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The present paper concerns the Sobolev embedding in the endpoint case. It is known that the
embedding W1,n(Rn) ↪→ L∞(Rn) fails for n ≥ 2. Brézis-Gallouët-Wainger and some other authors
quantified why this embedding fails by means of the Hölder-Zygmund norm. In the present paper
we will give a complete quantification of their results and clarify the sharp constants for the
coefficients of the logarithmic terms in Besov and Triebel-Lizorkin spaces.

1. Introduction and Known Results

We establish sharp Brézis-Gallouët-Wainger type inequalities in Besov and Triebel-Lizorkin
spaces as well as fractional Sobolev spaces on a bounded domain Ω ⊂ R

n. Throughout the
present paper, we place ourselves in the setting of R

n with n ≥ 2. We treat only real-valued
functions.

First we recall the Sobolev embedding theorem in the critical case. For 1 < q < ∞, it is
well known that the embeddingWn/q,q(Rn) ↪→ Lr(Rn) holds for any q ≤ r < ∞, and does not
hold for r = ∞, that is, one cannot estimate the L∞-norm by the Wn/q,q-norm. However, the
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Brézis-Gallouët-Wainger inequality states that the L∞-norm can be estimated by the Wn/q,q-
norm with the partial aid of theWs,p-norm with s > n/p and 1 ≤ p ≤ ∞ as follows:

‖u‖q/(q−1)L∞(Rn) ≤ λ
(
1 + log

(
1 + ‖u‖Ws,p(Rn)

))
(1.1)

holds whenever u ∈ Wn/q,q(Rn) ∩ Ws,p(Rn) satisfies ‖u‖Wn/q,q(Rn) = 1, where 1 ≤ p ≤ ∞,
1 < q < ∞, and s > n/p. Inequality (1.1) for the case n = p = q = s = 2 dates back to
Brézis-Gallouët [1]. Later on, Brézis and Wainger [2] obtained (1.1) for the general case, and
remarked that the power q/(q − 1) in (1.1) is maximal; equation (1.1) fails for any larger
power. Ozawa [3] proved (1.1) with the Sobolev norm ‖u‖Ws,p(Rn) in (1.1) replaced by the
homogeneous Sobolev norm ‖u‖Ẇs,p(Rn). An attempt of replacing ‖u‖Ws,p(Rn) with the other
norms has been made in several papers. For instance, Kozono et al. [4] generalized (1.1)with
both ofWn/q,q(Rn) andWs,p(Rn) replaced by the Besov spaces and applied it to the regularity
problem for the Navier-Stokes equation and the Euler equation. Moreover, Ogawa [5] proved
(1.1) in terms of Triebel-Lizorkin spaces for the purpose to investigate the regularity to the
gradient flow of the harmonic map into a sphere. We also mention that (1.1) was obtained in
the Besov-Morrey spaces in [6].

In what follows, we concentrate on the case q = n and replace the function space
Wn/q,q(Rn) by W1,n

0 (Ω) with a bounded domain Ω in R
n. Note that the norm of W1,n

0 (Ω) is
equivalent to ‖∇u‖Ln(Ω) because of the Poincaré inequality. When the differential order s = m
is an integer with 1 ≤ m ≤ n, and n/m < p ≤ n/(m − 1), the first, second and fourth authors
[7] generalized the inequality corresponding to (1.1) and discussed how optimal the constant
λ is. To describe the sharpness of the constant λ, they made a formulation more precise as
follows:

For given constants λ1 > 0 and λ2 ∈ R, does there exist a constant C such that

‖u‖n/(n−1)L∞(Ω) ≤ λ1 log
(
1 + ‖u‖Ws,p(Ω)

)

+ λ2 log
(
1 + log

(
1 + ‖u‖Ws,p(Ω)

))
+ C

(1.2)

holds for all u ∈W1,n
0 (Ω) ∩Ws,p(Ω) with ‖∇u‖Ln(Ω) = 1?

Here for the sake of definiteness, define

‖∇u‖Ln(Ω) = ‖|∇u|‖Ln(Ω), |∇u| =
(

n∑
i=1

∣∣∣∣
∂u

∂xi

∣∣∣∣
2
)1/2

. (1.3)

We call the first term and the second term of the right-hand side of (1.2) the single
logarithmic term and the double logarithmic term, respectively. We remark that the double
logarithmic term grows weaker than the single one as ‖u‖Ws,p(Ω) → ∞.

Then they proved the following theorem, which gives the sharp constants for λ1 and
λ2 in (1.2). Here and below, Λ1 and Λ2 are constants defined by

Λ1 =
1

ω
1/(n−1)
n−1

, Λ2 =
Λ1

n
=

1

nω
1/(n−1)
n−1

, (1.4)
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where ωn−1 = 2πn/2/Γ(n/2) is the surface area of Sn−1 = {x ∈ R
n; |x| = 1}. See Definition 2.5

below for the definition of the strong local Lipschitz condition for a domain Ω.

Theorem 1.1 ([7, Theorem 1.2]). Let n ≥ 2, 0 < α < 1, m ∈ {1, 2, . . . , n}, and, Ω be a bounded
domain in R

n satisfying the strong local Lipschitz condition.

(i) Assume that either

(I) λ1 >
Λ1

α
, λ2 ∈ R or (II) λ1 =

Λ1

α
, λ2 ≥ Λ2

α
(1.5)

holds. Then there exists a constant C such that inequality (1.2) with s = m and p =
n/(m − α) holds for all u ∈W1,n

0 (Ω) ∩Wm,n/(m−α)(Ω) with ‖∇u‖Ln(Ω) = 1.

(ii) Assume that either

(III) λ1 <
Λ1

α
, λ2 ∈ R or (IV) λ1 =

Λ1

α
, λ2 <

Λ2

α
(1.6)

holds. Then for any constant C, inequality (1.2) with s = m and p = n/(m − α) fails for
some u ∈W1,n

0 (Ω) ∩Wm,n/(m−α)
0 (Ω) with ‖∇u‖Ln(Ω) = 1.

We note that the differential orderm of the higher order Sobolev space in Theorem 1.1
had to be an integer. The primary aim of the present paper is to pass Theorem 1.1 to
those which include Sobolev spaces of fractional differential order. Meanwhile, higher-order
Sobolev spaces are continuously embedded into corresponding Hölder spaces. Standing
on such a viewpoint, the first, second, and fourth authors [8] proved a result similar
to Theorem 1.1 for the homogeneous Hölder space Ċ0,α(Ω) instead of the Sobolev space
Wm,n/(m−α)(Ω). Furthermore, it is known that the Hölder space C0,α(Ω) is expressed as the
marginal case of the Besov space Bα,∞,∞(Ω) provided that 0 < α < 1, which allows us to
extend Theorem 1.1 with the same sharp constants in Besov spaces.

In general, we set up the following problem in a fixed function space X(Ω), which is
contained in L∞(Ω).

Fix a function space X(Ω). For given constants λ1 > 0 and λ2 ∈ R, does there exist a
constant C such that

‖u‖n/(n−1)L∞(Ω) ≤ λ1 log
(
1 + ‖u‖X(Ω)

)

+ λ2 log
(
1 + log

(
1 + ‖u‖X(Ω)

))
+ C

(1.7)

holds for all u ∈W1,n
0 (Ω) ∩X(Ω) under the normalization ‖∇u‖Ln(Ω) = 1?

We call Ws,p(Rn) an auxiliary space of (1.7). First we state the following proposition,
which is an immediate consequence of an elementary inequality,

log(1 + st) ≤ log(s + st) = log(1 + t) + log s for t ≥ 0, s ≥ 1. (1.8)
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Proposition 1.2. Let Ω be a domain in R
n, and let X1(Ω), X2(Ω) be function spaces satisfying

‖u‖X1(Ω) ≤M‖u‖X2(Ω) for u ∈ X2(Ω) (1.9)

with some constantM ≥ 1.

(i) If inequality (1.7) holds inX(Ω) = X1(Ω)with a constant C, then so does (1.7) inX(Ω) =
X2(Ω) with another constant C,

or equivalently,

(i) if inequality (1.7) fails in X(Ω) = X2(Ω) with any constant C, then so does (1.7) in
X(Ω) = X1(Ω) with any constant C.

From the proposition above, the sharp constants for λ1 and λ2 in (1.7) are independent
of the choice of the equivalent norms of the auxiliary spaceX(Ω). On the other hand, note that
these sharp constants may depend on the definition of ‖∇u‖Ln(Ω); there are several manners
to define ‖∇u‖Ln(Ω). In what follows, we choose (1.3) as the definition of ‖∇u‖Ln(Ω).

In the present paper we will include Besov and Triebel-Lizorkin spaces as an auxiliary
spaceX(Ω). To describe the definition of Besov and Triebel-Lizorkin spaces, we denote by BR
the open ball in R

n centered at the origin with radius R > 0, that is, BR = {x ∈ R
n; |x| < R}.

Define the Fourier transform F and its inverse F−1 by

Fu(ξ) = 1

(2π)n/2

∫

Rn

e−
√−1x·ξu(x)dx, F−1u(x) =

1

(2π)n/2

∫

Rn

e
√−1x·ξu(ξ)dξ (1.10)

for u ∈ S(Rn), respectively, and they are also extended on S′(Rn) by the usual way. For
ϕ ∈ S(Rn), define an operator ϕ(D) by

ϕ(D)u = F−1(ϕFu) = 1

(2π)n/2
(
F−1ϕ

)
∗ u. (1.11)

Next, we fix functions ψ0, ϕ0 ∈ C∞
c (Rn) which are supported in the ball B4, in the annulus

B4 \ B1, respectively, and satisfying

∞∑
k=−∞

ϕ0
k(x) = χRn\{0}(x), ψ0(x) = 1 −

∞∑
k=0

ϕ0
k(x) for x ∈ R

n, (1.12)

where we set ϕ0
k = ϕ0(·/2k). Here, χE is the characteristic function of a set E and C∞

c (Ω)
denotes the class of compactly supported C∞-functions on Ω. We also denote by Cc(Ω) the
class of compactly supported continuous functions on Ω.

Definition 1.3. Take ψ0, ϕ0 satisfying (1.12), and let u ∈ S′(Rn).

(i) Let 0 < s <∞, 0 < p ≤ ∞, and 0 < q ≤ ∞. The Besov space Bs,p,q(Rn) is normed by

‖u‖Bs,p,q(Rn) =
∥∥∥ψ0(D)u

∥∥∥
Lp(Rn)

+

( ∞∑
k=0

(
2sk
∥∥∥ϕ0

k(D)u
∥∥∥
Lp(Rn)

)q)1/q

(1.13)



Boundary Value Problems 5

with the obvious modification when q = ∞.

(ii) Let 0 < s < ∞, 0 < p < ∞, and 0 < q ≤ ∞. The Triebel-Lizorkin space Fs,p,q(Rn) is
normed by

‖u‖Fs,p,q(Rn) =
∥∥∥ψ0(D)u

∥∥∥
Lp(Rn)

+

∥∥∥∥∥∥

( ∞∑
k=0

(
2sk
∣∣∣ϕ0

k(D)u
∣∣∣
)q)1/q

∥∥∥∥∥∥
Lp(Rn)

(1.14)

with the obvious modification when q = ∞; one excludes the case p = ∞.

Different choices of ψ0 and ϕ0 satisfying (1.12) yield equivalent norms in (1.13) and
(1.14). We refer to [9] for exhaustive details of this fact. Here and below, we denote by As,p,q

the spaces Bs,p,q with 0 < s < ∞, 0 < p ≤ ∞, 0 < q ≤ ∞, or Fs,p,q with 0 < s < ∞, 0 < p < ∞, 0 <
q ≤ ∞. Unless otherwise stated, the letter Ameans the same scale throughout the statement.

As in [9, 10], we adopt a traditional method of defining function spaces on a domain
Ω ⊂ R

n.

Definition 1.4. Let 0 < s <∞ and 0 < p, q ≤ ∞.

