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Assume that q is a positive continuous function in �N and satisfies the suitable conditions. We
prove that the Dirichlet problem −Δu + u = q(z)|u|p−2u admits at least three positive solutions in
an exterior domain.

1. Introduction

ForN ≥ 3 and 2 < p < 2∗ = 2N/(N − 2), we consider the semilinear elliptic equations

−Δu + u = q(z)|u|p−2u in Ω,

u ∈ H1
0(Ω),

(1.1)

−Δu + u = q∞|u|p−2u in Ω,

u ∈ H1
0(Ω),

(1.2)

where Ω is an unbounded domain �N . Let q be a positive continuous function in �N and
satisfy

lim
|z|→∞

q(z) = q∞ > 0, q(z)/≡ q∞. (q1)
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Associated with (1.1) and (1.2), we define the functional a, b, b∞, J , and J∞, for u ∈H1
0(Ω)

a(u) =
∫
Ω

(
|∇u|2 + u2

)
dz = ‖u‖2H1 ,

b(u) =
∫
Ω
q(z)updz,

b∞(u) =
∫
Ω
q∞updz,

J(u) =
1
2
a(u) − 1

p
b(u+),

J∞(u) =
1
2
a(u) − 1

p
b∞(u+),

(1.3)

where u+ = max{u, 0} ≥ 0. By Rabinowitz [1, Proposition B.10], the functionals a, b, b∞, J ,
and J∞ are of C2.

It is well known that (1.1) admits infinitely many solutions in a bounded domain.
Because of the lack of compactness, it is difficult to deal with this problem in an unbounded
domain. Lions [2, 3] proved that if q(z) ≥ q∞ > 0, then (1.1) has a positive ground state
solution in �N . Bahri and Li [4] proved that there is at least one positive solution of (1.1)
in �N when lim|z|→∞q(z) = q∞ > 0 and q(z) ≥ q∞ − C exp(−δ|z|) for δ > 2. Zhu [5] has
studied the multiplicity of solutions of (1.1) in �N as follows. AssumeN ≥ 5, lim|z|→∞q(z) =
q∞, q(z) ≥ q∞ > 0, and there exist positive constants C, γ , R0 such that q(z) ≥ q∞ + C/|z|γ
for |z| ≥ R0, then (1.1) has at least two nontrivial solutions (one is positive and the other
changes sign). Esteban [6, 7] and Cao [8] have studied the multiplicity of solutions of −Δu +
u = q(z)|u|p−2u with Neumann condition in an exterior domain �N \ D, where D is a C1,1

bounded domain in �N . Hirano [9] proved that if ‖q − q∞‖∞ is sufficiently small and q(z) ≥
q∞[1 + C exp(−δ|z|)] for 0 < δ < 1, then (1.1) admits at least three nontrivial solutions (one
is positive and the other changes sign) in �N . Recently, under the same conditions, Lin [10]
showed that (1.1) admits at least two positive solutions and one nodal solution in an exterior
domain. Let q(z) = a(z)+μb(z). Wu [11] showed that for sufficiently small μ, if a and b satisfy
some hypotheses, then (1.1) has at least three positive solutions in �N .

In this paper, we consider the multiplicity of positive solutions of (1.1) in an exterior
domain. If q satisfies the suitable conditions (‖q − q∞‖∞ is sufficiently small and q(z) ≥ q∞ +
C exp(−δ|z|) for 0 < δ < 2), thenwe can show that (1.1) admits at least three positive solutions
in an exterior domain. First, in Section 3, we use the concentration-compactness argument of
Lions [2, 3] to obtain the “ground-state solution” (see Theorem 3.7). In Section 4, we study
the idea of category in Adachi-Tanaka [12] and Bahri-Li minimax method to get that there
are at least three positive solutions of (1.1) in �N \D (see Theorems 4.10 and 4.15).

2. Existence of (PS)—Sequences

Let Ω be an unbounded domain in �N . We define the Palais-Smale (denoted by (PS))
sequences, (PS)-values, and (PS)-conditions inH1

0(Ω) for J as follows.
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Definition 2.1. (i) For β ∈ �, a sequence {un} is a (PS)β-sequence in H1
0(Ω) for J if J(un) =

β + on(1) and J ′(un) = on(1) strongly inH−1(Ω) as n → ∞.
(ii) β ∈ � is a (PS)-value inH1

0(Ω) for J if there is a (PS)β-sequence inH
1
0(Ω) for J .

(iii) J satisfies the (PS)β-condition in H1
0(Ω) if every (PS)β-sequence in H1

0(Ω) for J
contains a convergent subsequence.

Lemma 2.2. Let u ∈ H1
0(Ω) be a critical point of J , then u is a nonnegative solution of (1.1).

Moreover, if u/≡ 0, then u is positive in Ω.

Proof. Suppose that u ∈ H1
0(Ω) satisfies 〈J ′(u), ϕ〉 = 0 for any ϕ ∈ H1

0(Ω), that is,

∫
Ω

(∇u∇ϕ + uϕ
)
=
∫
Ω
q(z)up−1+ ϕ for any ϕ ∈ H1

0(Ω). (2.1)

Thus, u is a weak solution of −Δu + u = q(z)up−1+ in Ω. Since q > 0 in �N , by the maximum
principle, u is nonnegative. If u/≡ 0, we have that u is positive in Ω.

