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We consider the following class of quasilinear elliptic equations −hpΔpu + Vε(x)|u|p−2u = |u|q−2u,
u(x) > 0 for all x ∈ R

N , where h > 0, Δpu = div(|∇u|p−2∇u), 2 ≤ p < N, p < q < p∗ = Np/(N − p).
We allow the potential Vε to be unbounded below and prove the existence and multiplicity for
positive solutions.

1. Introduction

In this paper we are concerned with the existence and multiplicity of positive solutions for
the following class of quasilinear elliptic equations:

−hpΔpu + Vε(x)|u|p−2u = |u|q−2u in R
N,

u ∈W1,p
(
R
N
)

with 2 ≤ p < N,

u(x) > 0, ∀x ∈ R
N,

(Ph,ε)

where h > 0, p < q < p∗ = Np/(N − p), and Δpu = div(|∇u|p−2∇u). Moreover, we consider
the perturbed potential Vε satisfying

Vε(x) = V (x) − ε(h)W(x), ∀x ∈ R
N, (1.1)
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where ε : [0,+∞) → [0,+∞),W : R
N → [0,+∞) is a measurable function such that, for

some α1 > 0 and α2 ≥ 0, the inequality

∫

RN

W(x)|u|p ≤ α1‖∇u‖pp + α2‖u‖pp (1.2)

holds for any u ∈ W1,p(RN) and the “unperturbed” potential V is a continuous function
satisfying

0 < V0 = inf
RN

V < lim inf
|x|→∞

V (x). (1.3)

The last hypothesis was introduced by Rabinowitz in [1].
For the case p = 2, equations of the kind

− h2Δu + V (x)u = |u|q−2u in R
N (P∗)

in different models, for example, are related with the existence of standing waves of the
nonlinear Schrödinger equation

ih
∂ψ

∂t
= −h2Δψ + (V (x) − λ)ψ − ∣∣ψ∣∣q−2ψ, ∀x ∈ R

N, (NLS)

where λ ∈ R and 2 < q < 2N/(N − 2). A standing wave of (NLS) is a solution of the form
ψ(x, t) = exp(−iλh−1t)u(x). In this case, u is a solution of (P∗).

Existence and concentration of positive solutions for (P∗) have been extensively
studied in the recent years; see, for example, Ambrosetti et al. [2, 3], Cingolani and Lazzo
[4, 5], Floer andWeinstein [6], Oh [7–9], Rabinowitz [1], Serrin and Tang [10], Wang [11], and
their references. In [12], Lazzo considers the potential in (P∗) perturbed by adding a negative
potential. Under the assumptions (1.1)–(1.3) she obtained the existence and multiplicity
results for positive solutions of the equation

− h2Δu + Vε(x)u = |u|q−2u in R
N, (1.4)

where h > 0, 2 < q < 2N/(N − 2).
In this paper, we will adapt some variational arguments explored by Lazzo [12] and

extend the results of [12] to the quasilinear case. In order to state our results we need
the following standard notation: if Y is a closed subset of a topological space Z, catZY
is the Ljusternik-Schnirelman category of Y in Z, namely, the least number of closed and
contractible sets in Z which cover Y . If Y = Z, we set catZ(Z) = cat(Y ). Let

ε0 = lim sup
h→ 0

ε(h)
hp

,

M =
{
x ∈ R

N : V (x) = V0

}
.

(1.5)

For δ > 0, letMδ = {x ∈ R
N : dist(x,M) ≤ δ}.
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Now we can describe our main results.

Theorem 1.1. Suppose that the assumptions (1.1)–(1.3) hold. There exists ε∗ > 0 such that if ε0 < ε∗,
then (Ph,ε) has a positive solution for h sufficiently small.

Theorem 1.2. Suppose that the assumptions (1.1)–(1.3) hold. For any δ > 0 there exists ε∗(δ) > 0
such that if ε0 < ε∗(δ), then (Ph,ε) has at least catMδ(M) positive solutions for h sufficiently small.

