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The paper is devoted to the study of an initial boundary value problem for a linear second-order
differential system with constant coefficients. The first part of the paper is concerned with the
existence of the solution to a boundary value problem for the second-order differential system, in
the strip ΩA = Rd−1 × (0, A), where A is a suitable positive number. The result is proved by means
of the same procedure followed in a previous paper to study the related initial value problem.
Subsequently, we consider a mixed problem for the second-order constant coefficient system,
where the space variable varies inΩA and the time-variable belongs to the bounded interval ]0, T[,
with T sufficiently small in order that the operator satisfies suitable energy estimates. We obtain
by superposition the existence of a solution u ∈ L2([0, T] × [0, A],H3(Rd−1)), by studying two
related mixed problems, whose solutions exist due to the results proved for the Cauchy problem
in a previous paper and for the boundary value problem in the first part of this paper.

1. Introduction

Consider the second-order linear differential operator

Q[·] = λ∂2t − S∂t −
d∑

α=1

Fα∂α +
d−1∑

α=1

d−1∑

β=1

Eα,β∂α∂β + Ed,d∂2d −G. (1.1)

The coefficients of the operator Q satisfy the following assumptions:

(i) λ is a positive real number;

(ii) for all α, β = 1, . . . , d, S, Fα,G, Eα,β are d × d symmetric matrices with real entries;

(iii) for every v ∈ Cd,Re〈Gv, v〉 ≥ cG‖v‖2, where cG is a positive constant;
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(iv) for all v ∈ Cd, 〈Sv, v〉 ∈ R, 〈Fdv, v〉 ∈ R; in addition, there exist two positive
constants cS and cd such that for every v ∈ Cd, 〈Sv, v〉 ≥ cS‖v‖2, and 〈Fdv, v〉 ≥
cd‖v‖2;

(v) for every α = 1, . . . , d, for all v ∈ Cd,Re〈Eα,αv, v〉 ≥ cα,α‖v‖2, with cα,α positive
constant.

We will denote by x a point of Rd, by y the first d − 1 coordinates of x, and by t the
time variable.

LetA be a positive real number, and denote byΩA the subset of Rd,ΩA = Rd−1×(0, A).
In the first section of the paper we will be concerned with the following boundary value
problem

Q[u] = J(x, t), x ∈ ΩA, t ∈ R,

Ed,du
(
y, 0, t

)
= g
(
y, t
)
, y ∈ Rd−1, t ∈ R,

(1.2)

where u is the unknown vector-valued function, whereas J and g are given functions, which
take values in Rd and are defined in ΩA × R and Rd−1 × R, respectively.

Under suitable assumptions on the functions J and g and on the coefficients of the
operator Q, we will prove that, in the case where the positive real number A is sufficiently
small, there exists a function u ∈ L2

loc(R
d−1 ×R,H2(]0, A[))∩L2([0, A],H3(Rd−1 ×R)), which

provides a solution to the boundary value problem (1.2). The existence of the solution is
established by means of the techniques applied in [1] to prove that the initial value problem
for the system Q[u] = J , admits a solution u ∈ L2([0, T],H3(Rd)): the main result of [1]
states that if the assumptions (i)–(iv) listed above along with other suitable conditions are
fulfilled (see Proposition 3.1), then the adjoint operator ofQ satisfies a priori estimates, which
allow proving the existence of the solution to the Cauchy problem, through the definition of
a suitable functional and a duality argument. As we will explain below, the boundary value
problem (1.2) can be regarded exactly as an initial value problem. For this reason, the result
of Section 2 does not represent any significant advance with respect to the results proved in
[1].

The main novelty of the paper is represented by the study of a mixed problem in
the third section. The interest in this kind of problems relies on the fact that they appear
frequently as physical models: mixed problems for second-order hyperbolic equations and
systems of equations occur in the theory of sound to describe for instance the evolution of
the air pressure inside a room where noise is produced, as well as in the electromagnetism
to describe the evolution of the electromagnetic field in some region of space (the system of
Maxwell equations accounts for this kind of phenomenon).