(i) The function spaceAs,p,q(Ω) is defined as the subset ofD′(Ω) obtained by restricting
elements in As,p,q(Rn) to Ω, and the norm is given by

‖u‖As,p,q(Ω) = inf
{
‖v‖As,p,q(Rn);v ∈ As,p,q(Rn), v|Ω = u in D′(Ω)

}
. (1.15)

(ii) The function space As,p,q

0 (Ω) is defined as the closure of C∞
c (Ω) in the norm of

As,p,q(Ω).

(iii) The potential spaceHs,p(Ω) stands for Fs,p,2(Ω).

Now we state our main result, which claims that the sharp constants in (1.7) are given
by the same ones as in Theorem 1.1 when X(Ω) = As,pα,s,q(Ω) or As,pα,s,q

0 (Ω), where in what
follows we denote

pα,s =

⎧
⎨
⎩

n

s − α for s > α,

∞ for s = α.
(1.16)

Here, conditions (I)–(IV) are the same as in Theorem 1.1. We should remark thatAs,pα,s,q

0 (Ω) ⊂
As,pα,s,q(Ω) ⊂ L∞(Ω) and the formulation of Theorem 1.5 remains unchanged no matter
what equivalent norms we choose for the norm of the function space As,pα,s,q(Ω). Indeed,
Proposition 1.2(i) (resp., (ii)) shows that the condition on λ1 and λ2 for which inequality (1.7)
holds (resp., fails) remains unchanged if we replace the definition of the norm ‖ · ‖As,pα,s,q(Ω)

with any equivalent norm.
In the case 0 < α < 1, we can determine the condition completely.

Theorem 1.5. Let n ≥ 2, 0 < α < 1, s ≥ α, 0 < q ≤ ∞, and let Ω be a bounded domain in R
n and

X(Ω) = As,pα,s,q(Ω).
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(i) Assume that either (I) or (II) holds. Then there exists a constantC such that inequality (1.7)
holds for all u ∈W1,n

0 (Ω) ∩As,pα,s,q(Ω) with ‖∇u‖Ln(Ω) = 1.

(ii) Assume that either (III) or (IV) holds. Then for any constant C, the inequality (1.7) fails
for some u ∈ C∞

c (Ω) with ‖∇u‖Ln(Ω) = 1.

Remark 1.6. If Ω has a Lipschitz boundary, then the Stein total extension theorem [11,
Theorem 5.24] implies that Wm,p(Ω) = Hm,p(Ω) = Fm,p,2(Ω) for m ∈ N and 1 < p < ∞.
Hence Theorem 1.5 implies Theorem 1.1.

In order to state our results in the case α ≥ 1 for a general bounded domain Ω, we
replace assumption (II) by the slightly stronger one

(II)′ λ1 =
Λ1

α
, λ2 > Λ2. (1.17)

Unfortunately, we do not knowwhether the result in this case corresponding to the case α ≥ 1
in Theorem 1.5 holds.

Theorem 1.7. Let n ≥ 2, α ≥ 1, s ≥ α, 0 < q ≤ ∞, let Ω be a bounded domain in R
n satisfying the

strong local Lipschitz condition and X(Ω) = As,pα,s,q(Ω).

(i) Assume that either (I) or (II)′ holds. Then there exists a constant C such that inequality
(1.7) holds for all u ∈W1,n

0 (Ω) ∩As,pα,s,q(Ω) with ‖∇u‖Ln(Ω) = 1.

(ii) Assume that either (III) or (IV) holds. Then for any constant C, the inequality (1.7) fails
for some u ∈ C∞

c (Ω) with ‖∇u‖Ln(Ω) = 1.

Remark 1.8. We have to impose the strong local Lipschitz condition in Theorem 1.7, because
we use the universal extension theorem obtained by Rychkov [12, Theorem 2.2].

However, in the case 1 < α < 2, we can also determine the condition completely as in
the case 0 < α < 1 provided that we restrict the functions to Cc(Ω).

Theorem 1.9. Let n ≥ 2, 1 < α < 2, s ≥ α, 0 < q ≤ ∞, let Ω be a bounded domain in R
n, and

X(Ω) = As,pα,s,q(Ω).

(i) Assume that either (I) or (II) holds. Then there exists a constantC such that inequality (1.7)
holds for all u ∈W1,n

0 (Ω) ∩As,pα,s,q(Ω) ∩ Cc(Ω) with ‖∇u‖Ln(Ω) = 1.

(ii) Assume that either (III) or (IV) holds. Then for any constant C, inequality (1.7) fails for
some u ∈ C∞

c (Ω) with ‖∇u‖Ln(Ω) = 1.

We also obtain the following corollary because C∞
c (Ω) ⊂ As,p,q

0 (Ω) ⊂ As,p,q(Ω).

Corollary 1.10. Theorems 1.5, 1.7, and 1.9 still hold true if one replaces As,pα,s,q(Ω) by As,pα,s,q

0 (Ω).

Remark 1.11. (i) The assertion in Corollary 1.10 corresponding to Theorem 1.7 still holds even
if we do not impose the strong local Lipschitz condition, because there is a trivial extension
operator from A

s,p,q

0 (Ω) into As,p,q(Rn).
(ii) If ∂Ω is smooth, then we can see that

u ∈ C
(
Ω
)
, u = 0 on ∂Ω for u ∈W1,n

0 (Ω) ∩As,pα,s,q(Ω). (1.18)
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However,W1,n
0 (Ω) ∩As,pα,s,q(Ω) is not contained in As,pα,s,q

0 (Ω), in general.

Remark 1.12. The power n/(n − 1) on the left-hand side of (1.7) is optimal in the sense that
r = n/(n − 1) is the largest power for which there exist λ1 and C such that

‖u‖rL∞(Ω) ≤ λ1 log
(
1 + ‖u‖X(Ω)

)
+ C (1.19)

can hold for all u ∈ W1,n
0 (Ω) ∩ X(Ω) with ‖∇u‖Ln(Ω) = 1. Here, X(Ω) is as in Theorems 1.5,

1.7, and 1.9 and Corollary 1.10. Indeed, if r > n/(n − 1), then for any λ1 > 0 and any constant
C, (1.19) does not hold for some u ∈ W1,n

0 (Ω) ∩ X(Ω) with ‖∇u‖Ln(Ω) = 1, which is shown by
carrying out a similar calculation to the proof of Theorems 1.5, 1.7, and 1.9 (ii); see Remark 3.9
below for the details. To the contrary, if 1 ≤ r < n/(n − 1), then for any λ1 > 0, there exists
a constant C such that (1.19) holds for all u ∈ W1,n

0 (Ω) ∩ X(Ω) with ‖∇u‖Ln(Ω) = 1. This fact
follows from the embedding described below and the same assertion concerning the Brézis-
Gallouët-Wainger type inequality in the Hölder space, which is shown in [8, Remark 3.5] (for
0 < α < 1) and Remark 4.3 (for α ≥ 1).

Finally let us describe the organization of the present paper. In Section 2, we
introduce some notation of function spaces and state embedding theorems. Section 3 is
devoted to proving the negative assertions of Theorems 1.5–1.9. Section 4 describes the
affirmative assertions of Theorems 1.5 and 1.7. Section 5 concerns the affirmative assertion
of Theorem 1.9. In the appendix, we prove elementary calculus which we stated in Section 5.

2. Preliminaries

First we provide a brief view of Hölder andHölder-Zygmund spaces. Throughout the present
paper, C denotes a constant which may vary from line to line.

For 0 < α ≤ 1, Ċ0,α(Rn) denotes the homogeneous Hölder space of order α endowed
with the seminorm

‖u‖Ċ0,α(Rn) = sup
x,y∈R

n

x /=y

∣∣u(x) − u(y)∣∣∣∣x − y∣∣α , (2.1)

and C0,α(Rn) denotes the nonhomogeneous Hölder space of order α endowed with the norm

‖u‖C0,α(Rn) = ‖u‖L∞(Rn) + ‖u‖Ċ0,α(Rn). (2.2)

Define also

‖u‖Ċ0,α(Rn;Rn) = sup
x,y∈R

n

x /=y

∣∣u(x) − u
(
y
)∣∣

∣∣x − y∣∣α (2.3)
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for an R
n-valued function u. For 1 ≤ α ≤ 2, Ċ1,α−1(Rn) denotes the homogeneous Hölder-

Zygmund space of order α, the set of all continuous functions u endowed with the seminorm

‖u‖Ċ1,α−1(Rn) = sup
x,y∈R

n

x /=y

∣∣u(x) − 2u
((
x + y

)
/2
)
+ u
(
y
)∣∣

∣∣x − y∣∣α , (2.4)

and C1,α−1(Rn) denotes the nonhomogeneous Hölder-Zygmund space of order α, the set of
all continuous functions u endowed with the norm

‖u‖C1,α−1(Rn) = ‖u‖L∞(Rn) + ‖u‖Ċ1,α−1(Rn). (2.5)

Note that Ċ0,1(Rn) is a proper subset of Ċ1,0(Rn). We remark that, in defining Ċ1,α−1(Rn), it
is necessary that we assume the functions continuous. Here we will exhibit an example of
a discontinuous function u satisfying ‖u‖Ċ1,α−1(Rn) = 0 in the appendix. We will not need to
define the Hölder-Zygmund space of the higher order. We need an auxiliary function space;
for 1 < α ≤ 2, let Ċ1,α−1

∇ (Rn) denote the analogue of Ċ1,α−1(Rn) endowed with the seminorm

‖u‖Ċ1,α−1
∇ (Rn) = ‖∇u‖Ċ0,α−1(Rn;Rn) = sup

x,y∈R
n

x /=y

∣∣∇u(x) − ∇u(y)∣∣
∣∣x − y∣∣α−1

. (2.6)

The other function spaces on a domain Ω ⊂ R
n are made analogously to As,p,q(Ω). For

example, define

‖u‖Ċ0,α(Ω) = inf
{
‖v‖Ċ0,α(Rn);v ∈ Ċ0,α(Rn), v|Ω = u in D′(Ω)

}
,

‖u‖Ċ1,α−1(Ω) = inf
{
‖v‖Ċ1,α−1(Rn);v ∈ Ċ1,α−1(Rn), v|Ω = u in D′(Ω)

}
,

‖u‖Ċ1,α−1
∇ (Ω) = inf

{
‖∇v‖Ċ0,α−1(Rn;Rn);v ∈ Ċ1,α−1

∇ (Rn), (∇v)|Ω = ∇u in D′(Ω)
}
.

(2.7)

A moment’s reflection shows that for 0 < α ≤ 1, ‖u‖Ċ0,α(Ω) can be written as

‖u‖Ċ0,α(Ω) = sup
x,y∈Ω
x /=y

∣∣u(x) − u(y)∣∣∣∣x − y∣∣α for u ∈ Ċ0,α(Ω) (2.8)

since the function

v(x) = inf
y∈Ω

(
u
(
y
)
+ ‖u‖Ċ0,α(Ω)

∣∣x − y∣∣α
)

for x ∈ R
n (2.9)
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attains the infimum defining ‖u‖Ċ0,α(Ω) (see [13, Theorem 3.1.1]). Moreover, we also observe
that

‖u‖Ċ1,α−1
∇ (Ω) = ‖∇u‖Ċ0,α−1(Ω;Rn) = sup

x,y∈Ω
x /=y

∣∣∇u(x) − ∇u(y)∣∣
∣∣x − y∣∣α−1

for u ∈ Ċ1,α−1
∇ (Ω) ∩ Cc(Ω) (2.10)

since the zero-extended function v of u on R
n \Ω attains the infimum defining ‖∇u‖Ċ0,α−1(Ω;Rn).

An elementary relation between these spaces and Bα,∞,∞(Rn) is as follows.

Lemma 2.1 (Taibleson, [14, Theorem 4]). Let 0 < α < 2. Then one has the norm equivalence

Bα,∞,∞(Rn) � C�α�,α−�α�(Rn), (2.11)

where �α� denotes the integer part of α; �α� = max{k ∈ N ∪ {0}; k ≤ α}.