2. Existence of Solutions

In this section, we will give an existence result for (Ph,ε). We need some notations, definitions,
and auxiliary results. Let us recall the definition ofW1,p(RN),

W1,p
(
R
N
)
=
{
u ∈ Lp

(
R
N
)
: ∂iu ∈ Lp

(
R
N
)
, i = 1, 2, . . . ,N

}
,

‖u‖1,p = ‖u‖p + ‖∇u‖p,
(2.1)

where ‖ · ‖p denotes the norm in Lp(RN). The spaceW1,p(RN) is the completion of the space
D(RN) of C∞-functions with compact support with respect to the norm ‖ · ‖1,p and

X =
{
u ∈W1,p

(
R
N
)
:
∫
V (x)|u|p < +∞

}
, (2.2)

X∗ is the dual space of X and the integration set R
N will be understood.

In X we define the functionals

Jh,ε(u) =
∫
hp|∇u|p + Vε(x)|u|p,

Jh,0(u) =
∫
hp|∇u|p + V (x)|u|p.

(2.3)

From (1.1)–(1.3) and if 0 < hp ≤ V0α1α
−1
2 (no restrictions on h if α2 = 0), then for any u ∈ X,

we have

(
1 − α1 ε(h)

hp

)
Jh,0(u) ≤ Jh,ε(u) ≤ Jh,0(u). (2.4)

Indeed,

∫
W(x)|u|p ≤ α1

∫
|∇u|p + α2

V0

∫
V (x)|u|p ≤ α1

hp
Jh,0(u). (2.5)

As a consequence,

Jh,0(u) = Jh,ε(u) + ε(h)
∫
W(x)|u|p ≤ Jh,ε(u) + α1 ε(h)

hp
Jh,0(u) (2.6)
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whence (2.4) follows. From (2.4), if lim suph→ 0 ε(h)h
−p < α−11 there exist α0, h∗0 > 0 such that

Jh,ε(u) ≥ min{hp, V0}α0‖u‖p1,p (2.7)

for any u ∈ X, for any 0 < h < h∗0.As a result the setX, endowed with the norm ‖u‖ph = Jh,ε(u),
is a Banach space and it is continuously embedded inW1,p(RN).

Weak solution to (Ph,ε) can be found by looking for critical points of Jh,ε(u) on the
manifold Σ = {u ∈ X :

∫
u|q = 1}. Indeed, Jh,ε is well defined and smooth on Σ; moreover,

for any critical point u of Jh,ε on Σ, (Jh,ε(u))
1/(q−p)u is a weak solution for (Ph,ε). Therefore, in

order to prove existence of solutions to (Ph,ε) it suffices to solve the following minimization
problem:

ch = inf
u∈Σ

Jh,ε(u). (P)

Problem (P) is affected by a lack of compactness, due to the noncompact Sobolev embedding
W1,p(RN) ↪→ Lq(RN). One way is to guarantee that ch is attained and to prove that Jh,ε
satisfies the Palais-Smale condition below ch + α, for some positive α. This is indeed the
case: as we prove below, the Palais-Smale condition holds below some level, related to
lim inf|x|→∞V (x). In order to state this result more precisely, we need some notations. First,
let us recall some facts about ground state solution of the equation

−hpΔpu + λ|u|p−2u = |u|q−2u in R
N, (Q)

where h, λ > 0. By [13, Propositions 2.1 and 2.2], there is a positive radially symmetric ground
state solution w̃(h, λ) of (Q). By adopting arguments similar to those in Li and Yan [14,
Theorem 3.1], we obtain that w̃(h, λ) ∈ L∞(RN) ∩ C1,α(RN) for some 0 < α < 1 and that
w̃(h, λ) decays exponentially at infinity (also see Alves and Carrião [15, Lemma 2.1]). The
infimum

m(h;λ) = inf

{
hp‖∇u‖pp + λ‖u‖pp

‖u‖pq
: u ∈W1,p

(
R
N
)
, u /≡ 0

}
(2.8)

is achieved by w(h;λ) = w̃(h, λ)/‖w̃(h, λ)‖q. It is easy to see that

m(h;λ) = hθm(1;λ) with θ =
N
(
q − p)

q
. (2.9)

By (1.3), we can choose V∞ ∈ R such that

V0 < V∞ ≤ lim inf
|x|→∞

V (x). (2.10)

Let us denote

m0 = m(1;V0), m∞ = m(1;V∞), (2.11)
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being the map λ → m(1;λ) strictly increasing, (2.10) implies

m0 < m∞. (2.12)

We are ready to state our compactness result.