The existence results, stated both for the initial value problem in [1] and for the
boundary value problem in Section 2 of this paper, turn out to be the backbone in proving
the existence of the solution to the following mixed problem in the strip ΩA, as the time
variable t belongs to the bounded interval [0, T], where T is a suitable positive real number:

Q[w] = J(x, t), x ∈ ΩA, t ∈ [0, T],

Ed,dw
(
y, 0, t

)
= g
(
y, t
)
, y ∈ Rd−1, t ∈ [0, T],

w(x, 0) = h(x), x ∈ ΩA.

(1.3)
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We will assume that the vector-valued function J belongs to the space L2([0, A],
H2(Rd−1×R)), while, as for the initial data, we suppose that g ∈ H3(Rd−1×R) and h ∈ H3(Rd).
Let us notice that in the problem (1.3) an initial value for the unknown vector field u and a
Dirichlet boundary condition only are prescribed. Due to the a priori estimates that we will
derive for the operator Q, it is not required in problem (1.3), in contrast with classical mixed
problems for hyperbolic second-order systems, that the first-order derivatives of u satisfy
a prescribed condition at the boundary of the domain ΩA× ]0, T[. This lack of information
about the initial value of the first-order derivatives results in a possible nonuniqueness of the
solution to (1.3). The existence result of Section 3 will be achieved by means of the definition
of two mixed problems related to (1.3): the existence of the solution to the former will be
established similarly to the result obtained in [1], while the latter will be studied like the
boundary value problem considered in Section 2. Subsequently, thanks to the linearity of the
operator Q, a solution to (1.3) belonging to the space L2([0, T] × [0, A],H3(Rd−1)) will be
determined by superposition of the solutions to the preliminary mixed problems.

2. Boundary Value Problem

By adopting the same strategy of [1] to prove the existence of the solution to the initial value
problem, let us determine the existence of a solution to (1.2) through a duality argument, by
proving energy estimates.

Let us denote by Q� the adjoint operator of Q:

Q�[u] = λ∂2t u + S∂tu +
d∑

α=1

Fα∂αu +
d−1∑

α=1

d−1∑

β=1

Eα,β∂α∂βu + Ed,d∂2du −Gu. (2.1)

For all α, β = 1, . . . , d − 1, let CG,CS, Cα, Cα,β be the norms of the matrices G,S, Fα, Eα,β,
respectively.

Proposition 2.1. Consider the operator Q defined in (1.1) and the corresponding adjoint Q�. Let
the conditions (i)–(iv), listed in the Introduction, be fulfilled. In addition, assume the sums ηd =
cd/2 − Cd,d/2, η1 = cG − CS/2 −∑d−1

α=1 C
α/2 − 1/2, η2 = λ − CS/2, and for every α = 1, . . . , d − 1,

ηα = cα,α − Cα/2 −∑d−1
β /=α,β=1 C

α,β to be positive real numbers. Moreover, denote by δ the sum δ =
∑d−1

α=1 C
α/2+CG/2+CS/2+Cd+1/2, and suppose that, as long as the positive numberA is sufficiently

small,min{η1, ηα, η2 : α = 1, . . . , d − 1} − δeδA > 0.
Define the linear space

ΣA =
{
φ : Rd × R −→ Rd : φ ∈ C2

(
Rd+1

)
,

supp
∥∥φ
∥∥ compact subset of Rd−1×

]
−∞, A

[
× R; ∀y, ∀t, φ(y, 0, t) = 0

}
.

(2.2)

Then, for all functions φ ∈ ΣA, the following estimates hold:

∥∥φ
∥∥2
L2([0,A],H−2(Rd−1×R)) ≤ C1

∥∥Q�[φ
]∥∥2

L2([0,A],H−3(Rd−1×R)), (2.3)
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∥∥∂dφ(0)
∥∥2
H−3(Rd−1×R) ≤ C2e

δA∥∥Q�[φ
]∥∥2

L2([0,A],H−3(Rd−1×R)), (2.4)

where C1, C2 are suitable positive constants.

Proof. Consider a vector function φ ∈ C2(Rd+1), with compact support in the subset Rd−1× ] −
∞, A] × R. Applying the Fourier transform with respect to both the tangential variable y
and the time variable t, we can obtain a priori estimates, which, by substituting xd for t and
carrying out similar calculations, turn out to be like the estimates obtained in [1] for the initial
value problem. Subsequently, assuming the function φ belongs to ΣA, we deduce the a priori
estimates (2.3) and (2.4) for the adjoint operator Q�.