Define

α(Ω) = inf
u∈M(Ω)

J(u), (2.2)

where M(Ω) = {u ∈H1
0(Ω) \ {0} | a(u) = b(u+)} and

α∞(Ω) = inf
u∈M∞(Ω)

J∞(u), (2.3)

where M∞(Ω) = {u ∈ H1
0(Ω) \ {0} | a(u) = b∞(u+)}.

Lemma 2.3. Let β ∈ � and let {un} be a (PS)β-sequence inH1
0(Ω) for J . Then,

(i) {un} is a bounded sequence inH1
0(Ω),

(ii) a(un) = b(u+n) + on(1) = (2p/(p − 2))β + on(1) as n → ∞ and β ≥ 0.

By Chen et al. [13] and Chen and Wang [14], we have the following lemmas.

Lemma 2.4. (i) For each u ∈ H1
0(Ω) \ {0} with u+ /≡ 0, there exists the unique number su > 0 such

that suu ∈ M(Ω) and sups≥0J(su) = J(suu).
(ii) Let β > 0 and {un} a sequence inH1

0(Ω) \ {0} for J such that un /≡ 0, J(un) = β + on(1)
and a(un) = b(u+n) + on(1). Then, there is a sequence {sn} in �+ such that sn = 1+ on(1), {snun} in
M(Ω) and J(snun) = β + on(1) as n → ∞.

Lemma 2.5. There exists a positive constant c such that ‖u‖H1 ≥ c > 0 for each u ∈ M(Ω). Moreover,
α(Ω) > 0.

Lemma 2.6. Let Ω1 � Ω2. If J satisfies the (PS)α(Ω1)-condition or α(Ω1) is a critical value, then
α(Ω2) < α(Ω1).

Proof. See Chen et al. [13] or Lin et al. [15].
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Remark 2.7. The above definitions and lemmas hold not only for J∞ and M∞(Ω) but also for
α∞(Ω).

Lemma 2.8. Every minimizing sequence {un} in M∞(Ω) of α∞(Ω) is a (PS)α∞(Ω)-sequence in
H1

0(Ω) for J . Moreover, α∞(Ω) is a (PS)-value.

3. Existence of Ground State Solution

From now on, let Ω = �N \D be an exterior domain, where D is a C1,1 bounded domain in
�N . By Lions [2, 3], Struwe [16], and Lien et al. [17], we have the following decomposition
lemmas.

Lemma 3.1 (Palais-Smale Decomposition Lemma for J). Assume that q is a positive continuous
function in �N and lim|z|→∞q(z) = q∞ > 0. Let {un} be a (PS)β-sequence in H

1
0(Ω) for J . Then,

there are a subsequence {un}, a nonnegative integer l, sequences {zin}∞n=1 in�N , functions u inH1
0(Ω),

and wi /= 0 inH1(�N ) for 1 ≤ i ≤ l such that
∣∣∣zin − zjn

∣∣∣ −→ ∞ for 1 ≤ i, j ≤ l, i /= j,

−Δu + u = q(z)|u|p−2u in Ω,

−Δwi +wi = q∞
∣∣∣wi
∣∣∣p−2wi in �N ,

un = u +
l∑
i=1

wi
(
· − zin

)
+ on(1) strongly in H1

(
�N
)
,

J(un) = J(u) +
l∑
i=1

J∞
(
wi
)
+ on(1).

(3.1)

Lemma 3.2 (Palais-Smale Decomposition Lemma for J∞). Let {un} be a (PS)β-sequence in
H1

0(Ω) for J∞. Then, there are a subsequence {un}, a nonnegative integer l, sequences {zin}∞n=1 in
�N , functions u inH1

0(Ω), andwi /= 0 inH1(�N ) for 1 ≤ i ≤ l such that

∣∣∣zin − zjn
∣∣∣ −→ ∞ for 1 ≤ i, j ≤ l, i /= j,

−Δu + u = q∞|u|p−2u+ in Ω,

−Δwi +wi = q∞
∣∣∣wi
∣∣∣p−2wi

+ in �N ,

un = u +
l∑
i=1

wi
(
· − zin

)
+ on(1) strongly in H1

(
�N
)
,

J∞(un) = J∞(u) +
l∑
i=1

J∞
(
wi
)
+ on(1).

(3.2)
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Lemma 3.3. (i) α∞(Ω) = α∞(�N ) (denoted by α∞).
(ii) Let {un} ⊂ M(Ω) be a (PS)β-sequence inH

1
0(Ω) for J with 0 < β < α∞.

Then, there exist a subsequence {un} and a nonzero u0 ∈ H1
0(Ω) such that un → u0 strongly in

H1
0(Ω), that is, J satisfies the (PS)β-condition inH1

0(Ω). Moreover, u0 is a positive solution of (1.1)
such that J(u0) = β.

Proof. (i) Since Ω is an exterior domain, by Lien et al. [17], Ω is a ball-up domain (for any
r > 0, there exists z ∈ Ω such that BN(z; r) ⊂ Ω) and α∞(Ω) = α∞(�N ).

(ii) Since {un} ⊂ M(Ω) is a (PS)β-sequence in H1
0(Ω) for J with 0 < β < α∞, by

Lemma 2.3, {un} is bounded. Thus, there exist a subsequence {un} and u0 ∈ H1
0(Ω) such

that un ⇀ u0 weakly in H1
0(Ω). It is easy to check that u0 is a solution of (1.1). Applying

Palais-Smale Decomposition Lemma 3.1, we get

α∞ > β = J(un) ≥ lα∞. (3.3)

Then, l = 0 and u0 /= 0. Hence, un → u0 strongly in H1
0(Ω) and J(u0) = β. Moreover, by

Lemma 2.2, u0 is positive in Ω.