Proposition 2.1. Suppose that assumptions (1.1)–(1.3) hold and

ε0 <
1
α1

(
1 − m0

m∞

)
. (2.13)

Then there exists k∗1 ∈ (0, m∞ −m0) and h∗1 > 0 such that Jh,ε satisfies the Palais-Smale condition in
the sublevel {u ∈ Σ : Jh,ε(u) < (m0 + k∗1)h

θ}, for any 0 < h < h∗1.

Proof. Let β ∈ (m0, (1 − α1ε0)m∞) and fix η0 > 0 such that

β + α1η0m∞ < (1 − α1ε0)m∞, (2.14)

obviously, for h small we have

ε(h)
hp

≤ ε0 + η0. (2.15)

Next, let γ < β and let {un} ⊂ Σ be a Palais-Smale sequence for Jh,ε on Σ at the level γh ≡ γhθ,
namely,

Jh,ε(un) = γh + o(1), (2.16)

−hpΔpun + Vε(x)|un|p−2un − λn|un|q−2un = o(1) in X∗, (2.17)

as n → ∞, it is easily seen that λn = γh + o(1). By standard calculations, we can see that {un}
is bounded in X. Therefore there exists u ∈ X such that, up to a subsequence, un ⇀ u weakly
in X.Moreover, adapting arguments found in [16–18], it follows that u is a weak solution of
the following equation:

−hpΔpu + Vε(x)|u|p−2u = γh|u|q−2u in R
N. (E)

In order to prove that {un} converges to u strongly inXwe apply Lions Concentration-
Compactness Lemma (see [19, 20]) to the sequence of measures ρn = hp|∇un|p+Vε(x)|un|p. By
[20, Lemma I.1], and the fact that un ∈ Σ,we can exclude that vanishing occurs. If dichotomy
occurs, there exists δ1, δ2 > 0, with δ1 + δ2 = γh such that for any ξ > 0 there are yn ∈ R

N,R >
0, Rn → ∞ such that

∫

|x−yn|<R
ρn ≥ δ1 − ξ,

∫

|x−yn|>2Rn
ρn ≥ δ2 − ξ. (2.18)
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As a consequence,

∫

R<|x−yn|<2Rn
ρn ≤ 2ξ. (2.19)

Let ζ : [0,+∞) → [0, 1] be a smooth, nonincreasing function, such that ζ(t) = 1 if 0 ≤ t ≤ 1,
ζ(t) = 0 if t ≥ 2. If we define

u1n(x) = un(x)ζ
(
x − yn
R

)
, u2n(x) = un(x) − un(x)ζ

(
x − yn
Rn

)
, (2.20)

then (2.18) yields

∫
hp|∇uin|

p
+ Vε(x)|uin|

p ≥ δi − ξ, i = 1, 2. (2.21)

From the definition of uin, i = 1, 2, and (2.19)we get

∫
|∇un|p−2∇un · ∇uin =

∫ ∣∣∣∇uin
∣∣∣
p
+O(ξ),

∫
Vε(x)|un|p−2unuin =

∫
Vε(x)

∣∣∣uin
∣∣∣
p
+O(ξ),

∫
|un|q−2unuin =

∫ ∣∣∣uin
∣∣∣
q
+O(ξ),

(2.22)

whence, by taking (2.17) into account,

Jh,ε
(
uin

)
=
∫
hp|∇uin|

p
+ Vε(x)|uin|

p
= γh

∫
|uin|

q
+ o(1) +O(ξ). (2.23)

Now, if the sequence {yn} is unbounded in R
N, for large n we have V (x) ≥ V∞ − ξ for any

x ∈ BR(yn). Thus from (2.4), (2.15), the definition ofm(h;V∞), and (2.23) we have