Due to (2.3) and (2.4), by means of a duality argument, we can prove the existence
result for the solution to the boundary value problem (1.2).

Proposition 2.2. Consider the boundary value problem (1.2), and let the
assumptions of Proposition 2.1 be satisfied. Furthermore, suppose that J ∈
L2([0, A],H2(Rd−1 × R)) and g ∈ H3(Rd−1 × R). Then, the boundary value
problem (1.2) has a solution u ∈ L2

loc(R
d−1 × R,H2(]0, A[)) ∩ L2([0, A],

H3(Rd−1 × R)).

Proof. The result can be proved by means of the same tools used to establish the existence
result for the initial value problem in [1]. For the sake of completeness, let us sketch the
proof. Because of the a priori estimate (2.3), the operator Q� is one-to-one on the linear space
ΣA. Let φ ∈ ΣA, and define the following linear functional on the space Q�(ΣA):

L(Q�[φ
])

=
∫A

0

〈
J, φ
〉
H2,H−2dxd −

〈
g, ∂xdφ(0)

〉
H3,H−3 . (2.5)

The functional L turns out to be well defined, since Q� is injective on ΣA. Moreover, L
is continuous with respect to the norm of the space L2([0, A],H−3(Rd−1 × R)), because of the
energy estimates proved in Proposition 2.1. Due to the Hahn-Banach Theorem, the functional
L can be extended to the space L2([0, A],H−3(Rd−1 ×R)). Let us denote byM this functional.

By the Riesz Theorem, there exists a function u, which belongs to the dual space
L2([0, A],H3(Rd−1 × R)), so that for every v ∈ L2([0, A],H−3(Rd−1 × R)), M(v) =∫A
0 〈u, v〉H3,H−3dxd. In particular, in the case where φ ∈ ΣA,

∫A

0

〈
u,Q�[φ

]〉
H3,H−3dxd =

∫A

0

〈
J, φ
〉
H2,H−2dxd −

〈
g, ∂xdφ(0)

〉
H3,H−3 . (2.6)

Hence, since for every φ ∈ C∞
0 (Rd−1× ]0, A[×R)

∫A

0

〈
u,Q�[φ

]〉
H3,H−3dxd =

∫A

0

〈
J, φ
〉
H2,H−2dxd, (2.7)

the function u turns out to be a solution of the system (1.2) in the sense of distributions.
In order to prove that the boundary condition is satisfied, by adopting the same

strategy followed in [1], we have to study the regularity of the solution u. For this purpose,
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let us extend the functions u and J by zero outside the interval [0, A]. By means of an
approximation argument, we construct a sequence of smooth functions vn ∈ C∞(Rd × R) ∩
L2(R,H3(Rd−1 × R)), so that (vn)n turns out to be convergent to the function u, with respect
to the norm of the space L2(R,H3(Rd−1 ×R)). We define the approximating sequence in such
a way for all n ∈ N, vn vanishes outside a compact neighbourhood of [0, A], for example,
[−1, A + 1].

Moreover, let us denote by P the differential operator P[·] = λ∂2t − S∂t −
∑d−1

α=1 F
α∂α +∑d−1

α=1
∑d−1

β=1 E
α,β∂α∂β − G. Therefore, Q[·] = Ed,d∂d∂d − Fd∂d + P[·]. Set for all n ∈ N, Jn =

Ed,d∂d∂dvn − Fd∂dvn + P[vn]. Let φ ∈ C∞
0 (Rd× ] − 1, A[). Thus,

∫A+1

−1

∫

Rd−1×R

〈
Ed,d∂2dvn − Fd∂dvn, φ

〉
dy dt dxd =

∫A+1

−1

∫

Rd−1×R

〈−P[vn] + Jn, φ
〉
dy dt dxd.

(2.8)

Since the sequence (vn)n is convergent to the function u with respect to the norm of
L2(R,H3(Rd−1 × R)), integrating by parts, we obtain

lim
n→∞

∫A+1

−1

∫

Rd−1×R

〈
Jn, φ

〉
dy dt dxd

=
∫A+1

−1

∫

Rd−1×R

(〈
P[u], φ

〉
+
〈
Ed,du, ∂2dφ

〉
+
〈
Fdu, ∂dφ

〉)
dy dt dxd

=
∫A+1

−1

∫

Rd−1×R

〈
J, φ
〉
dy dt dxd.