We remark that Lemma 2.1 is still valid for α ≥ 2 after defining the function space
C�α�,α−�α�(Rn) appropriately. However, we do not go into detail, since we will use the space
C�α�,α−�α�(Rn) only with 0 < α < 2.

We will invoke the following fact on the Sobolev type embedding for Besov and
Triebel-Lizorkin spaces:

Lemma 2.2. Let 0 < s <∞, 0 < p < p̃ ≤ ∞, 0 < q < q̃ ≤ ∞, and let Ω be a domain in R
n. Then

Bs,p,q(Ω) ↪→ Bs,p,q̃(Ω),

Bs,p,q(Ω) ↪→ Bs−n(1/p−1/p̃),p̃,q(Ω),

Bs,p,min{p,q}(Ω) ↪→ Fs,p,q(Ω) ↪→ Bs,p,max{p,q}(Ω)

(2.12)

in the sense of continuous embedding.

Proof. We accept all the embeddings when Ω = R
n; see [9] for instance. The case when Ω has

smooth boundary is covered in [9]. However, as the proof below shows, the results are still
valid even when the boundary of Ω is not smooth. For the sake of convenience, let us prove
the second one. To this end we take u ∈ Bs,p,q(Ω). Then by the definition of Bs,p,q(Ω) and its
norm, we can find v ∈ Bs,p,q(Rn) so that

v|Ω = u in D′(Ω), ‖u‖Bs,p,q(Ω) ≤ ‖v‖Bs,p,q(Rn) ≤ 2‖u‖Bs,p,q(Ω). (2.13)

Now that we accept ‖v‖Bs−n(1/p−1/p̃),p̃,q(Rn) ≤ Cs,p,p̃,q‖v‖Bs,p,q(Rn), we have

‖u‖Bs−n(1/p−1/p̃),p̃,q(Ω) ≤ ‖v‖Bs−n(1/p−1/p̃),p̃,q(Rn) ≤ Cs,p,p̃,q‖v‖Bs,p,q(Rn). (2.14)

Combining these observations, we see that the second embedding holds.

We need the following proposition later, which claims that Ċ1,α−1(Rn) ↪→ Ċ1,α−1
∇ (Rn) for

1 < α < 2 in the sense of continuous embedding.
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Proposition 2.3. Let 1 < α < 2. Then there exists Cα > 0 such that

‖u‖Ċ1,α−1
∇ (Rn) ≤ Cα‖u‖Ċ1,α−1(Rn) for u ∈ Ċ1,α−1(Rn). (2.15)

The proof is somehow well known (see [15, Chapter 0]when n = 1). Here for the sake
of convenience we include it in the appendix. We will show that this fact is also valid on a
domain Ω ⊂ R

n.

Proposition 2.4. Let 1 < α < 2 and Ω be a domain in R
n. Then there exists Cα > 0 such that

‖u‖Ċ1,α−1
∇ (Ω) ≤ Cα‖u‖Ċ1,α−1(Ω) for u ∈ Ċ1,α−1(Ω). (2.16)

Proof. For any u ∈ Ċ1,α−1(Ω), there exists an extension vu ∈ Ċ1,α−1(Rn) of u on R
n such that

vu|Ω = u in D′(Ω), ‖u‖Ċ1,α−1(Ω) ≤ ‖vu‖Ċ1,α−1(Rn) ≤ 2‖u‖Ċ1,α−1(Ω). (2.17)

In particular, ∇vu|Ω = ∇u in D′(Ω). By applying Proposition 2.3, we have

‖u‖Ċ1,α−1
∇ (Ω;Rn)

= inf
{
‖∇v‖Ċ0,α−1(Rn;Rn);v ∈ Ċ1,α−1

∇ (Rn), (∇v)|Ω = ∇u in D′(Ω)
}

≤ ‖∇vu‖Ċ0,α−1(Rn;Rn) = ‖vu‖Ċ1,α−1
∇ (Rn;Rn)

≤ Cα‖vu‖Ċ1,α−1(Rn) ≤ 2Cα‖u‖Ċ1,α−1(Ω)

(2.18)

and obtain the desired result.

Let us establish the following proposition. Here, unlike a bounded domain Ω, for the
whole space R

n we adopt the following definition of the norm ofW1,n(Rn):

‖u‖W1,n(Rn) = ‖u‖Ln(Rn) + ‖∇u‖Ln(Rn). (2.19)

Definition 2.5. One says that a bounded domain Ω satisfies the strong local Lipschitz condition
if Ω has a locally Lipschitz boundary, that is, each point x on the boundary of Ω has a
neighborhood Ux whose intersection with the boundary of Ω is the graph of a Lipschitz
continuous function.

The definition for a general domain is more complicated; see [11] for details.

Proposition 2.6. Let 0 < γ < α. Then one has

‖u‖Bγ,∞,∞(Rn) ≤ Cγ‖u‖γ/αBα,∞,∞(Rn)‖u‖
1−γ/α
W1,n(Rn) for u ∈W1,n(Rn) ∩ Bα,∞,∞(Rn). (2.20)
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Furthermore, let Ω be a bounded domain in R
n satisfying the strong local Lipschitz condition. Then

one has

‖u‖Bγ,∞,∞(Ω) ≤ Cγ‖u‖γ/αBα,∞,∞(Ω)‖∇u‖
1−γ/α
Ln(Ω) for u ∈W1,n

0 (Ω) ∩ Bα,∞,∞(Ω). (2.21)

Proposition 2.6 can be obtained directly from a theory of interpolation. However, the
proof being simple, we include it for the sake of reader’s convenience.

Proof of Proposition 2.6. Let us take ζ ∈ C∞
c (Rn) so that ζ = 1 on B4 \ B1 and supp ζ ⊂ B8 \ B1/2.

Set

ζi(ξ) =
ξi

|ξ|2
ζ(ξ), ζi,k(ξ) = ζi

(
ξ

2k

)
=

2kξi
|ξ|2

ζ

(
ξ

2k

)
for k ∈ N ∪ {0}, i ∈ {1, . . . , n}. (2.22)

Recall that ϕ0
k is supported on B2k+2 \ B2k , and observe that

ϕ0
k(ξ) =

1
2k

n∑
i=1

ξiζi,k(ξ)ϕ0
k(ξ). (2.23)

Hence we have

∥∥∥ϕ0
k(D)u

∥∥∥
L∞(Rn)

=
1
2k

∥∥∥∥∥
n∑
i=1

ζi,k(D)ϕ0
k(D)

∂u

∂xi

∥∥∥∥∥
L∞(Rn)

=
1

(2π)n2k

∥∥∥∥∥
n∑
i=1

(F−1ζi,k) ∗ (F−1ϕ0
k) ∗

∂u

∂xi

∥∥∥∥∥
L∞(Rn)

≤ 1
(2π)n2k

∥∥∥F−1ϕ0
k

∥∥∥
L1(Rn)

n∑
i=1

∥∥∥F−1ζi,k
∥∥∥
Ln/(n−1)(Rn)

∥∥∥∥
∂u

∂xi

∥∥∥∥
Ln(Rn)

=
1

(2π)n
∥∥∥F−1ϕ0

∥∥∥
L1(Rn)

n∑
i=1

∥∥∥F−1ζi
∥∥∥
Ln/(n−1)(Rn)

∥∥∥∥
∂u

∂xi

∥∥∥∥
Ln(Rn)

≤ C‖∇u‖Ln(Rn) ≤ C‖u‖W1,n(Rn).

(2.24)

A similar estimate for ψ0 is also available:

∥∥∥ψ0(D)u
∥∥∥
L∞(Rn)

=
1

(2π)n/2

∥∥∥
(
F−1ψ0

)
∗ u
∥∥∥
L∞(Rn)

≤ C‖u‖Ln(Rn) ≤ C‖u‖W1,n(Rn).

(2.25)
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Hence we have

‖u‖Bγ,∞,∞(Rn) =
∥∥∥ψ0(D)u

∥∥∥
L∞(Rn)

+ sup
k∈N∪{0}

2γl
∥∥∥ϕ0

k(D)u
∥∥∥
L∞(Rn)

≤ Cγ sup
k∈N∪{0}

min
{

1
2(α−γ)k

‖u‖Bα,∞,∞(Rn), 2
γk‖u‖W1,n(Rn)

} (2.26)

since 2αk‖ϕ0
k(D)u‖L∞(Rn) ≤ ‖u‖Bα,∞,∞(Rn). Hence we have

‖u‖Bγ,∞,∞(Rn) ≤ Cγsup
t>0

min
{

1
tα−γ

‖u‖Bα,∞,∞(Rn), t
γ‖u‖W1,n(Rn)

}

= Cγ‖u‖γ/αBα,∞,∞(Rn)‖u‖
1−γ/α
W1,n(Rn).

(2.27)

It remains to prove (2.21). The universal extension theorem obtained by Rychkov [12,
Theorem 2.2] yields that there exists a common extension operator E :W1,n

0 (Ω)+Bγ,∞,∞(Ω) →
W1,n(Rn) + Bγ,∞,∞(Rn) such that

‖u‖Bβ,∞,∞(Ω) ≤ ‖Eu‖Bβ,∞,∞(Rn) ≤ Cβ‖u‖Bβ,∞,∞(Ω) for u ∈ Bβ,∞,∞(Ω),

‖∇u‖Ln(Ω) ≤ ‖Eu‖W1,n(Rn) ≤ C‖∇u‖Ln(Ω) for u ∈W1,n
0 (Ω)

(2.28)

for all γ ≤ β <∞. Then (2.21) is an immediate consequence of (2.20).

3. Counterexample for the Inequality

In this section, we will give the proof of assertion (ii) of Theorems 1.5–1.9. Lemma 2.2 shows
that

Bs,p,min{p,q}(Ω) ↪→ Fs,p,q(Ω), (3.1)

and hence it suffices to consider the case As,pα,s,q(Ω) = Bs,pα,s,q(Ω) in view of Proposition 1.2
(i). Furthermore, Lemma 2.2 also shows that

Bs̃,pα,s̃,min{pα,s̃,q}(Ω) ↪→ Bs,pα,s,q(Ω) for s̃ > s, (3.2)

and hence we have only to consider the case 0 < q ≤ pα,s = n/(s − α) ≤ 1. Therefore, it suffices
to show the following theorem for the proof of (ii) of Theorems 1.5–1.9.

Theorem 3.1. Let n ≥ 2, α > 0, s ≥ n + α, 0 < q ≤ pα,s, and let Ω be a bounded domain in R
n and

X(Ω) = Bs,pα,s,q(Ω). Assume that either (III) or (IV) holds. Then for any constant C, inequality (1.7)
fails for some u ∈ C∞

c (Ω) with ‖∇u‖Ln(Ω) = 1.
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Here and below, we use the notation

�(s) = log(1 + s) for s ≥ 0 (3.3)

for short, and then � ◦ �(s) = log(1 + log(1 + s)) for s ≥ 0. We note that inequality (1.7)
with X(Ω) = Bs,pα,s,q(Ω) holds for all u ∈ W1,n

0 (Ω) ∩ Bs,pα,s,q(Ω) with ‖∇u‖Ln(Ω) = 1 if and
only if there exists a constant C independent of u such that Fα,s,q[u;λ1, λ2] ≤ C holds for all
u ∈W1,n

0 (Ω) ∩ Bs,pα,s,q(Ω) \ {0}, where

Fα,s,q[u;λ1, λ2] =

( ‖u‖L∞(Ω)

‖∇u‖Ln(Ω)

)n/(n−1)
− λ1�

(‖u‖Bs,pα,s,q(Ω)

‖∇u‖Ln(Ω)

)
− λ2� ◦ �

(‖u‖Bs,pα,s,q(Ω)

‖∇u‖Ln(Ω)

)

for u ∈W1,n
0 (Ω) ∩ Bs,pα,s,q(Ω) \ {0}.

(3.4)

For the proof of Theorem 3.1, we have to find a sequence {uj}∞j=1 ⊂ C∞
c (Ω) \ {0} such

that Fα,s,q[uj ;λ1, λ2] → ∞ as j → ∞ under assumption (III) or (IV). In the case that Ω = R
n

and that all the functions are supported in B1, we can choose such a sequence.