Jh,ε
(
u1n

)
≥
(
1 − α1 ε(h)

hp

)∫
hp|∇u1n|

p
+ V (x)|u1n|

p

≥ O(ξ) +
(
1 − α1

(
ε0 + η0

)) ∫
hp|∇u1n|

p
+ V∞|u1n|

p

≥ O(ξ) +
(
1 − α1

(
ε0 + η0

))
m(h;V∞)

∥∥∥u1n
∥∥∥
p

q

= O(ξ) + o(1) +
(
1 − α1

(
ε0 + η0

))
m(h;V∞)

(
Jh,ε

(
u1n

)

γh

)p/q

,

(2.24)
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whence

Jh,ε
(
u1n

)
≥ O(ξ) + o(1) +

(
1 − α1

(
ε0 + η0

))q/(q−p)
m(h;V∞)

q/(q−p)γp/(p−q)h . (2.25)

From (2.16) and (2.25) we can deduce

γh + o(1) ≥ Jh,ε
(
u1n

)
+O(ξ)

≥ O(ξ) + o(1) +
(
1 − α1

(
ε0 + η0

))q/(q−p)
m(h;V∞)

q/(q−p)γp/(p−q)
h

,

(2.26)

letting ξ → 0, n → ∞ and dividing by hθ yields

γ ≥ (
1 − α1

(
ε0 + η0

))
m∞ (2.27)

and, from (2.14), γ > β, a contradiction. If the sequence {yn} is bounded in R
N, for large nwe

have V (x) ≥ V∞ − ξ for any x such that |x − yn| > Rn, and we get again a contradiction by
taking u2n into account. Dicotomy is therefore ruled out in any case. As a result, the sequence
{ρn} is tight; there exists {yn} ⊂ R

N such that for any ξ > 0

∫

|x−yn|<R
hp|∇un|p + Vε(x)|un|p ≥ γh − ξ (2.28)

for a suitable R > 0. If the sequence {yn} is unbounded in R
N,we could define u1n as in (2.20)

and, noticing that

∫
hp|∇u1n|

p
+ Vε(x)|u1n|

p ≥ γh − ξ, (2.29)

we could get a contradiction exactly as before. So {yn} is bounded in R
N, and for some Rwe

have
∫

|x|>R
hp|∇un|p + Vε(x)|un|p < ξ + o(1). (2.30)

By the compactness of the embeddingW1,p ↪→ Lq on bounded domains implies that {un} →
u strongly in Lq and u is a weak solution of (E), we get

∫
hp|∇un|p + Vε(x)|un|p = γh

∫
|un|q + o(1) = γh

∫
|u|q + o(1)

=
∫
hp|∇u|p + Vε(x)|u|p +O(ξ) + o(1).

(2.31)

In other words, ‖un‖ph → ‖u‖p
h
. Finally, by using the Brezis-Lieb’s lemma [21] and arguing as

in [22, Lemma 2.4], imply un → u strongly in X.
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Remark 2.2. By Proposition 2.1 and the choice of V∞ it follows that if V is coercive, namely,
V (x) → ∞ as |x| → ∞, then Jh,ε satisfies the Palais-Smale condition on Σ at any level.
Without loss of generality, we will henceforth assume V∞ = lim inf|x|→∞V (x) < +∞.

We are interested in positive solutions for (Ph,ε). Now, we state our result on the sign
of solutions for (Ph,ε).

Proposition 2.3. Suppose that assumptions (1.1)–(1.3) hold and

ε0 <
1
α1

(
1 − 2(p−q)/q

)
. (2.32)

Then there exists k∗2, h
∗
2 > 0 such that, for any 0 < h < h∗2, every critical point u of Jh,ε on Σ satisfying

Jh,ε(u) ≤
(
m0 + k∗2

)
hθ (2.33)

does not change sign, where θ is the same as in (2.9).