(2.9)

As a result, the sequence of functions (Jn)n is weakly convergent to the function J in
the space L2(Rd−1 × [−1, A + 1] × R). Hence, the sequence (Jn)n turns out to be bounded in
L2(Rd−1 × [−1, A + 1] × R).

Let us consider again the system Ed,d∂d∂dvn − Fd∂dvn = −P[vn] + Jn, for every n ∈ N.
By means of integration on the interval [−1, a], with a < A + 1, we obtain

Ed,d∂dvn(a) − Fdvn(a) =
∫a

−1
(−P[vn] + Jn)dσ. (2.10)

Let us estimate the L2-norm of the r.h.s. of (2.10). We deduce that

∫A+1

−1

∫

Rd−1×R

(∫a

−1
(−P[vn] + Jn)dσ

)2

dy dt da ≤ (A + 2)2const. (2.11)

Since there exists a suitable constant such that, for all n ∈ N, ‖Fdvn‖L2(Rd−1×[−1,A+1]×R) ≤
const., the sequence (∂dvn)n turns out to be bounded in L2(Rd−1 × [−1, A + 1] × R). Thus, the
sequence of functions (∂2xdvn)n also turns out to be bounded in L2(Rd−1 × [−1, A + 1] × R).
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Let α = 1, . . . , d − 1. Differentiating with respect to xα or to t both members of (2.10),
we have

Ed,d∂α∂dvn(a) − Fd∂αvn(a) =
∫a

−1
∂α(−P[vn] + Jn)dσ. (2.12)

The sequence (∂αvn)n is convergent to ∂αu in L2(Rd−1× ] − 1, A + 1[×R).
Due to the convergence of (vn)n to u in L2(R,H3(Rd−1 × R)), the sequence

(
∫a
−1 P[vn]dσ)n turns out to converge to

∫a
−1 P[u]dσ in L2(Rd−1× ] − 1, A + 1[×R).

Furthermore, the sequence (∂α(
∫a
−1 P[vn]dσ))n is weakly convergent in L2(Rd−1× ] −

1, A + 1[×R). Therefore, it is bounded in the space L2(Rd−1× ] − 1, A + 1[×R). Similarly, the
sequence (

∫a
−1 ∂αJndσ)n also turns out to be bounded in L2(Rd−1× ] − 1, A + 1[×R). Hence,

(∂α∂dvn)n is bounded in L2(Rd−1× ] − 1, A + 1[×R). Since the sequences of functions (∂2dvn)n
and (∂α∂dvn)n are bounded in L2(Rd−1× ] − 1, A + 1[×R), the sequence (∂dvn)n turns out to
satisfy the assumptions of the Riesz-Fréchet-Kolmogorov theorem.

Thus the function u admits a first-order weak derivative with respect to xd in
L2
loc(R

d−1× ] − 1, A + 1[×R). Therefore the function u belongs to the space L2
loc(R

d−1 ×
R,H1(]0, A[)) ∩ L2([0, A],H3(Rd−1 × R)).

If we introduce a new variable, the system (1.2)may be reduced to a first-order system
with respect to the variable xd. Let us denote by U the vector function U = (u, Ed,d∂du)

T and
by C1 and C2 the following differential operators

C1 = −
d−1∑

α=1

d−1∑

β=1

Eα,β∂α∂β − λ∂2t +
d−1∑

α=1

Fα∂α + S∂t +G; C2 = FdEd,d
−1
. (2.13)

Thus, the system (1.2) can be rewritten as

∂d

(
u

Ed,d∂du

)
−
⎛

⎝0d Ed,d
−1

C1 C2

⎞

⎠
(

u

Ed,d∂du

)
=

(
0d

J

)
. (2.14)

By setting C =
(

0d Ed,d
−1
I

C1 C2

)
and F =

(
0d
J

)
, the system (1.2) becomes ∂dU = CU + F.

Because of the regularity properties of the function u, C1u and C2u turn out to belong
to L2([0, A], L2

loc(R
d−1 × R)).