Lemma 3.2. Let n ≥ 2, α > 0, s ≥ n + α, 0 < q ≤ pα,s, and Ω = R
n. Then there exists a family of

functions {uj}∞j=1 ⊂ C∞
c (Rn) \ {0} with suppuj ⊂ B1 for all j ∈ N such that

Fα,s,q
[
uj ;λ1, λ2

] −→ ∞ as j −→ ∞ (3.5)

under assumption (III) or (IV) of Theorem 3.1.

We can now prove Theorem 3.1 once we accept Lemma 3.2.

Proof of Theorem 3.1. Examining (1.7) fails, so we may assume that λ1, λ2 ≥ 0. Fix z0 ∈ Ω and
R0 ≥ 1 such that

B =
{
x ∈ R

n; |x − z0| < 1
R0

}
⊂ Ω. (3.6)

Let {uj}∞j=1 be a family of functions as in Lemma 3.2. If we set

vj(x) =

⎧
⎨
⎩
uj(R0(x − z0)) for x ∈ B,
0 for x ∈ Ω \ B,

(3.7)

then vj ∈ C∞
c (Ω), and there exists a constant Cα,s,R0 ≥ 1 such that

∥∥vj
∥∥
L∞(Ω) =

∥∥uj
∥∥
L∞(Rn),

∥∥∇vj
∥∥
Ln(Ω) =

∥∥∇uj
∥∥
Ln(Rn),

∥∥vj
∥∥
Bs,pα,s,q(Ω) ≤ Cα,s,R0

∥∥uj
∥∥
Bs,pα,s,q(Rn).

(3.8)
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The first and the second equalities are immediate, while the third inequality is a direct
consequence of the fact that the dilation u �→ u(R0 ·) is an isomorphism over Bs,pα,s,q(Rn).
Using (1.8) and the fact that λ1, λ2 ≥ 0, we have

Fα,s,q
[
uj ;λ1, λ2

] ≤
( ∥∥uj

∥∥
L∞(Rn)∥∥∇uj
∥∥
Ln(Rn)

)n/(n−1)

− λ1�
(

1
Cα,s,R0

∥∥uj
∥∥
Bs,pα,s,q(Rn)∥∥∇uj
∥∥
Ln(Rn)

)

− λ2� ◦ �
(

1
Cα,s,R0

∥∥uj
∥∥
Bs,pα,s,q(Rn)∥∥∇uj
∥∥
Ln(Rn)

)

≤
( ∥∥vj

∥∥
L∞(Ω)∥∥∇vj
∥∥
Ln(Ω)

)n/(n−1)

− λ1�
(∥∥vj

∥∥
Bs,pα,s,q(Ω)∥∥∇vj
∥∥
Ln(Ω)

)

− λ2� ◦ �
(∥∥vj

∥∥
Bs,pα,s,q(Ω)∥∥∇vj
∥∥
Ln(Ω)

)
+ Cα,s,R0,λ1,λ2

= Fα,s,q
[
vj ;λ1, λ2

]
+ Cα,s,R0,λ1,λ2 ,

(3.9)

from which we conclude that Fα,s,q[vj ;λ1, λ2] → ∞ as j → ∞.

We now concentrate on the proof of Lemma 3.2, and we first prepare several lemmas.
Let ϕ̃0 ∈ C∞

c ((0,∞)) be a smooth function that is nonnegative, supported on the
interval [1, 4] and satisfies

∞∑
l=−∞

ϕ̃0
(
2l+2t
)
= 1 for t > 0. (3.10)

Observe that (3.10) forces ϕ̃0(2) = 1.

Proposition 3.3. (i) It holds

χ[1/2j+1,1/4](t) ≤
j∑
l=1

ϕ̃0
(
2l+2t
)
≤ χ[1/2j+2,1/2](t) for j ∈ N. (3.11)

(ii) It holds

∫∞
0

ϕ̃0(t)
t

dt = log 2. (3.12)

Proof. (i) In view of the size of the support of ϕ̃0, we easily obtain (3.11).
(ii) If we integrate both the sides of inequality (3.11), then we have

1
j

∫1/4
1/2j+1

1
t
dt ≤ 1

j

j∑
l=1

∫∞
0

ϕ̃0(2l+2t)

t
dt =
∫∞
0

ϕ̃0(t)
t

dt ≤ 1
j

∫1/2
1/2j+2

1
t
dt. (3.13)
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As a consequence, it follows that

(
log 2
)(

1 − 1
j

)
≤
∫∞
0

ϕ̃0(t)
t

dt ≤ (log 2)
(
1 +

1
j

)
. (3.14)

A passage to the limit as j → ∞ therefore yields (3.12).

Define

wl(x) =
∫∞
|x|

ϕ̃0(2l+2t)

t
dt for x ∈ R

n, l ∈ N. (3.15)

Note that wl = w1(2l−1·). Set

uj(x) =
1(

log 2
)
j

j∑
l=1

wl(x) for x ∈ R
n, j ∈ N. (3.16)

We also note that suppuj ⊂ B1/2 since suppwl ⊂ B1/2l .
When we are going to specify the best constant,(3.19) is the heart of the matter.

Lemma 3.4. Let n ≥ 2 and 0 < p <∞. Then one has

∥∥uj
∥∥
L∞(Rn) = 1 for j ∈ N, (3.17)

(
1 − 1/j

)p

nΛn−1
1 2n(j+1)

≤ ∥∥uj
∥∥p
Lp(Rn) ≤

(
1 + 1/j

)p

nΛn−1
1

for j ∈ N, (3.18)

1 − 1/j
((
log 2
)
Λ1
)n−1

jn−1
≤ ∥∥∇uj

∥∥n
Ln(Rn) ≤

1 + 1/j
((
log 2
)
Λ1
)n−1

jn−1
for j ∈ N. (3.19)

Proof. It is not so hard to prove (3.17). Indeed, a change of variables yields

∥∥uj
∥∥
L∞(Rn) = uj(0) =

1(
log 2
)
j

∫∞
0

j∑
l=1

ϕ̃0(2l+2t)

t
dt =

1
log 2

∫∞
0

ϕ̃0(t)
t

dt. (3.20)

Thus, we obtain (3.17) by applying (3.12).
We next verify (3.18). Recall that Λ1 is defined by Λ1 = 1/ω1/(n−1)

n−1 . If we insert the
definitions (3.15) and (3.16), then we have

∥∥uj
∥∥p
Lp(Rn) =

1
Λn−1

1

((
log 2
)
j
)p
∫1
0

(∫∞
r

1
t

j∑
l=1

ϕ̃0
(
2l+2t
)
dt

)p

rn−1dr. (3.21)
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Using (3.11), we have

∥∥uj
∥∥p
Lp(Rn) ≤

1
Λn−1

1

((
log 2
)
j
)p
∫1
0

(∫∞
r

χ[1/2j+2,1/2](t)
t

dt

)p

rn−1dr

≤ 1
Λn−1

1

((
log 2
)
j
)p
∫1
0

(∫1/2
1/2j+2

1
t
dt

)p

rn−1dr

=

(
1 + 1/j

)p

nΛn−1
1

,

‖uj‖pLp(Rn) ≥
1

Λn−1
1

((
log 2
)
j
)p
∫1
0

(∫∞
r

χ[1/2j+1,1/4](t)
t

dt

)p

rn−1dr

≥ 1
Λn−1

1

((
log 2
)
j
)p
∫1/2j+1

0

(∫1/4
1/2j+1

1
t
dt

)p

rn−1dr

=

(
1 − 1/j

)p

nΛn−1
1 2n(j+1)

.

(3.22)

Equation (3.19) is a simple but delicate inequality, since we need to take a full
advantage of the definition of (1.3) and the equality

∇uj(x) = − 1(
log 2
)
j

(
j∑
l=1

ϕ̃0
(
2l+2|x|

)) x

|x|2
. (3.23)

Also, a direct calculation shows that

∥∥∇uj
∥∥n
Ln(Rn) =

1
Λn−1

1

((
log 2
)
j
)n
∫1
0

(
j∑
l=1

ϕ̃0
(
2l+2t
))n

1
t
dt. (3.24)

By using (3.11), we have

∥∥∇uj
∥∥n
Ln(Rn) ≤

1
Λn−1

1

((
log 2
)
j
)n
∫1/2
1/2j+2

1
t
dt =

1 + 1/j
((
log 2
)
Λ1
)n−1

jn−1
,

∥∥∇uj
∥∥n
Ln(Rn) ≥

1
Λn−1

1

((
log 2
)
j
)n
∫1/4
1/2j+1

1
t
dt =

1 − 1/j
((
log 2
)
Λ1
)n−1

jn−1
.

(3.25)

Let us estimate the Besov norm of uj , which is the most delicate in this proof.
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Lemma 3.5. Let n ≥ 2, α > 0, s ≥ n + α, and 0 < q ≤ pα,s. Then one has

∥∥uj
∥∥
Bs,pα,s,q(Rn) ≤ Cα,s,q

2αj

j
for j ∈ N. (3.26)

Lemma 3.5 is reduced to Propositions 3.6 and 3.7 below, which concern lower
frequency part and higher frequency part, respectively.

Proposition 3.6. Take ψ0 satisfying (1.12). Let n ≥ 2, α > 0, and s ≥ n + α. Then there exists a
constant Cα,s such that

∥∥∥ψ0(D)uj
∥∥∥
Lpα,s (Rn)

≤ Cα,s for j ∈ N. (3.27)

Proposition 3.7. Take ϕ0 satisfying (1.12). Let n ≥ 2, α > 0, s ≥ n + α, and 0 < q ≤ pα,s. Then there
exists a constant Cα,s,q such that

( ∞∑
k=0

2sqk
∥∥∥ϕ0

k(D)uj
∥∥∥
q

Lpα,s (Rn)

)1/q

≤ Cα,s,q
2αj

j
for j ∈ N. (3.28)

Form > 0, let us set

φm(x) =
1

(1 + |x|)n+m for x ∈ R
n (3.29)

and estimate ‖φm ∗ χBR‖Lp(Rn) crudely, where 0 < p ≤ ∞ and R > 0. Let s+ denote the positive
part of s ∈ R, that is, s+ = max{s, 0}.

Proposition 3.8. If m > n(1/p − 1)+, 0 < p ≤ ∞, and R > 0, then there exists a constant Cp,m > 0
such that

∥∥φm ∗ χBR
∥∥
Lp(Rn) ≤ Cp,mmax

{
Rn, Rn/p

}
. (3.30)

Proof. Let us decompose the estimate of ‖φm ∗ χBR‖Lp(Rn) according to B2R. As for the estimate
inside B2R, we have

∥∥φm ∗ χBR
∥∥
Lp(B2R)

=

(∫

B2R

(∫

BR

1
(1 + |x − z|)n+mdz

)p

dx

)1/p

≤
(∫

B2R

(∫

Rn

1
(1 + |x − z|)n+mdz

)p
dx

)1/p

=
(
2ωn−1
n

)n/p∥∥φm∥∥L1(Rn)R
n/p.

(3.31)
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Let us turn to the estimate outside B2R. Since

|x| ≤ |x − z| + |z| < |x − z| + R ≤ |x − z| + |x| − |z| ≤ 2|x − z|
for x ∈ R

n \ B2R, z ∈ BR,
(3.32)

we have

∥∥φm ∗ χBR
∥∥
Lp(Rn\B2R)

=

(∫

Rn\B2R

(∫

BR

1
(1 + |x − z|)n+mdz

)p

dx

)1/p

≤
(∫

Rn

(∫

BR

1
(1 + |x|/2)n+mdz

)p

dx

)1/p

=

(
21/pωn−1

n

)n∥∥φm∥∥Lp(Rn)R
n.

(3.33)

Thus we have proved the assertion.

We first prove Proposition 3.6. We abbreviate χB2l
= χl for l ∈ Z.