Proof. Fix η0 > 0 such that 0 < α1(ε0 + η0) < 1 − 2(p−q)/q and let h∗2 ∈ (0, h∗0) be such that
ε(h) < (ε0 + η0)hp for any 0 < h < h∗2, where h∗0 is the same as in (2.7). Finally, choose

0 < k∗2 <
(
2(q−p)/q

(
1 − α1

(
ε0 + η0

)) − 1
)
m0. (2.34)

Now, let 0 < h < h∗2 and let u = u+−u− be a critical point of Jh,ε on Σ such that u+, u− /≡ 0, where
u+ = max{u, 0} and u− = max{−u, 0}.We recall ch = infu∈ΣJh,ε(u). If we multiply

−hpΔpu + Vε(x)|u|p−2u = Jh,ε(u)|u|q−2u (2.35)

by u+ and integrate on R
N, we get

Jh,ε(u)‖u+‖qq = Jh,ε(u+) ≥ ch‖u+‖pq, (2.36)

thus

‖u+‖qq ≥
(

ch
Jh,ε(u)

)q/(q−p)
. (2.37)

Similarly, the same inequality holds for u−, thus

1 = ‖u+‖qq +
∥∥u−∥∥qq ≥ 2

(
ch

Jh,ε(u)

)q/(q−p)
, (2.38)

whence

Jh,ε(u) ≥ 2(q−p)/qch. (2.39)
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Then (2.4), (2.9), (2.33), and the definition ofm0 give

(
m0 + k∗2

)
hθ ≥ Jh,ε(u) ≥ 2(q−p)/q

(
1 − α1

(
ε0 + η0

))
m0h

θ, (2.40)

if we divide by hθ, the last inequality contradicts (2.34). This completes the proof.

Proof of Theorem 1.1. Let δ > 0 be fixed and let η : [0,+∞) → [0, 1] be a smooth, nonincreasing
function, such that η(t) = 1 if 0 ≤ t ≤ δ/2 and η(t) = 0 if t ≥ δ. Let w = w(1;V0), fix any x0
such that V (x0) = V0 and set

ψh,x0(x) = μhw
(
x − x0
h

)
η(|x − x0|), (2.41)

the constant μh is chosen in such a way that ‖ψh,x0‖q = 1. Then, ψh,x0 ∈ Σ and it is easy to see
that

Jh,ε
(
ψh,x0

) ≤ Jh,0
(
ψh,x0

)
=
∫
hp|∇ψh,x0 |p + V (x)|ψh,x0 |p

=
hN

∫ ∣∣∇(
w(x)η(h|x|))∣∣p + V (hx + x0)

∣∣w(x)η(h|x|)∣∣p
(
hN

∫ ∣∣w(x)η(h|x|)∣∣q)p/q

=

∫ |∇w(x)|p + V (x0)|w(x)| + o(1)
(∫ |w(x)|q + o(1))p/q

hθ = (m0 + o(1))hθ.

(2.42)

As a consequence, for h small we have ch < (m0+k∗1)h
θ; if ε0 < ε∗ = 1/α1 min{(1−2(p−q)/q), (1−

m0/m∞)}, Propositions 2.1 and 2.3 apply and imply Jh,ε(u) = ch for some u ∈ Σ and u does
not change sign. We can therefore assume that u is positive and, up to a Lagrange multiplier,
(Jh,ε(u))

1/(q−p)u is a positive solution of (Ph,ε).

3. Multiplicity of Solutions

We begin our discussion by giving some definitions and some known results. For any
constant a, we define

Jah,ε = {u ∈ Σ : Jh,ε(u) ≤ a}. (3.1)

We recall that M denotes the set of global minima points of V and, for any positive δ,
let Mδ = {x ∈ R

N : dist(x,M) ≤ δ}. In order to prove our multiplicity result, we need
the following proposition. For the proof, based on the very definition of category and
homotopical equivalence, we refer, for instance, to [23].