Multiplying both members of the system by any function of the space
C∞

0 (Rd−1×]0, A[×R), we prove that the vector function U has a weak partial derivative with
respect to the variable xd. Thus u ∈ L2

loc(R
d−1 × R,H2(]0, A[)) ∩ L2([0, A],H3(Rd−1 × R)) and

Q[u] = J , a.e. in Rd−1× ]0, A[×R.
Since u belongs to L2

loc(R
d−1 × R,H2(]0, A[)), the traces of u and ∂du are well-defined

on the hyperplane xd = 0, and belong to L2
loc(R

d−1 × R,H3/2(]0, A[)) and L2
loc(R

d−1 ×
R,H1/2(]0, A[)), respectively.
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Let us consider a function φ ∈ C∞
0 (Rd−1× ] − ∞, A[×R), which, in a neighbourhood of

xd = 0 has the form φ(y, xd, t) = xdψ(y, t), with ψ ∈ C∞
0 (Rd−1 × R). Thus,

L(Q�[φ
])

=
∫A

0

〈
J, φ
〉
H2,H−2dxd −

〈
g, ∂xdφ(0)

〉
H3,H−3 =

∫A

0

〈
u,Q�[φ

]〉
H3,H−3dxd. (2.15)

Integrating by parts,

∫

Rd−1

∫A

0

∫

R

〈
Q[u], φ

〉
dy dxddt −

∫

Rd−1

∫

R

〈
Ed,du(0), ψ

〉
dy dt

=
∫

Rd−1

∫A

0

∫

R

〈
J, φ
〉
dy dxd dt −

∫

Rd−1

∫

R

〈
g, ψ
〉
dy dt.

(2.16)

Hence, we obtain Ed,du(0) = g, a.e. in Rd−1 × R.

3. Mixed Problem

This section deals with the study of the initial boundary value problem (1.3). We will prove
the existence of the solution after solving two auxiliary problems: first we will determine the
solution of an initial value problem, by means of the techniques developed in [1]; next, we
will find the solution of a suitable boundary value problem, in accordance with the results
stated in the previous section. Since the operatorQ is linear, the solution to themixed problem
(1.3) will be determined by superposition. As a matter of fact, both auxiliary problems are
mixed problems, but, as we will explain below, the solution of the former will be found as
in the case of initial value problems, whereas the latter may be studied in the framework of
boundary value problems.

Let us define the first problem as follows:

Q[v] = 0, x ∈ ΩA, t ∈ [0, T],

Ed,dv
(
y, 0, t

)
= 0, y ∈ Rd−1, t ∈ [0, T],

v(x, 0) = h(x), x ∈ ΩA,

(3.1)

where h ∈ H3(Rd).
We consider the Cauchy problem

Q[v] = 0, x ∈ Rd, t ∈ [0, T],

v(x, 0) = h(x), x ∈ Rd,
(3.2)
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and determine the solution by means of a duality argument through the procedure followed
in [1]. For this purpose, we have to assume conditions on the coefficients of the operator Q
in order for energy estimates to be satisfied. Furthermore, let us define the linear space

FT =
{
φ : Rd × R −→ Rd : φ ∈ C2

(
Rd−1 × [0 ,+∞[× [0, T]

)
,

supp
∥∥φ
∥∥ compact subset of Rd−1 × [0 ,+∞[× ] −∞, T

[
; ∀x, φ(x, 0) = 0

}
;

(3.3)

and quote from [1] the following result.

Proposition 3.1. Consider the operatorQ defined in (1.1) and the corresponding adjointQ�. Assume
the conditions (i)–(iv) listed in the Introduction to be fulfilled. In addition, let the sums cS/2 − λ/2,
C1 = cG−

∑d
α=1 C

α/2−1/2, and for every α = 1, . . . , d, C2 = minα=1,...,d{cα,α−Cα/2−∑d
β /=α,β=1 C

α,β},
be positive real numbers. Moreover, we denote by C̃ the sum C̃ =

∑d
α=1 C

α/2 +CG/2 +CS + 1/2 and
suppose min{C1, C2} − C̃eC̃T is positive, provided that T is small enough.

Then, the operator Q� satisfies the following estimates:

(a) for every u ∈ FT ,

‖u‖2L2([0,T],H−2(Rd)) + λ‖∂tu‖2L2([0,T],H−3(Rd)) ≤ c1‖Q�[u]‖2L2([0,T],H−3(Rd)); (3.4)

(b) for all u ∈ FT ,

‖∂tu(0)‖2H−3(Rd) ≤ c2eC̃T‖Q�[u]‖2L2([0,T],H−3(Rd)), (3.5)

with c1, c2 being positive constants that are independent of T .