Proof of Proposition 3.6. Choose mα,s ∈ N satisfying mα,s > n(1/pα,s − 1) = s − α − n. Since
F−1ψ0 ∈ S(Rn), we have

∣∣∣F−1ψ0(x)
∣∣∣ ≤ Cα,sφ

mα,s(x) for x ∈ R
n. (3.34)

It follows from (3.17) that uj(x) ≤ χ0(x) for x ∈ R
n. Applying Proposition 3.8, we have

∥∥∥ψ0(D)uj
∥∥∥
Lpα,s (Rn)

=
1

(2π)n/2

∥∥∥
(
F−1ψ0

)
∗ uj
∥∥∥
Lpα,s (Rn)

≤ Cα,s

∥∥φmα,s ∗ χ0
∥∥
Lpα,s (Rn) ≤ Cα,s.

(3.35)

Let us turn to proving Proposition 3.7.

Proof of Proposition 3.7. Since ϕk does not contain the origin as its support, we can define
smooth functions ϕN(ξ), ϕN

k
(ξ) ∈ C∞

c (Rn) by

ϕN(ξ) =
ϕ0(ξ)

|ξ|2N
, ϕNk (ξ) = ϕN

(
ξ

2k

)
=

(
2k

|ξ|

)2N

ϕ0
(
ξ

2k

)

for ξ ∈ R
n, N ∈ N, k ∈ N ∪ {0}.

(3.36)
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A direct calculation shows that

22Nkϕ0
k(D)wl(x) = ϕNk (D)(−Δ)Nwl(x), (3.37)

where Δ denotes the Laplacian on R
n. Keeping (3.37) in mind, let us calculate

‖ϕN
k
(D)(−Δ)Nwl‖Lpα,s (Rn). Note that the self-similarity wl = w1(2l−1·) yields

∣∣∣(−Δ)Nwl(x)
∣∣∣ = 22N(l−1)

∣∣∣
[
(−Δ)Nw1

](
2l−1x
)∣∣∣ ≤ CN22Nlχ−l(x) for x ∈ R

n. (3.38)

Choosemα,s ∈ N satisfyingmα,s > n(1/pα,s − 1) = s − α − n. Since F−1ϕN ∈ S(Rn), we have

∣∣∣F−1ϕN(x)
∣∣∣ ≤ Cα,s,Nφ

mα,s(x) for x ∈ R
n, (3.39)

and hence

∣∣∣F−1ϕNk (x)
∣∣∣ = 2nk

∣∣∣
[
F−1ϕN

](
2kx
)∣∣∣ ≤ Cα,s,N2nkφmα,s

(
2kx
)

for x ∈ R
n. (3.40)

As a result, we obtain

∣∣∣ϕNk (D)(−Δ)Nwl(x)
∣∣∣ = 1

(2π)n/2

∣∣∣
(
F−1ϕNk

)
∗ (−Δ)Nwl(x)

∣∣∣

≤ Cα,s,N22Nl+nk
∣∣∣
[
φmα,s

(
2k·
)]

∗ χ−l(x)
∣∣∣

= Cα,s,N22Nl+nk
∣∣∣
[
φmα,s

(
2k·
)]

∗
[
χk−l
(
2k·
)]

(x)
∣∣∣

= Cα,s,N22Nl
∣∣∣[φmα,s ∗ χk−l

](
2kx
)∣∣∣ for x ∈ R

n.

(3.41)

If we take the Lpα,s -norm and use the pointwise estimate above, then we obtain

2sk
∥∥∥ϕ0

k(D)wl

∥∥∥
Lpα,s (Rn)

= 2(s−2N)k
∥∥∥ϕNk (D)(−Δ)Nwl

∥∥∥
Lpα,s (Rn)

≤ Cα,s,N22N(l−k)+sk
∥∥∥(φmα,s ∗ χk−l

)(
2k·
)∥∥∥

Lpα,s (Rn)

= Cα,s,N22N(l−k)+αk∥∥φmα,s ∗ χk−l
∥∥
Lpα,s (Rn).

(3.42)

Sincemα,s > n(1/pα,s − 1) and α + n/pα,s = s, by Proposition 3.8 we have

2sk
∥∥∥ϕ0

k(D)wl

∥∥∥
Lpα,s (Rn)

≤ Cα,s,N2αl−(α+n−2N)(l−k) for l ≥ k, (3.43)

2sk
∥∥∥ϕ0

k(D)wl

∥∥∥
Lpα,s (Rn)

≤ Cα,s,N2αl−(2N−s)(k−l) for l ≤ k (3.44)
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for allN ∈ N. By lettingN = 1 in (3.43) andN = �(s + α)/2� + 1 in (3.44), we obtain

2sk
∥∥∥ϕ0

k(D)wl

∥∥∥
Lpα,s (Rn)

≤ Cα,s2α(l−|l−k|) for l ∈ N (3.45)

because min{α + n − 2, 2�(s + α)/2� + 2 − s} ≥ α, where �(s + α)/2� denotes the integer part of
(s + α)/2. Since uj =

∑j

l=1wl, we have

( ∞∑
k=0

2sqk
∥∥∥ϕ0

k(D)uj
∥∥∥
q

Lpα,s (Rn)

)1/q

≤ 1(
log 2
)
j

( ∞∑
k=0

j∑
l=1

2sqk
∥∥∥ϕ0

k(D)wl

∥∥∥
q

Lpα,s (Rn)

)1/q

. (3.46)

Thus by using (3.45) and q ≤ pα,s ≤ 1, we have

( ∞∑
k=0

2sqk
∥∥∥ϕ0

k(D)uj
∥∥∥
q

Lpα,s (Rn)

)1/q

≤ Cα,s

j

( ∞∑
k=0

j∑
l=1

2αq(l−|l−k|)
)1/q

=
Cα,s

j

(
j∑
l=1

∞∑
k=0

2αq(l−|k−l|)
)1/q

=
Cα,s

j

(
j∑
l=1

2αql
2αq + 1 − 1/2α(l−1)q

2αq − 1

)1/q

≤ Cα,s,q

j

(
j∑
l=1

2αql
)1/q

≤ Cα,s,q
2αj

j
.

(3.47)

Thus we obtain the desired conclusion.

Finally we prove Lemma 3.2.

Proof of Lemma 3.2. Let jα ≥ en + 1 be sufficiently large so that 2αjα ≥ (jα − 1)1/n. We estimate
Fα,s,q[uj ;λ1, λ2] from below for j ≥ jα. We have from (3.17) and (3.19) that

( ∥∥uj
∥∥
L∞(Rn)∥∥∇uj
∥∥
Ln(Rn)

)n/(n−1)

≥
(
log 2
)
Λ1j

(
1 + 1/j

)1/(n−1) . (3.48)

It was an elementary arithmetic to deduce (1.8). Another elementary arithmetic we need is

�(t) ≤ log t + log 2 ≤ t for t ≥ 1,

�(r + t) ≤ log r + log t + log 3 for r, t ≥ 1.
(3.49)
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We deduce from Lemma 3.5 that

�

(∥∥uj
∥∥
Bs,pα,s,q(Rn)∥∥∇uj
∥∥
Ln(Rn)

)
≤ �
(
Cα,s,q

2αj
(
j − 1
)1/n
)
. (3.50)

We estimate the right-hand side to obtain The result is

�

(∥∥uj
∥∥
Bs,pα,s,q(Rn)∥∥∇uj
∥∥
Ln(Rn)

)

≤ �
(

2αj
(
j − 1
)1/n
)

+ Cα,s,q ≤ log

(
2αj

(
j − 1
)1/n
)

+ Cα,s,q

=
(
log 2
)
αj − 1

n
log
(
j − 1
)
+ Cα,s,q ≤

(
log 2
)
αj − 1

n
log j + Cα,s,q

� ◦ �
(∥∥uj

∥∥
Bs,pα,s,q(Rn)∥∥∇uj
∥∥
Ln(Rn)

)
≤ �
((

log 2
)
αj − 1

n
log j + Cα,s,q

)
.

(3.51)

We may and do remove −(1/n) log j to obtain the conclusion as follows:

� ◦ �
(∥∥uj

∥∥
Bs,pα,s,q(Rn)

‖∇uj‖Ln(Rn)

)

≤ �((log 2)αj + Cα,s,q

) ≤ log
((
log 2
)
αj
)
+ Cα,s,q = log j + Cα,s,q.

(3.52)

We next invoke the fact that

h

1 − 1/(1 + h)1/(n−1)
=

n−1∑
k=1

(1 + h)k/(n−1) > n − 1 for h > 0. (3.53)

By putting h = 1/j, we have

1
(
1 + 1/j

)1/(n−1) > 1 − 1
(n − 1)j

for j ≥ 1. (3.54)
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Therefore, we obtain

Fα,s,q
[
uj ;λ1, λ2

]

≥ (log 2)Λ1

(
1

(
1 + 1/j

)1/(n−1) −
αλ1
Λ1

)
j +
(
λ1
n

− λ2
)
log j − Cα,s,q,λ1,λ2

>
(
log 2
)
Λ1

((
1 − αλ1

Λ1

)
j − 1

n − 1

)
+
(
λ1
n

− λ2
)
log j − Cα,s,q,λ1,λ2

−→ ∞ as j −→ ∞

(3.55)

under assumption (III) or (IV).

Remark 3.9. As we stated in Remark 1.12, if r > n/(n − 1), then for any λ1 > 0 and any
constant C, (1.19) does not hold for some u ∈W1,n

0 (Ω)∩X(Ω)with ‖∇u‖Ln(Ω) = 1. To see this,
let r = (1 + ε)n/(n − 1), ε > 0, and define

Fα,s,q,ε[u;λ1] =

( ‖u‖L∞(Ω)

‖∇u‖Ln(Ω)

)(1+ε)n/(n−1)
− λ1�

(‖u‖Bs,pα,s,q(Ω)

‖∇u‖Ln(Ω)

)

for u ∈W1,n
0 (Ω) ∩ Bs,pα,s,q0 (Ω) \ {0}

(3.56)

instead of Fα,s,q[u;λ1, λ2]. We argue as in the proof of Lemma 3.2 to obtain

Fα,s,q,ε
[
uj ;λ1

] ≥
(

(log 2)Λ1j(
1 + 1/j

)1/(n−1)
)1+ε

− (log 2)αλ1j + λ1
n

log j − λ1Cα,s,q

≥
(
(log 2)Λ1j

2

)1+ε

− (log 2)αλ1j + λ1
n

log j − λ1Cα,s,q

−→ ∞ as j −→ ∞,

(3.57)

which provides the assertion above.

4. Establishment of the Inequality (I)

In this section, we will prove Theorem 1.5(i) and Theorem 1.7(i).
The following theorem, which provides the corresponding result for X(Ω) = Ċ0,α(Ω),

is essential for proving them.

Theorem 4.1 ([8, Theorem 1.1]). Let n ≥ 2, 0 < α ≤ 1, let Ω be a bounded domain in R
n, and

X(Ω) = Ċ0,α(Ω). Assume that either (I) or (II) holds. Then there exists a constant C such that the
inequality (1.7) holds for all u ∈W1,n

0 (Ω) ∩ Ċ0,α(Ω) with ‖∇u‖Ln(Ω) = 1.

We should mention that Ibrahim et al. [16, Theorems 1.3 and 1.4] have already
obtained a similar result in the 2-dimensional case.
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First, we prove Theorem 1.5(i). If 0 < α < 1, s ≥ α, and 0 < q ≤ ∞, then we have

‖u‖Ċ0,α(Ω) ≤ Cα,s,q‖u‖As,pα,s,q(Ω) for u ∈ As,pα,s,q(Ω) (4.1)

since Lemmas 2.1 and 2.2 give As,pα,s,q(Ω) ↪→ As,pα,s,∞(Ω) ↪→ Bs,pα,s,∞(Ω) ↪→ Bα,∞,∞(Ω) �
C0,α(Ω) ↪→ Ċ0,α(Ω). In view of Proposition 1.2 (i), Theorem 1.5 (i) immediately follows from
what we have been calculating, that is, Theorem 4.1 and (4.1).

