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We prove the existence of a solution to the periodic nonlinear second-order ordinary differential
equation with damping u′′(x) + r(x)u′(x) + g(x, u(x)) = f(x), u(0) = u(T), u′(0) = u′(T). We
suppose that

∫T
0 r(x)dx = 0, the nonlinearity g satisfies the potential Landesman Lazer condition

and prove that a critical point of a corresponding energy functional is a solution to this problem.

1. Introduction

Let us consider the nonlinear problem

u′′(x) + r(x)u′(x) + g(x, u(x)) = f(x), x ∈ [0, T],

u(0) = u(T), u′(0) = u′(T),
(1.1)

where r ∈ L1(0, T), the nonlinearity g : [0, T] × R → R is a Caratheodory function and
f ∈ L1(0, T).

To state an existence result to (1.1) Amster [1] assumes that r is a nondecreasing
function (see also [2]). He supposes that the nonlinearity g satisfies the growth condition
(g(x, s) − g(x, t))/(s − t) ≤ c1, c1 < λ1 for x ∈ [0, T], s, t ∈ R, s /= t, where λ1 is the first
eigenvalue of the problem −u′′ = λu, u(0) = u(T) = 0 and there exist a−, a+ such that
g|[0,T]×Ia+ ≥ ∫T

0 p1(x)f(x)dx/‖p1‖1 ≥ g|[0,T]×Ia− . An interval Ia is centered in a with the radius
δ1|a| + δ2 where δ1 =

√
λ1c1T/(λ1 − c1) < 1, 0 < δ2 and p1 is a solution to the problem

p′1 − rp1 = k1, k1 ∈ R with p1(0) = p1(T) = 1.
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In [3, 4] authors studied (1.1) with a constant friction term r(x) = c and results with
repulsive singularities were obtained in [5, 6].

In this paper we present new assumptions, we suppose that the friction term r has
zero mean value

∫T

0
r(x)dx = 0, (1.2)

the nonlinearity g is bounded by a L1 function and satisfies the following potential
Landesman-Lazer condition (see also [7, 8])

∫T

0

[
R(x)2G−(x)

]
dx <

∫T

0

[
R(x)2f(x)

]
dx <

∫T

0

[
R(x)2G+(x)

]
dx, (1.3)

where G(x, s) =
∫s
0 g(x, t)dt, G+(x) = lim infs→+∞G(x, s)/s, G−(x) = lim sups→−∞(G(x, s)/s)

and R(x) = e
∫x
0 (1/2)r(ξ)dξ.

To obtain our result we use variational approach even if the linearization of the
periodic problem (1.1) is a non-self-adjoint operator.

2. Preliminaries

Notation. We will use the classical space Ck(0, T) of functions whose kth derivative is
continuous and the space Lp(0, T) of measurable real-valued functions whose pth power
of the absolute value is Lebesgue integrable. We denote H the Sobolev space of absolutely
continuous functions u : (0, T) → R such that u′ ∈ L2(0, T) and u(0) = u(T) with the norm
‖u‖ = (

∫T
0 u2(x) + u′2(x)dx)1/2. By a solution to (1.1) we mean a function u ∈ C1(0, T) such

that u′ is absolutely continuous, u satisfies the boundary conditions and (1.1) is satisfied a.e.
in (0, T).

We denote R(x) = e
∫x
0 (1/2)r(ξ)dξ and we study (1.1) by using variational methods. We

investigate the functional J : H → R, which is defined by

J(u) =
1
2

∫T

0

[
R2(u′)2

]
dx −

∫T

0

[
R2G(x, u) − R2fu

]
dx, (2.1)

where

G(x, s) =
∫s

0
g(x, t) dt. (2.2)

We say that u is a critical point of J , if

〈
J ′(u), v

〉
= 0 ∀v ∈ H. (2.3)
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We see that every critical point u ∈ H of the functional J satisfies

∫T

0

[
R2u′v′

]
dx −

∫T

0

[
R2(g(x, u) − f

)
v
]
dx = 0 (2.4)

for all v ∈ H.
Nowwe prove that any critical point of the functional J is a solution to (1.1)mentioned

above.

Lemma 2.1. Let the condition (1.2) be satisfied. Then any critical point of the functional J is a solution
to (1.1).