By taking into account the energy estimates of Proposition 3.1, we establish the
following existence result.

Proposition 3.2. Consider the initial boundary value problem (3.1), and let the assumptions of
Proposition 3.1 be satisfied. If the function h ∈ H3(Rd), then the problem (3.1) has a solution
v ∈ L2([0, T],H3(Rd)) ∩ L2

loc(R
d,H2(]0, T[)).

Proof. Let us define on Q�(FT ) the linear functional

Λ
(
Q�[φ

])
= −λ〈h, ∂tφ(0)

〉
H3,H−3 , (3.6)

where φ ∈ FT .
Through the procedure followed in [1], we can prove there exists a function v ∈

L2
loc(R

d,H2(]0, T[)) ∩ L2([0, T],H3(Rd)), such that for every φ ∈ FT ,
∫T
0 〈v,Q�[φ]〉H3,H−3dt =

−λ〈h, ∂tφ(0)〉H3,H−3 .
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In addition, due to the results proved in [1], Q[v] = 0, a.e. x ∈ Rd, t ∈ ]0, T[, and
v(x, 0) = h(x), a.e. x ∈ Rd.

Moreover, since for all t ∈ [0, T], the function v(·, t) ∈ H3(ΩA), the trace of v on
the boundary of ΩA belongs to L2([0, T],H3−1/2(Rd−1)). Let us determine the trace of v on
xd = 0. Let ψ be a function of the space C2(Rd−1 × [0,+∞[×[0, T]), such that supp‖ψ‖ is a
compact subset of (Rd−1 × [0, A[× ]0, T[). Therefore, ψ ∈ FT and

∫T
0 〈v,Q�[ψ]〉H3,H−3dt = 0.

By integrating by parts,

∫T

0

∫

ΩA

〈
Q[v], ψ

〉
dt dx

−
∫T

0

∫

Rd−1

(〈
Ed,dv(0), ∂d ψ(0)

〉
+
〈
Fdv(0), ψ(0)

〉
−
〈
Ed,d∂dv(0), ψ(0)

〉)
dy dt = 0.

(3.7)

Thus,

∫T

0

∫

Rd−1

(〈
Ed,dv(0), ∂d ψ(0)

〉
+
〈
Fdv(0), ψ(0)

〉
−
〈
Ed,d∂dv(0), ψ(0)

〉)
dy dt = 0. (3.8)

Consider a vector function ψ, which, as long as xd is nonnegative and sufficiently
small, has the form ψ(y, xd, t) = xdχ(y, t), with χ ∈ C∞

0 (Rd−1× ]0, T[). Hence, we deduce by
means of a standard argument that Ed,dv(0) = 0, a.e. in Rd−1× ]0, T[.

Let us define now the second auxiliary initial boundary value problem in order to
obtain by superposition a solution to (1.3):

Q[w] = J, x ∈ ΩA, t > 0,

Ed,dw
(
y, 0, t

)
= g, y ∈ Rd−1, t > 0,

w(x, 0) = 0, x ∈ ΩA.

(3.9)

We assume that J ∈ L2([0, A],H2(Rd−1 × R)), whereas g ∈ H3(Rd−1 × R).
The existence of the solution to (3.9) can be proved by means of the duality argument

and a procedure similar to the previous problem.

Proposition 3.3. Consider the initial boundary value problem (3.9), and let the assumptions of
Proposition 2.1 be satisfied. If J ∈ L2([0, A],H2(Rd−1 × R)) and g ∈ H3(Rd−1 × R), then there
exists a function w ∈ L2([0, A],H3(Rd−1 × R)) ∩ L2

loc(R
d−1 × R,H2(]0, A[)), which provides a

solution to (3.9).

Proof. We consider the boundary value problem

Q[w] = J, x ∈ ΩA, t > 0,

Ed,dw
(
y, 0, t

)
= g, y ∈ Rd−1, t > 0.