It is well known that there is the unique (up to translation), positive, smooth, and
radially symmetric solution w of (1.2) in �N such that J∞(w) = α∞. (See Bahri and Lions
[18], Gidas et al. [19, 20] and Kwong [21]). Recall the facts

(i) for any ε > 0, there exist constants C0, C′
0 > 0 such that for all z ∈ �N

w(z) ≤ C0 exp(−|z|), |∇w(z)| ≤ C′
0 exp(−(1 − ε)|z|), (3.4)

(ii) for any ε > 0, there exists a constant Cε > 0 such that

w(z) ≥ Cε exp(−(1 + ε)|z|) ∀z ∈ �N . (3.5)

Suppose D ⊂ BN(0;R) = {z ∈ �N | |z| < R} for some R > 0. Let ψR : �N → [0, 1] be
a C∞-function on �N such that 0 ≤ ψR ≤ 1, |∇ψR| ≤ c and

ψR(z) =

⎧⎨
⎩
1 for |z| ≥ R + 1,

0 for |z| ≤ R.
(3.6)

We define

wz(z) = ψR(z)w(z − z) for z ∈ �N . (3.7)

Clearly,wz(z) ∈ H1
0(Ω).

We need the following lemmas to prove that supt≥0J(twz) < α∞ for sufficiently
large |z|.
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Lemma 3.4. Let E be a domain in �N . If f : E → � satisfies

∫
E

∣∣∣f(z)eσ|z|
∣∣∣dz <∞ for some σ > 0, (3.8)

then

(∫
E

f(z)e−σ|z−z|dz
)
eσ|z| =

∫
E

f(z)eσ(〈z,z〉/|z|)dz + o(1) as |z| −→ ∞. (3.9)

Proof. Since σ|z| ≤ σ|z| + σ|z − z|, we have

∣∣∣f(z)e−σ|z−z|eσ|z|
∣∣∣ ≤
∣∣∣f(z)eσ|z|

∣∣∣. (3.10)

Since −σ|z − z| + σ|z| = σ(〈z, z〉/|z|) + o(1) as |z| → ∞, then the lemma follows from the
Lebesque-dominated convergence theorem.

Next, assume that q is a positive continuous function in �N and satisfies (q1) and

q(z) ≥ q∞ + C exp(−δ|z|) for some C > 0 and 0 < δ < 2. (q2)

Then, we have the following lemmas.

Lemma 3.5. (i) There exists a number t0 > 0 such that for 0 ≤ t < t0 and eachwz ∈ H1
0(Ω), we have

J(twz) < α∞. (3.11)

There exists a number t1 > 0 such that for any t > t1 and |z| ≥ R + 2, we have

J(twz) < 0. (3.12)

Proof. (i) Since α∞ > 0 = J(0), J is continuous inH1
0(Ω) and {wz} is bounded inH1

0(Ω), then
there exists t0 > 0 such that for 0 ≤ t < t0 and eachwz ∈ H1

0(Ω)

J(twz) < α∞. (3.13)
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For |z| ≥ R + 2: since 0 ≤ ψR ≤ 1, |∇ψR| ≤ c and q(z) � q∞, we have that

J(twz) =
t2

2

∫
Ω

[∣∣∇(ψR(z)w(z − z))∣∣2 + (ψR(z)w(z − z))2]dz

− t2

p

∫
Ω
q(z)
(
ψR(z)w(z − z))pdz

≤ t2

2

∫
�N

[∣∣(∇ψR)w(z − z) + ψR∇w(z − z)∣∣2 +w(z − z)2
]
dz

− tp

p

∫
B(z;1)

q∞w(z − z)pdz (� ψR(z) = 1 for z ∈ B(z; 1))

≤ t2

2

∫
�N

{
[cw(z) + |∇w(z)|]2 +w(z)2

}
dz − tp

p

∫
B(0;1)

q∞w(z)pdz.

(3.14)

Hence, there exists t1 > 0 such that

J(twz) < 0 for any t > t1, |z| ≥ R + 2. (3.15)

Lemma 3.6. There exists a number R1 > R + 2 > 0 such that for any |z| ≥ R1, we obtain

sup
t≥0

J(twz) < α∞. (3.16)

Proof. Applying the above lemma, we only need to show that there exists a number R1 >
R + 2 > 0 such that for any |z| ≥ R1,

sup
t0≤t≤t1

J(twz) < α∞. (3.17)

For t0 ≤ t ≤ t1, since

∣∣∇(ψRw(z − z))∣∣2 = ∣∣∇ψR∣∣2w(z − z)2 + ψ2
R|∇w(z − z)|2 + 2ψRw(z − z)∇ψR∇w(z − z),

(3.18)
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then we have

J(twz) =
t2

2

∫
�N

{∣∣∇(ψR(z)w(z − z))∣∣2 + [(ψR(z)w(z − z))]2}dz

− tp

p

∫
�N

q(z)
[
ψR(z)w(z − z)]pdz (

� the defination of ψR
)

≤ t2

2

∫
�N

[
|∇w(z − z)|2 +w(z − z)2

]
dz − tp

p

∫
�N

q∞w(z − z)pdz

+
t2

2

∫
�N

[∣∣∇ψR∣∣2w(z − z)2 + 2ψRw(z − z)∇ψR∇w(z − z)
]
dz

− tp

p

∫
�N

[
q(z)ψpRw(z − z)p − q∞w(z − z)p

]
dz

(
� (3.18) and 0 ≤ ψR ≤ 1

)

≤ α∞ +
t21
2

∫
�N

[∣∣∇ψR∣∣2w(z − z)2 + 2|w(z − z)|∣∣∇ψR∣∣|∇w(z − z)|
]
dz

− t
p

0

p

∫
{|z|≥R+1}

(
q(z) − q∞

)
w(z − z)pdz

+
t
p

1

p

∫
{|z|≤R+1}

q∞w(z − z)pdz
(
� sup

t≥0
J∞(tw) = α∞ and the defination of ψR

)
.