To prove Theorem 1.7(i), Lemmas 2.1 and 2.2 reduce the matters to the following
proposition:

Proposition 4.2. Let n ≥ 2, α ≥ 1, let Ω be a bounded domain in R
n satisfying the strong local

Lipschitz condition, and X(Ω) = Bα,∞,∞(Ω). Assume that either (I) or (II)′ holds. Then there exists a
constant C such that inequality (1.7) holds for all u ∈W1,n

0 (Ω) ∩ Bα,∞,∞(Ω) with ‖∇u‖Ln(Ω) = 1.

To prove it, we apply Theorem 1.5 (i).

Proof of Proposition 4.2.

Step 1. Consider the case λ2 ≥ 0. Under assumption (I), choose 0 < γ < 1 arbitrarily, and then

α

γ
λ1 >

Λ1

γ
, λ2 ∈ R. (4.2)

Under assumption (II)′, choose 0 < γ < 1 such that λ2 ≥ Λ2/γ , and then

α

γ
λ1 =

Λ1

γ
, λ2 ≥ Λ2

γ
. (4.3)

We apply Theorem 4.1 with replacing α by γ to obtain

‖u‖n/(n−1)L∞(Ω) ≤ α

γ
λ1�
(
‖u‖Ċ0,γ (Ω)

)
+ λ2� ◦ �

(
‖u‖Ċ0,γ (Ω)

)
+ CΩ,α,γ,λ1,λ2 (4.4)

for u ∈W1,n
0 (Ω) ∩ Ċ0,γ(Ω)with ‖∇u‖Ln(Ω) = 1. On the other hand, Lemma 2.1 gives

‖u‖Ċ0,γ (Ω) ≤ ‖u‖C0,γ (Ω) ≤ Cγ‖u‖Bγ,∞,∞(Ω). (4.5)
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Combining (2.21), (4.4), and (4.5) yields

‖u‖n/(n−1)L∞(Ω) ≤ α

γ
λ1�
(
Cα,γ‖u‖γ/αBα,∞,∞(Ω)

)

+ λ2� ◦ �
(
Cα,γ‖u‖γ/αBα,∞,∞(Ω)

)
+ CΩ,α,γ,λ1,λ2

≤ λ1�
(
2
(
1 + Cα,γ‖u‖Bα,∞,∞(Ω)

))

+ λ2�
( γ
α
log
(
2
(
1 + Cα,γ‖u‖Bα,∞,∞(Ω)

)))
+ CΩ,α,γ,λ1,λ2

≤ λ1�
(
‖u‖Bα,∞,∞(Ω)

)
+ λ2� ◦ �

(
‖u‖Bα,∞,∞(Ω)

)
+ CΩ,α,γ,λ1,λ2

(4.6)

for u ∈W1,n
0 (Ω) ∩ Bα,∞,∞(Ω)with ‖∇u‖Ln(Ω) = 1, and the assertion follows.

Step 2. Consider the remaining case λ1 > Λ1/α and λ2 < 0. We argue as in the proof of
Lemma 5.4. Let δ = λ1/2−Λ1/(2α). Note that δ > 0 and λ1−δ > Λ1/α. Since �◦�(s)/�(s) → 0
as s → ∞, there exists a constant Cδ > 0 such that

� ◦ �(s) ≤ − δ

λ2
�(s) + Cδ for s ≥ 0. (4.7)

We have from Step 1 that

‖u‖n/(n−1)L∞(Ω) ≤ (λ1 − δ)�
(
‖u‖Bα,∞,∞(Ω)

)
+ CΩ,α,λ1,δ (4.8)

holds for u ∈W1,n
0 (Ω) ∩ Bα,∞,∞(Ω)with ‖∇u‖Ln(Ω) = 1. Then

‖u‖n/(n−1)L∞(Ω) ≤ λ1�
(
‖u‖Bα,∞,∞(Ω)

)
+ λ2� ◦ �

(
‖u‖Bα,∞,∞(Ω)

)
+ CΩ,α,λ1,λ2,δ (4.9)

holds for u ∈W1,n
0 (Ω) ∩ Bα,∞,∞(Ω)with ‖∇u‖Ln(Ω) = 1, and the assertion follows.

Remark 4.3. As is mentioned in the introduction, the power r = n/(n−1) on the left-hand side
of (1.7) is optimal (in the case α ≥ 1) in the sense that r = n/(n − 1) is the largest power for
which there exist λ1 and C such that

‖u‖rL∞(Ω) ≤ λ1�
(
‖u‖Bα,∞,∞(Ω)

)
+ C (4.10)

can hold for all u ∈W1,n
0 (Ω)∩Bα,∞,∞(Ω)with ‖∇u‖Ln(Ω) = 1. Indeed, if 1 ≤ r < n/(n− 1), then

for any λ1 > 0, there exists a constant C such that (4.10) holds for all u ∈W1,n
0 (Ω) ∩ Bα,∞,∞(Ω)

with ‖∇u‖Ln(Ω) = 1. An argument similar to Proposition 4.2 works if we invoke the fact in [8,
Remark 3.5] (for 0 < α < 1). Namely, the assertion for α ≥ 1 follows from the corresponding
fact in the case 0 < α < 1.
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5. Establishment of the Inequality (II)

In this section, we will prove Theorem 1.9(i). In analogy with (4.1), if 1 < α < 2, s ≥ α and
0 < q ≤ ∞, then we have

‖u‖Ċ1,α−1(Ω) ≤ Cα,s,q‖u‖As,pα,s,q(Ω) for u ∈ As,pα,s,q(Ω). (5.1)

By Proposition 2.4, it holds

‖u‖Ċ1,α−1
∇ (Ω) ≤ Cα‖u‖Ċ1,α−1(Ω) for u ∈ Ċ1,α−1(Ω). (5.2)

In view of (5.1), (5.2), and Proposition 1.2 (i), Theorem 1.9 (i)will have been proved once we
establish the following theorem, which extends Theorem 4.1 to the case 1 < α ≤ 2.

Theorem 5.1. Let n ≥ 2, 1 < α ≤ 2, and let Ω be a bounded domain in R
n and X(Ω) = Ċ1,α−1

∇ (Ω).
Assume that either (I) or (II) holds. Then there exists a constant C such that inequality (1.7) holds for
all u ∈W1,n

0 (Ω) ∩ Ċ1,α−1
∇ (Ω) ∩ Cc(Ω) with ‖∇u‖Ln(Ω) = 1.

We argue as in [8] to prove Theorem 5.1.
In order to obtain our results, we examine a problem of minimizing ‖∇u‖n

Ln(Ω) with a
unilateral constraint. Let 0 < τ ≤ 1. We consider the following minimizing problem:

m[Ω, hτ] = inf
{
‖∇u‖nLn(B1);u ∈ K[B1, hτ]

}
, (M;B1;hτ)

where

K[B1, hτ] =
{
u ∈W1,n

0 (B1); u ≥ hτ a.e. onB1

}
. (5.3)

Here the obstacle function hτ is given by

hτ(x) = h̃τ(|x|) = 1 −
( |x|
Tτ

)α
for x ∈ R

n, (5.4)

where

Tτ = τ
(
α log

1
τ
+ 1
)1/α

. (5.5)

It is crucial to prove the following fact, which explicitly gives the minimizer u#τ of the
minimizing problem (M;B1;hτ) with a parameter 0 < τ ≤ 1.

Then we can prove the following fact for 0 < α ≤ 1 as in [8]. Meanwhile it is also valid
for 1 < α ≤ 2; the proof is completely identical.
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Lemma 5.2. Let n ≥ 2 and 0 < α ≤ 2. For any 0 < τ ≤ 1, the unique minimizer u#τ of (M;B1;hτ) is
given by

u#τ(x) = ũ
#
τ(|x|) =

⎧
⎪⎨
⎪⎩

hτ(x) for x ∈ Bτ ,

α

(
τ

Tτ

)α
log

1
|x| for x ∈ B1 \ Bτ .

(5.6)

Remark 5.3. We can calculate the norms of u#τ as

∥∥∥u#τ
∥∥∥
L∞(B1)

= 1,
∥∥∥∇u#τ

∥∥∥
n

Ln(B1)
=
(
α

Λ1

)n−1 α log(1/τ) + 1/n(
α log(1/τ) + 1

)n , (5.7)

∥∥∥u#τ
∥∥∥
Ċ1,α−1

∇ (B1)
=
α22−α

Tατ
. (5.8)

Although equalities (5.7) are straightforward and elementary, we will verify equality (5.8) in
the appendix for the sake of completeness. We prove Theorem 5.1 by accepting (5.8).

In order to examine whether (1.7) holds or not, we may assume that λ1 ≥ 0 and define

Fγ[u;λ1, λ2] =

( ‖u‖L∞(Ω)

‖∇u‖Ln(Ω)

)n/(n−1)
− λ1�

(
γ
‖u‖Ċ1,α−1

∇ (Ω)

‖∇u‖Ln(Ω)

)
− λ2� ◦ �

(
γ
‖u‖Ċ1,α−1

∇ (Ω)

‖∇u‖Ln(Ω)

)

for u ∈W1,n
0 (Ω) ∩ Ċ1,α−1

∇ (Ω) \ {0}, γ > 0,

F[u;λ1, λ2] = F1[u;λ1, λ2],

(5.9)

F∗[λ1, λ2;Ω] = sup
{
F[u;λ1, λ2]; u ∈W1,n

0 (Ω) ∩ Ċ1,α−1
∇ (Ω) ∩ Cc \ (Ω){0}

}
(5.10)

for λ1 ≥ 0, λ2 ∈ R. Note that

F[cu;λ1, λ2] = F[u;λ1, λ2] ∀c ∈ R \ {0}. (5.11)

We also remark that

Fγ[u;λ1, λ2] ≤ F[u;λ1, λ2] + Cγ,λ1,λ2 for u ∈W1,n
0 (Ω) ∩ Ċ1,α−1

∇ (Ω) \ {0}. (5.12)
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Indeed, since max{�(st), �(s + t)} ≤ �(s) + �(t) for s, t ≥ 0, we have

Fγ[u;λ1, λ2] − F[u;λ1, λ2]

= λ1

(
�

(‖u‖Ċ1,α−1
∇ (Ω)

‖∇u‖Ln(Ω)

)
− �
(
γ
‖u‖Ċ1,α−1

∇ (Ω)

‖∇u‖Ln(Ω)

))

+ λ2

(
� ◦ �
(‖u‖Ċ1,α−1

∇ (Ω)

‖∇u‖Ln(Ω)

)
− � ◦ �

(
γ
‖u‖Ċ1,α−1

∇ (Ω)

‖∇u‖Ln(Ω)

))

≤ λ1�
(
1
γ

)
+ |λ2|� ◦ �

(
1

γ sgnλ2

)
.

(5.13)

Then under our new notations, Theorem 5.1 is equivalent to the following.

Lemma 5.4. Let Ω be a bounded domain in R
n. Then the following hold.

(i) For any λ1 > Λ1/α and λ2 ∈ R, it holds F∗[λ1, λ2;Ω] <∞.

(ii) For any λ2 ≥ Λ2/α, it holds F∗[Λ1/α, λ2;Ω] <∞.

The aim of this section is to prove Lemma 5.4. Let us first reduce our problem on a
general bounded domain Ω to that on the unit open ball B1. We set

K̂ =
{
u ∈W1,n

0 (B1) ∩ Ċ1,α−1
∇ (B1); ‖u‖L∞(B1) = u(0) = 1

}
,

F̂∗[λ1, λ2] = sup
{
F[u;λ1, λ2]; u ∈ K̂

}
for λ1 ≥ 0, λ2 ∈ R.

(5.14)

Proposition 5.5. Let Ω be a bounded domain in R
n and λ1 ≥ 0, λ2 ∈ R. If F̂∗[λ1, λ2] < ∞, then it

holds F∗[λ1, λ2;Ω] <∞.