(3.10)
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Since the operatorQ satisfies the assumptions of Proposition 2.1, energy estimates can
be proved for the adjoint operator Q�. Let us define the linear space

GA =
{
φ : Rd × R −→ Rd : φ ∈ C2

(
Rd−1 × [0, A] × [0 ,+∞[

)
,

supp
∥∥φ
∥∥ compact subset of Rd−1 × [0 , A[ × [0 ,+∞[ ; ∀y, ∀t, φ(y, 0, t) = 0

}
.

(3.11)

For every φ ∈ GA, consider the following functional:

Δ
(
Q�[φ

])
=
∫A

0

〈
J, φ
〉
H2,H−2dxd −

〈
g, ∂dφ(0)

〉
H3,H−3 . (3.12)

As proved in the previous section, the functional turns out to be well defined
and continuous as a consequence of the energy estimates. Furthermore, the functional
can be extended to the space L2([0, A],H−3(Rd−1 × R)), and there exists a function w ∈
L2([0, A],H3(Rd−1 × R)), so that for every φ ∈ GA,

∫A
0 〈J, φ〉H2,H−2dxd − 〈g, ∂dφ(0)〉H3,H−3 =

∫A
0 〈w,Q�[φ]〉H2,H−2dxd. After studying the regularity properties of the function w as in
the previous section and in [1], we can prove that w ∈ L2

loc(R
d−1 × R,H2(]0, A[)) ∩

L2([0, A],H3(Rd−1 × R)), Q[w] = J , a.e. in Rd−1× ]0, A[×R, and w satisfies the boundary
condition.

The function w will be a solution to the mixed problem (3.9) after proving that the
initial condition is satisfied. First of all, we have to remark that, sincew ∈ L2([0, A],H3(Rd−1×
R)), for all xd ∈ [0, A], the trace of w(·, xd, ·) on Rd−1 × {0} turns out to belong to the
space H2(Rd−1). Thus, w(·, 0) ∈ L2([0, A],H2(Rd−1)). Consider a function φ ∈ GA, such that
supp ‖φ‖ ⊂ (Rd−1× ]0, A[×[0,+∞[). Hence,

∫A
0 〈J, φ〉H2,H−2dxd =

∫A
0 〈w,Q�[φ]〉H2,H−2dxd.

By integrating by parts, we have

∫A

0

∫

Rd−1

∫∞

0

〈
Q[w], φ

〉
dt dy dxd −

∫A

0

∫

Rd−1
λ
〈
w(0), ∂tφ(0)

〉
dy dxd

+
∫A

0

∫

Rd−1
λ
〈
∂tw(0), φ(0)

〉
dy dxd =

∫A

0

∫

Rd−1

∫∞

0

〈
J, φ
〉
dt dy dxd,

(3.13)

whence

∫A

0

∫

Rd−1
λ
〈
w(0), ∂tφ(0)

〉
dxd dy −

∫A

0

∫

Rd−1
λ
〈
∂tw(0), φ(0)

〉
dxd dy = 0. (3.14)

By means of a suitable choice of the function φ, we prove that w(x, 0) = 0, a.e. in
Rd−1× ]0, A[. Therefore, the function w turns out to be a solution to (3.9).

Finally, both the solution v to the auxiliary problem (3.1) and the solution w to (3.9)
belong to the space L2([0, T]× [0, A],H3(Rd−1)). Denote by u the sum u = w+v. The function
u ∈ L2([0, T] × [0, A],H3(Rd−1)), and, due to the previous results, u has second-order partial
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derivatives with respect to t and xd, which belong to L2
loc(R

d−1×]0, A[× ]0, T[). Hence, u turns
out to be a solution to the initial boundary value problem (2.3). To avoid inconsistencies in the
auxiliary mixed problems (3.1) and (3.9) as well as in (1.3), we have to require that the data
g and h satisfy compatibility conditions: if g and h are smooth functions up to the boundary,
we assume that, for every y ∈ Rd−1, h(y, 0) = g(y, 0) = 0.

Let us state now the main result.

Theorem 3.4. Consider the initial boundary value problem (1.3). Suppose that the hypotheses of
Propositions 3.2 and 3.3 are satisfied. If J ∈ L2([0, A],H2(Rd−1 × R)), g ∈ H3(Rd−1 × R), and
h ∈ H3(Rd), then there exists a function u ∈ L2([0, T]×[0, A],H3(Rd−1)), which provides a solution
to (1.3).
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