Proof. Setting v = 1 in (2.4)we obtain

∫T

0

[
R2(g(x, u) − f

)]
dx = 0. (2.5)

We denote

Φ(x) =
∫x

0

[
R(t)2

(
g(t, u(t)) − f(t)

)]
dt (2.6)

then previous equality (2.5) implies Φ(0) = Φ(T) = 0 and by parts in (2.4)we have

∫T

0

[(
R2u′ + Φ

)
v′
]
dx = 0 (2.7)

for all v ∈ H. Hence there exists a constant cu such that

R2u′ + Φ = cu (2.8)

on [0, T]. The condition (1.2) implies R(0) = R(T) = 1 and from (2.8) we get u′(0) =
R2(0)u′(0) = −Φ(0) + cu = −Φ(T) + cu = u′(T). Using (R2)′ = R2r and differentiating equality
(2.8) with respect to x we obtain

R2(u′′ + ru′ + g(x, u) − f
)
= 0. (2.9)

Thus u is a solution to (1.1).

We say that J satisfies the Palais-Smale condition (PS) if every sequence (un) for which
J(un) is bounded inH and J ′(un) → 0 (as n → ∞) possesses a convergent subsequence.

To prove the existence of a critical point of the functional J we use the Saddle Point
Theorem which is proved in Rabinowitz [9] (see also [10]).
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Theorem 2.2 (Saddle Point Theorem). Let H = Ĥ ⊕ H̃, dim Ĥ < ∞ and dim H̃ = ∞. Let
J : H → R be a functional such that J ∈ C1(H,R) and

(a) there exists a bounded neighborhood D of 0 in Ĥ and a constant α such that J/∂D ≤ α,

(b) there is a constant β > α such that J/H̃ ≥ β,

(c) J satisfies the Palais-Smale condition (PS).

Then, the functional J has a critical point inH.

3. Main Result

We define

G+(x) = lim inf
s→+∞

G(x, s)
s

, G−(x) = lim sup
s→−∞

G(x, s)
s

. (3.1)

Assume that the following potential Landesman-Lazer type condition holds:

∫T

0

[
R(x)2G−(x)

]
dx <

∫T

0

[
R(x)2f(x)

]
dx <

∫T

0

[
R(x)2G+(x)

]
dx. (3.2)

We also suppose that there exists a function q(x) ∈ L1(0, T) such that

∣∣g(x, s)
∣∣ ≤ q(x), x ∈ [0, T], s ∈ R. (3.3)

Theorem 3.1. Under the assumptions (1.2), (3.2), (3.3), problem (1.1) has at least one solution.

Proof. We verify that the functional J satisfies assumptions of the Saddle Point Theorem 2.2
on H, then J has a critical point u and due to Lemma 2.1 u is the solution to (1.1).

It is easy to see that J ∈ C1(H,R). Let H̃ = {u ∈ H :
∫T
0 u(x)dx = 0} then H = R ⊕ H̃

and dim(H̃) = ∞.
In order to check assumption (a), we prove

lim
|s|→∞

J(s) = −∞ (3.4)

by contradiction. Then, assume on the contrary there is a sequence of numbers (sn) ⊂ R such
that |sn| → ∞ and a constant c1 satisfying

lim inf
n→∞

J(sn) ≥ c1. (3.5)

From the definition of J and from (3.5) it follows

lim inf
n→∞

∫T

0

R2(−G(x, sn) + fsn
)

|sn| dx ≥ 0. (3.6)
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We note that from (3.2) it follows there exist constants s+, s− and functions A+(x), A−(x) ∈
L1(0, T) such that A+(x) ≤ G(x, s), G(x, s) ≤ A−(x) for a.e. x ∈ (0, T) and for all s ≥ s+, s ≤ s−,
respectively. We suppose that for this moment sn → +∞. Using (3.6) and Fatou’s lemma we
obtain

∫T

0

[
R(x)2f(x)

]
dx ≥

∫T

0

[
R(x)2G+(x)

]
dx, (3.7)

a contradiction to (3.2). We proceed for the case sn → −∞. Then assumption (a) of
Theorem 2.2 is verified.