(3.19)

Since the support of ∇ψR is bounded, then

∫
supp(∇ψR)

∣∣∇ψR∣∣2w(z − z)2dz ≤ C1 exp(−2|z|),

∫
supp(∇ψR)

|w(z − z)|∣∣∇ψR∣∣|∇w(z − z)|dz ≤ C2 exp(−(2 − ε)|z|).
(3.20)

Similarly, we have

∫
{|z|≤R+1}

q∞w(z − z)pdz ≤ C3 exp
(−p|z|). (3.21)
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Since q(z) ≥ q∞ + C exp(−δ|z|) for some 0 < δ < 2, by Lemma 3.4, there exists R′
1 > R + 2 > 0

such that for any |z| > R′
1

∫
{|z|≤R+1}

(
q(z) − q∞

)
w(z − z)pdz ≥ C′

ε exp
(−min

{
δ, p(1 + ε)

}|z|)

≥ C′
ε exp(−δ|z|).

(3.22)

Choosing 0 < ε < 2 − δ and using (3.20)–(3.22), there exists R1 > R
′
1 such that for |z| ≥ R1, we

have

sup
t0≤t≤t1

J(twz) < α∞, (3.23)

that is, supt≥0J(twz) < α∞.

Using the Ekeland variational principle (or see Stuart [22]), there is a (PS)α(Ω)-
sequence {un} ⊂ M(Ω) for J . Then, we apply Lemma 3.3(ii) to obtain the existence of positive
ground state solution of (1.1) in Ω.

Theorem 3.7. Assume that q is a positive continuous function in �N and satisfies (q1) and (q2).
Then, there exists at least one positive ground state solution u0 of (1.1) in Ω.

Proof. Since wz ∈ H1
0(Ω), by Lemma 2.4(i), there exists sz > 0 such that szwz ∈ M(Ω).

Thus, by Lemma 3.6, α(Ω) ≤ J(szwz) ≤ supt≥0J(twz) < α∞ for |z| ≥ R1. Using the Ekeland
variational principle, there is a (PS)α(Ω)-sequence {un} ⊂ M(Ω) for J . Apply Lemma 3.3(ii),
there exists at least one positive solution u0 of (1.1) in Ω such that J(u0) = α(Ω).

4. Existence of Multiple Solutions

In this section, we use two methods to obtain the existence of multiple positive solutions of
(1.1) in an exterior domain. Part I: we study the idea of category to prove Theorem 4.10. Part
II: we study the Bahri-Li minimax method to prove Theorem 4.15.

Lemma 4.1. Assume that q is a positive continuous function in �N . If q satisfies (q1), (q2) and
(m/2)q∞ � q(z) where m > 2, then there exists m0 > 2 such that for m ≤ m0, we obtain that
2α(Ω) > α∞.

Proof. Since q(z) � q∞, by Lions [2, 3], letw0 ∈ H1(�N ) be a positive solution of −Δw0+w0 =
q(z)|w0|p−2w0 in �N and J(w0) = α(�N ). By Lemma 2.4(i) and Remark 2.7, there exists s0 > 0
such that s0w0 ∈ M∞(�N ) and J∞(s0w0) ≥ α∞ and

∫
�N

[
|∇(s0w0)|2 + (s0w0)2

]
dz =

∫
�N

q∞(s0w0)pdz ≥ 2p
p − 2

α∞. (4.1)
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Moreover, we have

1 =

∫
�N |∇w0|2 +w2

0∫
�N q(z)w

p

0

<

∫
�N |∇w0|2 +w2

0∫
�N q∞w

p

0

= sp−20 <

∫
�N(m/2)q∞w

p
0∫

�N q∞w
p

0

=
m

2
. (4.2)

Hence, using the above inequalities, we get

α
(
�N
)
= J(w0) = sup

s≥0
J(sw0) > J(s0w0)

= J∞(s0w0) − 1
p

∫
�N

(
q(z) − q∞

)
(s0w0)pdz

≥ α∞ − 1
p

(m
2

− 1
)∫

�N

q∞(s0w0)pdz

= α∞ − s20
p

(m
2

− 1
)∫

�N

(
|∇w0|2 +w2

0

)
dz

> α∞ − 1
p

(m
2

− 1
)(m

2

)2/(p−2) 2p
p − 2

α
(
�N
)
,

(4.3)

that is, [1 + ((m − 2)/(p − 2))(m/2)2/(p−2)]α(�N ) > α∞. Choose some m0 > 2 such that for
2 < m ≤ m0, then 2α(�N ) > α∞. By Lemma 2.6 and Theorem 3.7, 2α(Ω) > 2α(�N ) > α∞.