Proof. Let u ∈ W1,n
0 (Ω) ∩ Ċ1,α−1

∇ (Ω) ∩ Cc(Ω) \ {0}. Suppose that |u| attains its maximum at a
point zu ∈ Ω. Define a function vu : B1 → R by

vu(x) =

⎧
⎪⎨
⎪⎩

sgnu(zu)
‖u‖L∞(Ω)

u(dΩx + zu) if dΩx + zu ∈ Ω,

0 otherwise
(5.15)

for x ∈ B1, where dΩ = diamΩ = sup{|x − y|; x, y ∈ Ω}. Then we have vu ∈ K̂ and

‖∇vu‖Ln(B1) =
‖∇u‖Ln(Ω)

‖u‖L∞(Ω)
, ‖vu‖Ċ1,α−1

∇ (B1) = d
α
Ω

‖u‖Ċ1,α−1
∇ (Ω)

‖u‖L∞(Ω)
(5.16)
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by the dilation property and translation invariance. Applying (5.12), we have

F[u;λ1, λ2] = F1/dαΩ[vu;λ1, λ2] = F[vu;λ1, λ2] + CΩ,α,λ1,λ2

≤ F̂∗[λ1, λ2] + CΩ,α,λ1,λ2 for u ∈W1,n
0 (Ω) ∩ Ċ1,α−1

∇ (Ω) ∩ Cc(Ω) \ {0}.
(5.17)

Therefore, if F̂∗[λ1, λ2] <∞, then F∗[λ1, λ2;Ω] <∞.

For κ > 0 and μ1, μ2 ≥ 0, define

Gκ

(
s;μ1, μ2

)
=
(
(s + 1)n

s + 1/n

)1/(n−1)
− μ1�

(
κes

(s + 1/n)1/n

)

− μ2

n
� ◦ �
(

κes

(s + 1/n)1/n

)
for s ≥ 0.

(5.18)

As we will see just below, Gκ(s;μ1, μ2) majorizes F̂∗[λ1, λ2]. The idea of the proof of
Proposition 5.6 is essentially due to [16].

Proposition 5.6. For any λ1 ≥ 0 and λ2 ∈ R, it holds

F̂∗[λ1, (λ2)+] ≤
Λ1

α
sup
s≥0

G(Λ1/α)
1−1/n

(
s;

α

Λ1
λ1,

α

Λ2
λ2

)

+
. (5.19)

Proof. (a) We claim that K̂ is partitioned into {K̂τ}0<τ≤1:

K̂ =
∐
0<τ≤1

K̂τ , (5.20)

where

K̂τ =
{
u ∈ K[B1, hτ] ∩ Ċ1,α−1

∇ (B1); ‖u‖Ċ1,α−1
∇ (B1) =

1
Tατ
, ‖u‖L∞(B1) = u(0) = 1

}
. (5.21)

It is trivial that K̂τ ⊂ K̂ for all 0 < τ ≤ 1. Conversely, for any u ∈ K̂, we have

‖∇u‖L∞(B1) ≥ 1. (5.22)

Indeed, for x ∈ ∂B1 = Sn−1, we see that

1 = u(0) − u(x) = −
∫1
0
x · [∇u](tx)dt ≤ |x|

∫1
0
|[∇u](tx)|dt ≤ ‖∇u‖L∞(B1). (5.23)
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Therefore, since |∇u| is continuous, |∇u| attains its maximum at some x0 ∈ B1. Since u attains
its maximum at the origin, the gradient vanishes there. Hence we have

‖u‖Ċ1,α−1
∇ (B1) = ‖∇u‖Ċ0,α−1(B1;Rn) ≥

|∇u(x0) − ∇u(0)|
|x0 − 0|α−1

=
|∇u(x0)|
|x0|α−1

≥ 1. (5.24)

The triangle inequality for integrals yields

u(x) = 1 + u(x) − u(0)

= 1 +
∫1
0
x · [∇u](tx)dt ≥ 1 − |x|

∫1
0
|[∇u](tx)|dt

= 1 − |x|α
∫1
0
tα−1

|[∇u](tx) − ∇u(0)|
|tx − 0|α−1

dt.

(5.25)

From the definition of the seminorm, we obtain

u(x) ≥ 1 − 1
α
‖∇u‖Ċ0,α−1(B1;Rn)|x|α ≥ 1 − ‖∇u‖Ċ0,α−1(B1;Rn)|x|α

= 1 − ‖u‖Ċ1,α−1
∇ (B1)|x|

α for x ∈ B1.

(5.26)

Then, u ∈ K̂τ with 1/Tατ = ‖u‖Ċ1,α−1
∇ (B1) ≥ 1, and hence we obtain (5.20).

(b) Next we show that

F[u;λ1, (λ2)+] ≤ Fα22−α
[
u#τ ;λ1, λ2

]
+

for u ∈ K̂τ . (5.27)

Here Fα22−α is given by (5.9) with γ = α22−α. Note that ‖∇u‖Ln(B1) ≥ ‖∇u#τ‖Ln(B1) for all u ∈
K[B1, hτ]. We also remark that ‖u#τ‖Ċ1,α−1

∇ (B1) = α22−α/Tατ and ‖u#τ‖L∞(B1) = u#τ(0) = 1. Since the
functions

(0,∞) � s �−→ sn/(n−1)�
(
1
s

)
∈ (0,∞), (0,∞) � s �−→ sn/(n−1)� ◦ �

(
1
s

)
∈ (0,∞) (5.28)
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are both increasing, we have

‖∇u‖n/(n−1)Ln(B1)
F[u;λ1, (λ2)+] = 1 − λ1‖∇u‖n/(n−1)Ln(B1)

�

(
1
Tατ

1
‖∇u‖Ln(B1)

)

− (λ2)+‖∇u‖n/(n−1)Ln(B1)
� ◦ �
(

1
Tατ

1
‖∇u‖Ln(B1)

)

≤ 1 − λ1
∥∥∥∇u#τ

∥∥∥
n/(n−1)

Ln(B1)
�

(
1
Tατ

1∥∥∇u#τ
∥∥
Ln(B1)

)

− λ2
∥∥∥∇u#τ

∥∥∥
n/(n−1)

Ln(B1)
� ◦ �
(

1
Tατ

1∥∥∇u#τ
∥∥
Ln(B1)

)

=
∥∥∥∇u#τ

∥∥∥
n/(n−1)

Ln(B1)
Fα22−α

[
u#τ ;λ1, λ2

]

≤ ‖∇u‖n/(n−1)Ln(B1)
Fα22−α

[
u#τ ;λ1, λ2

]
+

for u ∈ K̂τ ,

(5.29)

which implies (5.27).
(c) It follows from Remark 5.3 that

Fα22−α
[
u#τ ;λ1, λ2

]
=

Λ1

α
Gα22−α(Λ1/α)

1−1/n

(
α log

1
τ
;
α

Λ1
λ1,

α

Λ2
λ2

)
for 0 < τ ≤ 1. (5.30)

Combining (5.20)–(5.30) yields

sup
u∈K̂

F[u;λ1, (λ2)+] = sup
0<τ≤1

⎛
⎝sup

u∈K̂τ

F[u;λ1, (λ2)+]

⎞
⎠

≤ sup
0<τ≤1

⎛
⎝sup

u∈K̂τ

Fα22−α[u;λ1, (λ2)+]

⎞
⎠

≤ sup
0<τ≤1

Fα22−α
[
u#τ ;λ1, λ2

]
+

=
Λ1

α
sup
0<τ≤1

Gα22−α(Λ1/α)
1−1/n

(
α log

1
τ
;
α

Λ1
λ1,

α

Λ2
λ2

)

+

=
Λ1

α
sup
s≥0

Gα22−α(Λ1/α)
1−1/n

(
s;

α

Λ1
λ1,

α

Λ2
λ2

)

+
,

(5.31)

which implies (5.19).

The following lemma describes the behavior of the function Gκ(s;μ1, μ2) as s → ∞,
which plays an essential role for proving Lemma 5.4. Here we invoked the result from [8,
Lemma 3.4].
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Lemma 5.7. Let κ > 0.

(i) If μ1 > 1, μ2 ∈ R, or μ1 = 1, μ2 > 1, then Gκ(s;μ1, μ2) → −∞ as s → ∞.

(ii) Gκ(s; 1, 1) is decreasing if s is sufficiently large and tends to a finite limit Ĝκ as s → ∞.

(iii) If μ1 < 1, μ2 ∈ R, or μ1 = 1, μ2 < 1, then Gκ(s;μ1, μ2) → ∞ as s → ∞.

We now show Lemma 5.4 by using Proposition 5.6 and Lemma 5.7. We divide
assertion (i) in Lemma 5.4 into the following two assertions for the sake of convenience.

(i-1) For any λ1 > Λ1/α and λ2 ≥ 0, it holds F∗[λ1, λ2;Ω] <∞;

(i-2) For any λ1 > Λ1/α and λ2 < 0, it holds F∗[λ1, λ2;Ω] <∞.

Proof of Lemma 5.4. (a) First we show assertions (i-1) and (ii). We take μ1 = αλ1/Λ1, μ2 =
αλ2/Λ2, and s = α log(1/τ). By virtue of Proposition 5.5, assertions (i-1) and (ii) follow from
Lemma 5.7 (i) and (ii), respectively.

(b)Next we show assertion (i-2). Let δ = λ1/2 −Λ1/(2α). Note that δ > 0 and λ1 − δ >
Λ1/α. We have from (a) that F∗[λ1 − δ, 0;Ω] <∞. Applying (4.7), we have

F[u;λ1, λ2] = F[u;λ1 − δ, 0] − λ2
(
δ

λ2
�

(‖u‖Ċ1,α−1
∇ (Ω)

‖∇u‖Ln(Ω)

)
+ � ◦ �

(‖u‖Ċ1,α−1
∇ (Ω)

‖∇u‖Ln(Ω)

))

≤ F∗[λ1 − δ, 0;Ω] − λ2Cδ

<∞ for u ∈W1,n
0 (Ω) ∩ Ċ1,α−1

∇ (Ω) ∩ Cc(Ω) \ {0},

(5.32)

and the assertion follows.

Thus we have proved Theorem 5.1.

Appendices

In this section, we carry out elementary calculi which we omitted in Sections 2 and 5.

A. On the Space Ċ1,α−1(Rn)

First, we prove Proposition 2.3. Let 1 < α < 2, and let Ω be a domain in R
n. Then we will

prove that there exists Cα > 0 such that

‖u‖Ċ1,α−1
∇ (Ω) ≤ Cα‖u‖Ċ1,α−1(Ω) for u ∈ Ċ1,α−1(Ω). (A.1)

Proof of Proposition 2.3. By putting y = x + h into (2.4), we deduce

∣∣∣∣u(x + h) − 2u
(
x +

1
2
h

)
+ u(x)

∣∣∣∣ ≤ |h|α‖u‖Ċ1,α−1(Rn). (A.2)
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We choose an auxiliary radial function φ ∈ C∞
c (Rn)with integral 1. Note that

∫

Rn

∂φ

∂xi
(x)dx =

∫

Rn

∂2φ

∂xi∂xj
(x)dx = 0 for i, j ∈ {1, . . . , n}. (A.3)

We define uk by

uk(x) = 2nk
∫

Rn

u
(
y
)
φ
(
2k
(
x − y)

)
dy for k ∈ Z. (A.4)

Note that uk → u locally uniformly in R
n as k → ∞. Then we have

∂2uk
∂xi∂xj

(x) = 2(n+2)k
∫

Rn

u
(
y
) ∂2φ

∂xi∂xj

(
2k
(
x − y)

)
dy

= 22k
∫

Rn

u

(
x − 1

2k
y

)
∂2φ

∂xi∂xj

(
y
)
dy.