Proposition 3.1. Let a > 0 and let J∗ be a closed subset of Jah,ε. Let Φh : M → J∗, β : Jah,ε → Mδ

be continuous maps such that β ◦ Φh is homotopically equivalent to the embedding j : M → Mδ.
Then catJa

h,ε
(J∗) ≥ catMδ(M).
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In our setting, the construction of the map Φh is very simple. Indeed, for any x0 ∈ M
and for any hwe define Φh(x0) = ψh,x0 (cf. (2.41), where ψh,x0 was introduced).

For any δ > 0, let ρ = ρδ > 0 be such that Mδ ⊂ Bρ(0). Let χ : R
N → R

N be defined
as χ(x) = x for |x| < ρ and χ(x) = ρx/|x| for |x| ≥ ρ. Finally, we define the barycenter map
β : Σ → R

N by setting β(u) =
∫
χ(x)|u(x)|q. SinceMδ ⊂ Bρ(0), we can use the definition of χ

and the Lebesgue theorem to conclude that

lim
h→ 0

β(Φh(x0)) = x0 uniformly for x0 ∈M. (3.2)

The content of the following proposition is that barycenters of low energy functions
are close toM.

Proposition 3.2. Suppose that assumptions (1.1)–(1.3) hold. For any δ > 0 there exists ε∗1(δ) > 0
such that if

ε0 < ε
∗
1(δ), (3.3)

then there exist k∗3, h
∗
3 > 0 such that β(u) ∈ Mδ for any u ∈ Σ satisfying Jh,ε ≤ (m0 + k∗3)h

θ for
0 < h < h∗3, where θ is the same as in (2.9).

Proof. By contradiction, let us assume that for some δ > 0 we can find εm ≥ 0 such that εm → 0
asm → ∞, lim suph→ 0ε(h)h

−p ≤ εm, and the claim in Proposition 3.2 does not hold.
For h small we have ε(h)h−p < εm + 1/m and by (2.4)

(
1 − α1

(
εm +

1
m

))
Jh,0(u) ≤ Jh,ε(u). (3.4)

Let hn, kn → 0+ as n → ∞ and un ∈ Σ be such that Jh,ε(un) ≤ (m0 + kn)hθn and β(un)/∈Mδ.
Let vn(x) = h

N/q
n un(hnx) and from (3.4) we have

∫
|∇vn|p + V (hnx)|vn|p ≤ m0 + kn

1 − α1(εm + 1/m)
. (3.5)

We apply Lions’ lemma to the sequence of probability measures σn = |vn|q.Vanishing is easily
ruled out. If dichotomy occurs, there exist δ1, δ2 > 0, with δ1 + δ2 = 1 such that for any ξ > 0
there are yn ∈ R

N , R > 0, Rn → ∞ such that

∫

|x−yn|<R
σn ≥ δ1 − ξ,

∫

|x−yn|>2Rn
σn ≥ δ2 − ξ. (3.6)

Let us consider ζ as in the proof of Proposition 2.1 and define v1
n, v

2
n accordingly as in (2.20).

Inequalities (3.6) give

∫
|vin|

p ≥ δi − ξ, i = 1, 2. (3.7)
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From (3.5) and (3.7) we get

m0 + kn
1 − α1(εm + 1/m)

≥
∫
|∇v1

n|
p
+ V0|v1

n|
p
+
∫
|∇v2

n|
p
+ V0|v2

n|
p
+O(ξ)

≥ m0

(∥∥∥v1
n

∥∥∥
p

q
+
∥∥∥v2

n

∥∥∥
p

q

)
+O(ξ)

≥ m0

(
(δ1 − ξ)p/q + (δ2 − ξ)p/q

)
.

(3.8)

Asm,n → ∞ and ξ → 0 we deduce 1 ≥ δp/q1 + δp/q2 , a contradiction. Thus {σn} is tight; there
exists {yn} ⊂ R