Lemma 4.2. There exists a number δ0 > 0 such that if u ∈ M∞(Ω) and J∞(u) ≤ α∞ + δ0, then

∫
�N

z

|z|
(
|∇u|2 + u2

)
dz/=

−→
0 . (4.4)

Proof. On the contrary, there exists a sequence {un} in M∞(Ω) such that J∞(un) = α∞ + on(1)
as n → ∞ and

∫
�N

z

|z|
(
|∇un|2 + u2n

)
dz =

−→
0 ∀n. (4.5)

By Lemma 2.8, {un} is a (PS)α∞-sequence in H1
0(Ω) for J∞. Since α∞(Ω) = α∞(�N ), Lien et

al. [17] proved that (1.2) does not have any ground state solution in an exterior domain,
that is, infv∈M∞(Ω)J∞(v) = α∞(Ω) is not achieved. Applying the Palais-Smale Decomposition
Lemma 3.2, we have that there exists a sequence {zn} in �N such that |zn| → ∞ as n → ∞
and

un(z) = w(z − zn) + on(1) strongly in H1
(
�N
)
, (4.6)
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where w is the positive solution of (1.2) in �N . Suppose the subsequence zn/|zn| → z0 as
n → ∞, where z0 is a unit vector in �N . Then, by the Lebesgue dominated convergence
theorem, we have

−→
0 =
∫
�N

z

|z|
(
|∇un|2 + u2n

)
dz

=
∫
�N

z + zn
|z + zn|

(
|∇w|2 +w2

)
dz + on(1)

=
( 2p
p − 2

)
α∞z0 + on(1),

(4.7)

which is a contradiction.

Using the results of Lemma 2.4(i), let K(u) = J(suu) = sups≥0J(su) for each u ∈
H1

0(Ω) \ {0}with u+ /≡ 0. For c ∈ �, we denote

[K ≤ c] = {u ∈ Σ | K(u) ≤ c}, (4.8)

where Σ = {u ∈H1
0(Ω) | u+ /≡ 0 and ‖u‖H1 = 1}. Then, we have the following lemma.

Lemma 4.3. (i) K ∈ C1(Σ,�) and

〈
K′(u), ϕ

〉
= su
〈
J ′(suu), ϕ

〉
(4.9)

for all ϕ ∈ TuΣ = {ϕ ∈ H1
0(Ω) | 〈ϕ, u〉 = 0}.

(ii) u ∈ Σ is a critical point of K(u) if and only if suu ∈ H1
0(Ω) is a critical point of J .

Proof. (i) For u ∈ Σ, it is easy to check that

d

ds
J(su)|s=su = 0,

d2

ds2
J(su)|s=su = a(u) −

(
p − 1

)
s
p−2
u b(u+) =

(
2 − p)a(u) < 0.

(4.10)

Then, using the implicit function theorem to obtain that su ∈ C1(Σ, (0,∞)). Therefore,K(u) =
J(suu) ∈ C1(Σ,�). Since suu ∈ M(Ω), we can get 〈J ′(suu), u〉 = 0. Thus,

〈
K′(u), ϕ

〉
=
〈
J ′(suu), suϕ

〉
+
〈
J ′(suu),

〈
s′u, ϕ

〉
u
〉

= su
〈
J ′(suu), ϕ

〉 ∀ϕ ∈ TuΣ.
(4.11)

(ii) By (i), K′(u) = 0 if and only if 〈J ′(suu), ϕ〉 = 0 for all ϕ ∈ TuΣ. Since H1
0(Ω) is a

Hilbert space and 〈J ′(suu), u〉 = 0, so it is equivalent to J ′(suu) = 0 inH−1(Ω).
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Lemma 4.4. Assume that q is a positive continuous function in �N and satisfies (q1) and form > 2
and 0 < δ < 2

m

2
q∞ � q(z) ≥ q∞ + C exp(−δ|z|) where 0 < C ≤ m − 2

2
q∞. (4.12)

We have that there exists a number m0 ≥ m1 > 2 (m0 is defined in Lemma 4.1) such that if m ≤ m1,
then

∫
�N

z

|z|
(
|∇u|2 + u2

)
dz/=

−→
0 for any u ∈ [K < α∞]. (4.13)

Proof. By the assumptions of q, Lemmas 2.4(i) and 3.6, the set [K < α∞] is nonempty. For any
u ∈ [K < α∞], u ∈ Σ, suu ∈ M(Ω) and J(suu) < α∞, we get J(suu) ≥ α(Ω) and

2p
p − 2

α(Ω) ≤ s2u = spu

∫
Ω
q(z)up+dz <

2p
p − 2

α∞. (4.14)

Since 2α(Ω) > α∞ (by Lemma 4.1), then we have

p

p − 2
α∞ <

2p
p − 2

α(Ω) ≤ spu
∥∥q∥∥∞

∫
Ω
u
p
+dz

<

( 2p
p − 2

α∞
)p/2∥∥q∥∥∞

∫
Ω
u
p
+dz.

(4.15)

By Lemma 4.2 (i) and Remark 2.7, there exists t∞ > 0 such that t∞u ∈ M∞(Ω), then by (4.15),
we have

t2∞ = tp∞

∫
Ω
q∞u

p
+dz > t

p
∞q∞

(
p − 2
2pα∞

)(p−2)/2 1
mq∞

, (4.16)

that is,

m1/(p−2)
√

2pα∞

p − 2
> t∞. (4.17)

Since u ∈ [K < α∞] and by the definitions of J and J∞,

α∞ > J(suu) = sup
s≥0

J(su) ≥ J(t∞u)

=
1
2
a(t∞u) − 1

p

∫
Ω
q(z)tp∞u

p
+dz

= J∞(t∞u) − 1
p

∫
Ω

(
q(z) − q∞

)
t
p
∞u

p
+dz.

