turkyilmazoglu [13] for several suction/injection velocities and magnetic parameter values.
Comparison of the results of Turkyilmazoglu [13] with the SLM seems most appropriate since
the former study also partly utilizes a linearizing technique, the Newton-Raphson method
to compute elements of the solutions. Turkyilmazoglu [13] showed that for large injection
velocities, the number of terms required to attain convergence of the series solution increases
dramatically, for instance, for injection velocities s = −3.2, up to 2000 terms are required
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Table 4: Comparison of G′(0) at different orders for the SLM approximations when L = 20,N = 60 against
the results of [13] for different s values when m = 1.

s 1st order 2nd order 3rd order 4th order Numerical Reference [13]

−2.0 −0.46621214 −0.46571639 −0.46571471 −0.46571471 −0.46571471 −0.46571471

−1.0 −0.69404148 −0.69065793 −0.69066292 −0.69066292 −0.69066292 −0.69066292

0.0 −1.06924152 −1.06907700 −1.06905336 −1.06905336 −1.06905336 −1.06905336

1.0 −1.61663439 −1.65615591 −1.65707514 −1.65707580 −1.65707580 −1.65707588

2.0 −2.31476548 −2.42896548 −2.43136137 −2.43136154 −2.43136154 −2.43136154

Table 5: Flow parameters F ′(0) and G′(0) at different orders for the SLM approximations when L = 20,
N = 120 for different s values when m = 1.

s
F ′(0) G′(0)

2nd order 4th order Numerical 2nd order 4th order Numerical

−5 0.17788071 0.17788125 0.17788125 −0.20387855 −0.20387920 −0.20387920

−4 0.20924002 0.20924073 0.20924073 −0.25452255 −0.25452370 −0.25452370

−3 0.24839904 0.24839882 0.24839882 −0.33393576 −0.33393640 −0.33393640

3 0.14238972 0.14422157 0.14422157 −3.30816863 −3.31056638 −3.31056638

4 0.11266351 0.11466456 0.11466456 −4.23823915 −4.24002059 −4.24002059

5 0.09266580 0.09447344 0.09447344 −5.19357411 −5.19480492 −5.19480492

to achieve convergence of the series solution method, and hence the study resorts to the
Chebyshev collocation method to solve the governing equations. Nonetheless, our findings
indicate that with only a few terms of the SLM series good levels of accuracy are achieved
for all suction and injection velocities. For the suction and injection velocities in the range
−2 ≤ s ≤ 2 and m = 1 in Tables 3-4 there is an excellent agreement between the fourth-order
SLM, the numerical, and the results reported by Turkyilmazoglu [13].

Table 5 gives a comparison between the numerical and the SLM results for larger
values of s, up to s = ±5 when m = 1. Moderate increases in the suction/injection velocities
appear to have no effect on the precision of the method with convergence again achieved
at the fourth order of the SLM series. In Table 6, s = 1 is fixed and the magnetic parameter
varied. We compare the convergence rate of the SLM to the numerical computations and
show that increasing this parameter has no effect either on the convergence rate of the
successive linearisation method.

Figure 1 gives a comparison between the fourth-order SHAM, second-order SLM, and
numerical results for the dimensionless velocity distributions H(η) and G(η), respectively.
There is an excellent agreement among the three sets of results. For purposes of comparison, it
is worth noting that in case of the HAM in the work of Yang and Liao [12], agreement between
the numerical and the HAM results was only observed at the 30th order of approximation for
H(η) and at the 10th order for G(η). As with most iterative methods, it is worth noting that
the convergence rate may depend on the initial approximation used. However, since we have
used the same initial approximations as Yang and Liao [12], the graphical results suggest that
the SLM converges much more rapidly than both the HAM and SHAM. This may, however,
be offset by the fact that the SLM may require more computations per step than the other two
methods.
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Table 6: Flow parameters F ′(0) and G′(0) at different orders for the SLM approximations when L = 20,
N = 120 for different m values when s = 1.

m
F ′(0) G′(0)

2nd order 4th order Numerical 2nd order 4th order Numerical
0 0.39183500 0.38956624 0.38956624 −1.17700614 −1.17522084 −1.17522083
2 0.19726747 0.19756823 0.19756823 −2.01809456 −2.01847353 −2.01847353
4 0.14885275 0.14901611 0.14901611 −2.56931412 −2.56932504 −2.56932504
6 0.12469326 0.12476317 0.12476317 −3.00455809 −3.00452397 −3.00452397
8 0.10953285 0.10956389 0.10956389 −3.37536371 −3.37533046 −3.37533046
10 0.09887642 0.09889037 0.09889037 −3.703823547 −3.70379689 −3.70379689
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Figure 1: Comparison between the SHAM, SLM, and numerical solution of −H(η) and G(η) when � = −1,
L = 20, and N = 60. The open circles represent the SHAM 4th-order solution, the filled circles represent
the 2nd-order SLM solution, and the solid line represent the numerical solution.
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7. Conclusions

In this work two relatively new methods, the spectral homotopy analysis method and
the successive linearisation method, have been successfully used to solve the von Kármán
nonlinear equations for swirling flow with and without suction/injection across the disk
walls and an applied magnetic field. The velocity components were compared with numerical
results generated using the built-in Matlab bvp4c solver and against the homotopy analysis
method and homotopy-Padé results in the literature. The results indicate that both the
spectral homotopy analysis method and the successive linearisation method may give
accurate and convergent results using only few solution terms compared with the homotopy
analysis method and the Homotopy-Padé methods. Comparison has also been made with
the recent findings by Turkyilmazoglu [13]. The successive linearisation method gives better
accuracy at lower orders than the spectral homotopy analysis method. The tradeoff, however,
is that both the spectral homotopy analysis method and the successive linearisation method
may involve more computations per step compared to the methods in the literature.

Nonetheless, the sccessive linearisation method has been shown to be very efficient
in that it rapidly converges to the numerical results. The study by Turkyilmazoglu [13]
shows that whenever suction/blowing through the disk walls is present, the homotopy
analysis method is prone to give wildly oscillating solutions. These oscillations have to be
controlled by a careful choice of the embedded parameter �. The advantage of the successive
linearisation method is that such a parameter does not exist and no such oscillations are
observed in the solution of the von Kármán equations for swirling flow.
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