N such that for any ξ > 0

∫

|x−yn|<R
|vn(x)|q ≥ 1 − ξ (3.9)

for a suitable R > 0. The sequence vn = vn(· + yn) is bounded in W1,p(RN), hence it weakly
converges to some v in W1,p(RN) and, due to the compactness property (3.9), strongly in
Lq(RN). If the sequence xn ≡ hnyn → ∞ as n → ∞, then (3.5) gives

m0 ≥
∫
|∇v|p + lim inf

n→∞

∫
V (hnx + xn)|vn|p ≥

∫
|∇v|p + V∞|v|p ≥ m∞, (3.10)

which contradicts (2.12). Thus we can assume that xn converges to some x (up to a
subsequence), and arguing as before we obtain

m0 ≥
∫
|∇v|p + V (x)|v|p ≥ m(1;V (x)) ≥ m0. (3.11)

From this we have V (x) = V0 and
∫ |∇v|p + V0(x)|v|p = m0, hence m0 = m(1;V0) is achieved

by v ∈ Σ. Furthermore, since
∫ |∇vn|p + V0|vn|p ≥ m0, from (3.5) we get

∫ |∇vn|p + V0|vn|p →
m0 =

∫ |∇v|p + V0|v|p as n → ∞. By using the Brezis-Lieb’s lemma [21] and as in [22, Lemma
2.4], we get that vn converges to v strongly in W1,p(RN). Finally, let δ > 0 be fixed and let
η : [0,+∞) → [0, 1] be a smooth, nonincreasing function, such that η(t) = 1 if 0 ≤ t ≤ δ/2 and
η(t) = 0 if t ≥ δ. Set

ψn(x) = μnv
(
x − xn
hn

)
η(|x − xn|), (3.12)

where the constant μn is chosen in such a way that ‖ψn‖q = 1. Then, ψn ∈ Σ and it is easy to
see that

∣∣β(un) − β
(
ψn

)∣∣ ≤ ρ
∫∣∣|vn|q − |v|q∣∣ = o(1). (3.13)
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By xn → x ∈ M and the fact Mδ ⊂ Bρ(0) and Lebesgue theorem, it follows that |β(ψn) −
xn| = o(1). Therefore, |β(un) − xn| = o(1), which contradicts β(un)/∈Mδ. This completes the
proof.

Proof of Theorem 1.2. Let δ > 0 be fixed and let ε∗1(δ) be as in Proposition 3.2. Let

ε∗(δ) = min
{

1
α1

(
1 − 2(p−q)/q

)
,
1
α1

(
1 − m0

m∞

)
, ε∗1(δ)

}
, (3.14)

and assume ε0 < ε∗(δ). Let 0 < h∗ ≤ min{h∗i : i = 1, 2, 3} and k∗ = min{k∗i : i = 1, 2, 3}, with
the constants h∗i , k

∗
i being defined in Propositions 2.1, 2.3, and 3.2. Let 0 < h < h∗; we can

assume that a(h) ≡ (m0 + k∗)hθ is not a critical value for Jh,ε on Σ. For convenience, we set
Σh = {u ∈ Σ : Jh,ε(u) ≤ a(h)},Σ+

h = {u ∈ Σh : u ≥ 0}, and Σ−
h = {u ∈ Σh : u ≤ 0}.

If h is small enough, (2.42) gives Jh,ε(Φh(x0)) ≤ (m0 + k∗)hθ for any x0 ∈ M. In other
words, Φh(x0) ∈ Σ+

h
for any x0 ∈ M. Furthermore, Proposition 3.2 implies β(u) ∈ Mδ for

any u ∈ Σh. Finally, as a consequence of (3.2) it is easy to see that β ◦ Φh is homotopically
equivalent to the embedding j :M → Mδ. Thus Proposition 3.1 gives catΣh(Σ

+
h
) ≥ catMδ(M).

If we use the map −Φh we also get catΣh(Σ
−
h
) ≥ catMδ(M), whence cat(Σh) ≥ 2catMδ(M), for

h small.
Proposition 2.1 guarantees that the Palais-Smale condition holds in a sublevel

containing Σh. Thus Ljusternik-Schnirelman theory applies and we deduce that Jh,ε has at
least 2catMδ(M) critical points on Σ, satisfying Jh,ε(u) ≤ a(h) < (m0 + k∗1)h

θ. Therefore, by
Proposition 2.3 they do not change sign and we can assume that at least catMδ(M) critical
points are positive.
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