(4.18)
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From (4.17) and (4.18), we have

J∞(t∞u) < α∞ +
1
p

∫
Ω

(
q(z) − q∞

)
t∞u

p
+dz

≤ α∞ +
1

pq∞

(
m − 2
2

)
q∞t2∞

< α∞ +
m − 2
p − 2

m2/(p−2)α∞.

(4.19)

Hence, there existsm0 ≥ m1 > 2 such that if 2 < m < m1, then

J∞(t∞u) ≤ α∞ + δ0, where t∞u ∈ M∞(Ω). (4.20)

By Lemma 4.2, we obtain

∫
�N

z

|z|
[
|∇(t∞u)|2 + (t∞u)2

]
dz/=

−→
0 , (4.21)

or

∫
�N

z

|z|
(
|∇u|2 + u2

)
dz/=

−→
0 . (4.22)

We try to show that for a sufficiently small σ > 0

cat([K ≤ α∞ − σ]) ≥ 2. (4.23)

To prove (4.23), we need some preliminaries. Recall the definition of Lusternik-Schnirelman
category.

Definition 4.5. (i) For a topological space X, we say a nonempty, closed subset A ⊂ X is
contractible to a point in X if and only if there exists a continuous mapping

η : [0, 1] ×A −→ X (4.24)

such that for some x0 ∈ X and

η(0, x) = x ∀x ∈ A,
η(1, x) = x0 ∀x ∈ A.

(4.25)
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(ii) We define

cat(X) = min

⎧⎨
⎩k ∈ � | there exist closed subsets A1, . . . , Ak ⊂ X such that

Aj is contractible to a point in X for all j and
k⋃
j=1

Aj = X

⎫⎬
⎭.

(4.26)

When there do not exist finitely many closed subsets A1, . . . , Ak ⊂ X such that Aj is
contractible to a point in X for all j and

⋃k
j=1Aj = X, we say cat(X) = ∞.

We need the following two lemmas.

Lemma 4.6. Suppose that X is a Hilbert manifold and Ψ ∈ C1(X,�). Assume that there are c0 ∈ �
and k ∈ �,

(i) Ψ(x) satisfies the (PS)c-condition for c ≤ c0,
(ii) cat({x ∈ X | Ψ(x) ≤ c0}) ≥ k.

Then, Ψ(x) has at least k critical points in {x ∈ X;Ψ(x) ≤ c0}.

Proof. See Ambrosetti [23, Theorem 2.3].

Lemma 4.7. Let N ≥ 1, SN−1 = {z ∈ �N | |z| = 1}, and let X be a topological space. Suppose that
there are two continuous maps

F : SN−1 −→ X, G : X −→ SN−1 (4.27)

such that G ◦ F is homotopic to the identity map of SN−1, that is, there exists a continuous map
ζ : [0, 1] × SN−1 → SN−1 such that

ζ(0, z) = (G ◦ F)(z) for each z ∈ SN−1,

ζ(1, z) = z for each z ∈ SN−1.
(4.28)

Then,

cat(X) ≥ 2. (4.29)

Proof. See Adachi and Tanaka [12, Lemma 2.5].

From the result of Lemma 4.4, for 2 < m ≤ m1, let q satisfy the condition

m

2
q∞ � q(z) ≥ q∞ + C exp(−δ|z|) where 0 < C ≤ m − 2

2
q∞ and 0 < δ < 2. (q′2)

In this section, assume that q is a positive continuous function in �N and satisfies (q1), and
(q′2). Let z̃ ∈ SN−1 and wn(z) = ψR(z)w(z − nz̃) ∈ H1

0(Ω) for each n ∈ �. By Lemma 2.4(i),
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there exist unique numbers (n, z̃) > 0 such that s(n, z̃)wn ∈ M(Ω). We define a map Fn :
SN−1 → H1

0(Ω) by

Fn(z̃)(z) =
s(n, z̃)wn(z)

‖s(n, z̃)wn(z)‖H1
for z̃ ∈ SN−1. (4.30)

Then, we have the following lemma.

Lemma 4.8. There are n0 ∈ � and a sequence {σn} in �+ such that

Fn
(
SN−1

)
⊂ [K ≤ α∞ − σn] for each n ≥ n0. (4.31)

Proof. Since there exists a unique number s(n, z̃) > 0 such that s(n, z̃)wn ∈ M(Ω), and by the
definition of K, then we obtain that there exists tn > 0 such that

K

(
s(n, z̃)wn(z)

‖s(n, z̃)wn(z)‖H1

)
= J
(
tn

s(n, z̃)wn(z)
‖s(n, z̃)wn(z)‖H1

)
, (4.32)

where tn = ‖s(n, z̃)wn(z)‖H1 . By Lemma 3.6, there is n0 ∈ � such that J(s(n, z̃)wn) ≤
supt≥0 J(twn) < α∞ for each n ≥ n0. Thus, the conclusion holds.

Applying Lemma 4.4, we obtain

∫
�N

z

|z|
(
|∇u|2 + u2

)
dz/=

−→
0 for any u ∈ [K ∈ α∞]. (4.33)

Now, we define

G : [K < α∞] −→ SN−1 (4.34)

by

G(u) =

∫
�N(z/|z|)

(
|∇u|2 + |u|2

)
dz∣∣∣∫

�N(z/|z|)
(
|∇u|2 + |u|2

)
dz
∣∣∣ . (4.35)

Lemma 4.9. For each n ≥ n0, the map

G ◦ Fn : SN−1 −→ SN−1 (4.36)

is homotopic to the identity.