(A.5)

Since φ is even, a change of variables y �→ −y yields

∂2uk
∂xi∂xj

(x) = 22k
∫

Rn

u

(
x +

1
2k
y

)
∂2φ

∂xi∂xj

(
y
)
dy. (A.6)

Because of (A.3), we have

∂2uk
∂xi∂xj

(x) = 22k
∫

Rn

(
u

(
x +

1
2k
y

)
− 2u(x) + u

(
x − 1

2k
y

))
∂2φ

∂xi∂xj

(
y
)
dy. (A.7)

It follows from (A.2) that

∣∣∣∣∣
∂2uk
∂xi∂xj

(x)

∣∣∣∣∣ ≤ Cα2(2−α)k‖u‖Ċ1,α−1(Rn). (A.8)

Meanwhile we have

∂uk
∂xi

(x) = 2k
∫

Rn

u

(
x +

1
2k
y

)
∂φ

∂xi

(
y
)
dy, (A.9)

which yields

∂uk+1
∂xi

(x) − ∂uk
∂xi

(x) = 2k
∫

Rn

(
2u
(
x +

1
2k+1

y

)
− u
(
x +

1
2k
y

))
∂φ

∂xi

(
y
)
dy. (A.10)
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Because of (A.3), we have

∂uk+1
∂xi

(x) − ∂uk
∂xi

(x) = −2k
∫

Rn

(
u

(
x +

1
2k
y

)
− 2u
(
x +

1
2k+1

y

)
+ u(x)

)
∂φ

∂xi

(
y
)
dy. (A.11)

It follows from (A.2) that

∣∣∣∣
∂uk+1
∂xi

(x) − ∂uk
∂xi

(x)
∣∣∣∣ ≤

C

2(α−1)k
‖u‖Ċ1,α−1(Rn), (A.12)

and hence

uk = u0 +
k∑
l=1

(ul − ul−1) (A.13)

converges in C1
loc(R

n) as k → ∞. In particular, u ∈ C1(Rn). Now we fix x, y ∈ R
n arbitrarily.

Since 1 < α < 2, we have from (A.8) that

∣∣∇u−k(x) − ∇u−k
(
y
)∣∣ ≤ Cα

2(2−α)k
‖u‖Ċ1,α−1(Rn)

∣∣x − y∣∣α−1 −→ 0 as k −→ ∞. (A.14)

We apply inequalities (A.8) and (A.12) to conclude

∣∣∇uk(x) − ∇uk
(
y
) − ∇u−k(x) +∇u−k

(
y
)∣∣

≤
k∑

l=−k+1

∣∣∇ul(x) − ∇ul
(
y
) − ∇ul−1(x) +∇ul−1

(
y
)∣∣

≤ Cα

∞∑
l=−∞

min
{∣∣x − y∣∣2(2−α)l, 1

2(α−1)l

}
‖u‖Ċ1,α−1(Rn)

≤ Cα‖u‖Ċ1,α−1(Rn)

∣∣x − y∣∣α−1.

(A.15)

Since uk → u, ∇uk → ∇u locally uniformly in R
n as k → ∞, the assertion follows from

(A.14).

When we defined uk by (A.4), we used the continuity of u, or more precisely, we used
the local integrability of u. As is announced in Section 2, this type of assumption is absolutely
necessary.

Proposition A.1. Let α > 0. Then there exists a discontinuous function u : R
n → R satisfying

‖u‖Ċ1,α−1(Rn) = sup
x,y∈R

n

x /=y

∣∣u(x) − 2u
((
x + y

)
/2
)
+ u
(
y
)∣∣

∣∣x − y∣∣α = 0, (A.16)

that is, u(x) − 2u((x + y)/2) + u(y) = 0 for all x, y ∈ R
n.
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Proof. Choose a Hamel basis, that is, a Q-basis {ξλ}λ∈Λ of R
n. If necessary, we can assume that

ej =

(
0, . . . , 0,

jth

1̌ , 0, . . . , 0

)
, e =

√
2e1 ∈ {ξλ}λ∈Λ. (A.17)

Accordingly, we fix a collection of real numbers Z = {zλ}λ∈Λ ⊂ R. Then define a function
uZ : R

n → R so that

uZ

(∑
λ∈Λ0

qλξλ

)
=
∑
λ∈Λ0

qλzλ (A.18)

for all finite subsets Λ0 ⊂ Λ and {qλ}λ∈Λ0
⊂ Q. From definition (A.18) we can verify that

‖uZ‖Ċ1,α−1(Rn) = 0.
Now we have freedom to choose Z = {zλ}λ∈Λ. If uZ is continuous, then we have

uZ(x) = lim
y→x
y∈Q

n

uZ
(
y
)
= lim

y=(y1,y2,...,yn)→x

y∈Q
n

n∑
j=1

yjuZ
(
ej
)
=

n∑
j=1

xjuZ
(
ej
)

(A.19)

for all x = (x1, x2, . . . , xn) ∈ R
n. Hence uZ is continuous if and only if uZ is R-linear. Keeping

this in mind, if we choose {zλ}λ∈Λ so that uZ(e) = 1, uZ(ej) = 0 for each j ∈ {1, 2, . . . , n}, then
uZ is the desired discontinuous function satisfying ‖uZ‖Ċ1,α−1(Rn) = 0.

B. Proof of Equality (5.8)

We are left with verifying equality (5.8) according to definition (2.10).

Lemma B.1. Let 0 < τ ≤ 1 and 1 < α ≤ 2. Then it holds ∇u#τ ∈ Ċ0,α−1(B1;Rn) and

∥∥∥∇u#τ
∥∥∥
Ċ0,α−1(B1;Rn)

=
α22−α

Tατ
. (B.1)

Let us define

f(x) =

⎧
⎪⎪⎨
⎪⎪⎩

x

|x|2−α
for x ∈ B1,

x

|x|2
for x ∈ R

n \ B1.
(B.2)

In view of (5.6), we have

∇u#τ(x) = −ατ
α−1

Tατ
f
(x
τ

)
for x ∈ B1, (B.3)

and hence ‖∇u#τ‖Ċ0,α−1(B1;Rn) = (α/Tατ )‖f|B1/τ ‖Ċ0,α−1(B1/τ ;Rn). Then Lemma B.1 is equivalent to the
following.
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Lemma B.2. Let R ≥ 1 and 1 < α ≤ 2. Then it holds f|BR ∈ Ċ0,α−1(BR;Rn) and

∥∥f|BR
∥∥
Ċ0,α−1(BR;Rn) = 22−α. (B.4)

To prove Lemma B.2, we need to establish some propositions.

Proposition B.3. Let 1 < α ≤ 2, 0 ≤ θ < 1, η > 0, and

Φθ,η(t) =
1 + η2 − 2ηt

(1 + θ2 − 2θt)α−1
for − 1 ≤ t ≤ 1. (B.5)

Then one has

max
−1≤t≤1

Φθ,η(t) = max
{
Φθ,η(−1),Φθ,η(1)

}
. (B.6)

Furthermore, if θ ≤ η ≤ 1 or θ ≤ 1/η ≤ 1, then

max
−1≤t≤1

Φθ,η(t) = Φθ,η(−1). (B.7)

Proof. Since

(
1 + θ2 − 2θt

)α dΦθ,η

dt
(t) = 2

(
2(2 − α)θηt − η

(
1 + θ2

)
+ (α − 1)θ

(
1 + η2

))
, (B.8)

we have

d

dt

[(
1 + θ2 − 2θt

)α dΦθ,η

dt

]
(t) = 4(2 − α)θη ≥ 0 for − 1 < t < 1. (B.9)

Hence the maximum principle shows that Φθ,η attains its maximum on ∂[−1, 1] = {−1, 1}.
To prove the latter assertion, we will show that Φθ,η(−1) ≥ Φθ,η(1). Since [0, 1) � s �→

(1 − s)/(1 + s) ∈ (0, 1] is decreasing, we have

1 − η
1 + η

≤ 1 − θ
1 + θ

≤
(
1 − θ
1 + θ

)α−1
≤ 1 for θ ≤ η ≤ 1

η − 1
η + 1

=
1 − 1/η
1 + 1/η

≤ 1 − θ
1 + θ

≤
(
1 − θ
1 + θ

)α−1
≤ 1 for θ ≤ 1

η
≤ 1.

(B.10)

These inequalities imply

(
Φθ,η(−1)

)1/2 = 1 + η

(1 + θ)α−1
≥
∣∣1 − η∣∣

(1 − θ)α−1
=
(
Φθ,η(1)

)1/2
, (B.11)
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provided that θ ≤ η ≤ 1 or θ ≤ 1/η ≤ 1. The proof is now completed.

One can easily show the following proposition by a direct calculation.

Proposition B.4. Let 1 < α ≤ 2, 0 < r ≤ 1, and

gα(t) =
1 + tα−1

(1 + t)α−1
for 0 ≤ t ≤ 1,

g̃α(s) =
(1 + s)2−α

s
for s > 0,

Gα,r

(
ρ
)
=

1 + ρrα−1

ρ
(
ρ + r
)α−1 for ρ ≥ 1.

(B.12)

Then the function gα is increasing on [0, 1], the function g̃α is decreasing on (0,∞), the function Gα,r

is decreasing on [1,∞), and hence

gα(t) ≤ 22−α for 0 ≤ t ≤ 1,

g̃α(s) ≤ 22−α for s ≥ 1,

Gα,r

(
ρ
) ≤ 22−α for ρ ≥ 1.

(B.13)

We now turn to proving Lemma B.2.

Proof of Lemma B.2. If we choose 0 < r < 1, then it is easy to see that

∥∥f|BR
∥∥
Ċ0,α−1(BR;Rn) ≥

|f(re1) − f(−re1)|
|re1 − (−re1)|α−1

= 22−α. (B.14)

We will use the substitutions x = re1, y = ρω with r, ρ > 0, ω ∈ Sn−1 in polar coordinates to
obtain

‖f|BR‖Ċ0,α−1(BR;Rn) = sup
0<|x|<|y|<R

∣∣f(x) − f
(
y
)∣∣

∣∣x − y∣∣α−1
= sup

0<r<ρ<R
ω∈Sn−1

∣∣f(re1) − f
(
ρω
)∣∣

∣∣re1 − ρω
∣∣α−1 (B.15)

since f is continuous and f(Px) = Pf(x) for any orthogonal transformation P on R
n. We

distinguish three cases according to r and ρ in the supremum. Note that |ω − te1| = (1 + t2 −
2tω1)

1/2 for −1 ≤ t ≤ 1, ω = (ω1, ω2, . . . , ωn) ∈ Sn−1.
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If 0 < r < ρ ≤ 1, then Propositions B.3 and B.4 give

∣∣f(re1) − f
(
ρω
)∣∣

∣∣re1 − ρω
∣∣α−1 =

∣∣rα−1e1 − ρα−1ω
∣∣

∣∣re1 − ρω
∣∣α−1

=
(
Φr/ρ,(r/ρ)α−1(ω1)

)1/2 ≤
(
Φr/ρ,(r/ρ)α−1(−1)

)1/2

= gα
(
r

ρ

)
≤ 22−α.

(B.16)

If 1 < r < ρ ≤ R, then Propositions B.3 and B.4 give

∣∣f(re1) − f
(
ρω
)∣∣

∣∣re1 − ρω
∣∣α−1 =

∣∣e1/r −ω/ρ
∣∣

∣∣re1 − ρω
∣∣α−1

=
1
ρα
(
Φr/ρ,ρ/r(ω1)

)1/2 ≤ 1
ρα
(
Φr/ρ,ρ/r(−1)

)1/2

=
1
ρα
g̃α

(
r

ρ

)
≤ 1
ρα
g̃α

(
1
ρ

)
= g̃α
(
ρ
) ≤ 22−α.

(B.17)

If 0 < r ≤ 1 < ρ ≤ R, then Propositions B.3 and B.4 give

∣∣f(re1) − f
(
ρω
)∣∣

∣∣re1 − ρω
∣∣α−1 =

∣∣rα−1e1 −ω/ρ
∣∣

∣∣re1 − ρω
∣∣α−1

=
1
ρα
(
Φr/ρ,rα−1ρ(ω1)

)1/2 ≤ 1
ρα
(
Φr/ρ,rα−1ρ(−1)

)1/2

= Gα,r

(
ρ
) ≤ 22−α.

(B.18)

The proof is now completed.
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