Proof. Define

ζn(θ, z̃) : [0, 1] × SN−1 −→ SN−1 (4.37)
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by

ζn(θ, z̃) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G

(
(1 − 2θ)s(n, z̃)ψRw(z − nz̃) + 2θψRw(z − nz̃)∥∥(1 − 2θ)s(n, z̃)ψRw(z − nz̃) + 2θψRw(z − nz̃)∥∥H1

)
for θ ∈

[
0,

1
2

)
,

G

(
ψRw(z − (n/2(1 − θ))z̃)∥∥ψRw(z − (n/2(1 − θ))z̃)∥∥H1

)
for θ ∈

[
1
2
, 1
)
,

z̃ for θ = 1.
(4.38)

We need to show that limθ→ 1− ζn(θ, z̃) = z̃ and

lim
θ→ 1/2−

ζn(θ, z̃) = G

(
ψRw(z − nz̃)∥∥ψRw(z − nz̃)∥∥H1

)
. (4.39)

(a) limθ→ 1−ζn(θ, z̃) = z̃ : for 1/2 < θ < 1, since

∫
�N

z

|z|

(∣∣∣∣∇
[
ψRw

(
z − n

2(1 − θ) z̃
)]∣∣∣∣

2

+ ψ2
Rw

(
z − n

2(1 − θ) z̃
)2
)
dz

=
∫
�N

z + (n/2(1 − θ))z̃
|z + (n/2(1 − θ))z̃|

(
|∇w(z)|2 +w(z)2

)
dz + o(1)

=
( 2p
p − 2

)
α∞z̃ + o(1) as θ −→ 1−,

(4.40)

and ‖ψRw(z − (n/2(1 − θ))z̃)‖2H1 = (2p/(p−2))α∞+o(1) as θ → 1−, then limθ→ 1− ζn(θ, z̃) = z̃.

(b) By the continuity of G, it is easy to check that

lim
θ→ 1/2−

ζn(θ, z̃) = G

(
ψRw(z − nz̃)∥∥ψRw(z − nz̃)∥∥H1

)
. (4.41)

Thus, ζn(θ, z̃) ∈ C([0, 1] × SN−1, SN−1) and

ζn(0, z̃) = G(Fn(z̃)) ∀z̃ ∈ SN−1,

ζn(1, z̃) = z̃ ∀z̃ ∈ SN−1,
(4.42)

provided n ≥ n0. This completes the proof.
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Theorem 4.10. Assume that q is a positive continuous function in �N and satisfies (q1) and (q′2).
Then, J(u) has at least two critical points in

[K < α∞], (4.43)

and there exists at least two positive solutions of (1.1) in Ω.

Proof. Applying Lemmas 4.7 and 4.9, we have for n ≥ n0

cat([K ≤ α∞ − σn]) ≥ 2. (4.44)

Next, we need to show that K satisfies the (PS)β-condition for 0 < β ≤ α∞ − σn. Let {un} ⊂ Σ
satisfiy K(un) = β + on(1) and

∥∥K′(un)
∥∥
T−1
unΣ

= sup
{〈
K′(un), ϕ

〉 | ϕ ∈ TunΣ and
∥∥ϕ∥∥H1 = 1

}

= on(1) as n −→ ∞.
(4.45)

Since K(un) = J(snun) = β + on(1) as n → ∞ and snun ∈ M(Ω), then

s2n =
2p
p − 2

β + on(1). (4.46)

Using (4.9) and 〈J ′(snun), un〉 = 0 to obtain that

∥∥J ′(snun)∥∥H−1 = on(1) as n −→ ∞. (4.47)

Hence, {snun} ⊂ M(Ω) is a (PS)β-sequence for J . By Lemma 3.3(ii), K satisfies the (PS)β-
condition for 0 < β ≤ α∞ −σn. Now, we apply Lemma 4.6 to get thatK has at least two critical
points in [K < α∞]. Moreover, by Lemmas 4.3(ii) and 2.2, there are at least two positive
solutions of (1.1) in Ω.

Recall that there exist a unique su > 0 and a unique s∞u > 0 such that suu ∈ M(Ω) and
s∞u u ∈ M∞(Ω). Then, we have the following results.

Lemma 4.11. For each u ∈ Σ, we have that

(
p −m
p − 2

)
J∞(s∞u u) ≤ J(suu) ≤ J∞(s∞u u), where m > 2. (4.48)
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Proof. Since (m/2)q∞ � q(z) � q∞, wherem > 2, we obtain that for each u ∈ Σ and

J(suu) ≤ J∞(suu) ≤ sup
s≥0

J∞(su) = J∞(s∞u u),

J(suu) = sup
s≥0

J(su) ≥ J(s∞u u) =
1
2
‖s∞u u‖2H1 − 1

p

∫
Ω
q(z)(s∞u u+)

pdz

≥ 1
2

∫
Ω
q∞(s∞u u+)

pdz − 1
p

∫
Ω

m

2
q∞(s∞u u+)

pdz

=
(
1
2
− m

2p

)∫
Ω
q∞(s∞u u+)

pdz =
(
p −m
p − 2

)
J∞(s∞u u).

(4.49)

Let

K(u) = max
s≥0

J(su) = J(suu) > 0,

K∞(u) = max
s≥0

J∞(su) = J(s∞u u) > 0,
(4.50)

where suu ∈ M(Ω) and s∞u u ∈ M∞(Ω). Bahri-Li’s minimax argument [4] also works for K.
Let

Γ =

{
g ∈ C

(
Br(0), Σ

)∣∣g∣∣
∂Br (0)

=
ψR(z)w

(
z − y)∥∥ψR(z)w(z − y)∥∥H1

}
for large r =

∣∣y∣∣. (4.51)

Then, we define

γ(Ω) = inf
g∈Γ

sup
y∈Br (0)

K
(
g
(
y
))
,

γ∞(Ω) = inf
g∈Γ

sup
y∈Br (0)

K∞(g(y)). (4.52)

Lemma 4.12. α∞ < γ∞(Ω) < 2α∞.

Proof. Bahri and Li [4] proved that (1.2) admits at least one positive solution u in Ω and
J∞(u) = γ∞(Ω) < 2α∞. Lien et al. [17] proved that (1.2) does not have any positive ground
state solution in Ω and α∞(Ω) = α∞(�N ) = α∞. Hence, α∞ < γ∞(Ω) < 2α∞.

The following minimax lemma is given in Shi [24] to unify the mountain pass lemma
of Ambrosetti and Rabinowitz [25] and the saddle point theorem of Rabinowitz [26].

Lemma 4.13. Let V be a compact metric space, V0 ⊂ V a closed set, X a Banach space, χ ∈ C(V0, X)
and let us define the complete metric space M by

M =
{
g ∈ C(V,X) | g(s) = χ(s) if s ∈ V0

}
(4.53)
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with the usual distance d. Let ϕ ∈ C1(X,�) and let us define

c = inf
g∈M

max
s∈V

ϕ
(
g(s)
)
, c1 = max

χ(V0)
ϕ. (4.54)

If c > c1, then for each ε > 0 and each g ∈ M such that

max
s∈V

ϕ
(
g(s)
) ≤ c + ε, (4.55)

there exists v ∈ X such that

c − ε ≤ ϕ(v) ≤ max
s∈V

ϕ
(
g(s)
)
,

dist
(
v, g(V )

) ≤ ε1/2,
∥∥ϕ′(v)

∥∥ ≤ ε1/2.

(4.56)

Lemma 4.14. Assume that q is a positive continuous function in �N . If q satisfies (q1) and (q2).
Let {un} ⊂ M(Ω) be a (PS)β-sequence in H1

0(Ω) for J with α∞ < β < α∞ + α(Ω). Then, there
exist a subsequence {un} and a nonzero u0 ∈ H1

0(Ω) such that un → u0 strongly in H1
0(Ω), that

is, J satisfies the (PS)β-condition in H1
0(Ω). Moreover, u0 is a positive solution of (1.1) such that

J(u0) = β.

Proof. The proof is similar to Lemma 3.3(ii). Applying Palais-Smale Decomposition
Lemma 3.1, we get

α∞ + α(Ω) > β = J(un) ≥ lα∞ + α(Ω) (or ≥ lα∞). (4.57)

Since w is the unique (up to translation), positive solution of (1.2) in �N and J∞(w) = α∞ >
α(Ω), then l = 0 and u0 /= 0. Hence, un → u0 strongly in H1

0(Ω) and J(u0) = β. Moreover, by
Lemma 2.2, u0 is positive in Ω.

Theorem 4.15. Assume that q is a positive continuous function in �N . If q satisfies (q1) and there
exists a number m′ > 2 such that for any 2 < m ≤ m′,

m

2
q∞ � q(z) ≥ q∞ + C exp(−δ|z|), where 0 < C ≤ m − 2

2
q∞ and 0 < δ < 2, (q′2′)

then (1.1) admits at least three positive solutions in Ω.

Proof. Applying Lemma 4.11(iii) to obtain

(
p −m
p − 2

)
α∞ ≤ α(Ω) ≤ α∞,

(
p −m
p − 2

)
γ∞(Ω) ≤ γ(Ω) ≤ γ∞(Ω).

(4.58)
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Since α∞ < γ∞(Ω) < 2α∞, given 0 < ε < (2α∞ − γ∞(Ω))/2, there is a number min{m1, p} ≥
m2 > 2 such that for any 2 < m ≤ m2, we have

γ∞(Ω) < α∞ + α(Ω) ≤ 2α∞. (4.59)

Choosing some min{m2, p} ≥ m′ > 2 such that for any 2 < m ≤ m′, we get

α∞ < γ(Ω) ≤ γ∞(Ω) < α∞ + α(Ω) ≤ 2α∞. (4.60)

By Lemma 3.6, for any t ≥ 0, we have

J
(
tψR(z)w

(
z − y)) ≤ α∞ + o(1) as

∣∣y∣∣ −→ ∞. (4.61)

Then,

K

(
ψR(z)w

(
z − y)∥∥ψR(z)w(z − y)∥∥H1

)
= J

(
tyψR(z)w

(
z − y)∥∥ψR(z)w(z − y)∥∥H1

)

≤ α∞ + o(1) as
∣∣y∣∣ −→ ∞,

(4.62)

that is, γ(Ω) > K(ψR(z)w(z − y)/‖ψR(z)w(z − y)‖H1) for large r = |y|. Applying Lemma 4.3
and the minimax Lemma 4.13 to obtain that γ(Ω) is a (PS)-value in H1

0(Ω) for J . Hence, by
Lemmas 2.2 and 4.14, we have that there exists a positive solution u of (1.1) in Ω such that
J(u) = γ(Ω). From the result of Theorem 4.10, (1.1) admits at least three positive solutions in
Ω.
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