(b) Now we prove that J is bounded from below on H̃. For u ∈ H̃, we have

∫T

0

(
u′)2 dx = ‖u‖2 (3.8)

and assumption (3.3) implies

|G(x, s)| ≤ q(x)|s|, x ∈ [0, T], s ∈ R. (3.9)

Hence and due to compact imbedding H ⊂ C(0, T)(‖u‖C(0,T) ≤ c2‖u‖) we obtain

J(u) =
1
2

∫T

0

[
R2(u′)2

]
dx −

∫T

0

[
R2G(x, u) − R2fu

]
dx

≥ 1
2
min
x∈[0,T]

R(x)2
∫T

0

(
u′)2dx − max

x∈[0,T]
R(x)2

∫T

0

(∣∣q
∣∣ +

∣∣f
∣∣)|u|dx

≥ 1
2
min
x∈[0,T]

R(x)2‖u‖2 − max
x∈[0,T]

R(x)2
(∥∥q

∥∥
1 +

∥∥f
∥∥
1

)
c2‖u‖.

(3.10)

Since the functionR is strictly positive equality (3.10) implies that the functional J is bounded
from below.

Using (3.4), (3.10) we see that there exists a bounded neighborhood D of 0 in R = Ĥ,
a constant α such that J/∂D ≤ α, and there is a constant β > α such that J/H̃ ≥ β.

In order to check assumption (c), we show that J satisfies the Palais-Smale condition.
First, we suppose that the sequence (un) is unbounded and there exists a constant c3 such
that

∣∣∣∣∣
1
2

∫T

0

[
R2(u′

n

)2]
dx −

∫T

0

[
R2(G(x, un) − fun

)]
dx

∣∣∣∣∣
≤ c3, (3.11)

lim
n→∞

∥∥J ′(un)
∥∥ = 0. (3.12)
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Let (wk) be an arbitrary sequence bounded in H. It follows from (3.12) and the Schwarz
inequality that

∣
∣
∣
∣
∣
lim
n→∞
k→∞

∫T

0

[
R2u′

n w
′
k

]
dx −

∫T

0

[
R2(g(x, un)wk − fwk

)]
dx

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
lim
n→∞
k→∞

J ′(un)wk

∣
∣
∣
∣
∣
≤ lim

n→∞
k→∞

∥
∥J ′(un)

∥
∥ · ‖wk‖ = 0.

(3.13)

From (3.3)we obtain

lim
n→∞
k→∞

∫T

0

[
R2g(x, un)

‖un‖ wk −
R2f

‖un‖wk

]

dx = 0. (3.14)

Put vn = un/‖un‖ and wk = vn then (3.13), (3.14) imply

lim
n→∞

∫T

0

[
R2(v′

n

)2]
dx = 0. (3.15)

Due to compact imbedding H ⊂ C(0, T) and (3.15) we have |vn| → d in C(0, T), d > 0.
Suppose that vn → d and set wk = vn − d in (3.13), we get

lim
n→∞

∫T

0

[
R2u′

nv
′
n

]
dx −

∫T

0

[
R2(g(x, un) − f

)
(vn − d)

]
dx = 0. (3.16)

Because the nonlinearity g is bounded (assumption (3.3)) and vn → d the second integral in
previous equality (3.16) converges to zero. Therefore

lim
n→∞

∫T

0

[
R2u′

nv
′
n

]
dx = 0. (3.17)

Now we divide (3.11) by ‖un‖. We get

lim
n→∞

{
1
2

∫T

0

[
R2u′

nv
′
n

]
dx −

∫T

0

R2(G(x, un) − fun

)

‖un‖ dx

}

= 0. (3.18)

Equalities (3.17), (3.18) imply

lim
n→∞

∫T

0
R2

(
−G(x, un)

un
+ f

)
vndx = 0. (3.19)
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Because vn → d > 0, limn→∞un(x) = +∞. Using Fatou’s lemma and (3.19) we conclude

∫T

0

[
R(x)2f(x)

]
dx ≥

∫T

0

[
R(x)2G+(x)

]
dx, (3.20)

a contradiction to (3.2). We proceed for the case vn → −d similarly. This implies that the
sequence (un) is bounded. Then there exists u0 ∈ H such that un ⇀ u0 in H, un → u0 in
L2(0, T), C(0, T) (taking a subsequence if it is necessary). It follows from equality (3.13) that

lim
n→∞
m→∞
k→∞

{∫T

0

[
R2(un − um)′w′

k

]
dx −

∫T

0

[
R2(g(x, un) − g(x, um)

)]
wkdx

}

= 0. (3.21)

The strong convergence un → u0 in C(0, T) and the assumption (3.3) imply

lim
n→∞
m→∞

∫T

0

[
R2(g(x, un) − g(x, um)

)
(un − um)

]
dx = 0. (3.22)

If we set wk = un, wk = um in (3.21) and subtract these equalities, then using (3.22)we have

lim
n→∞
m→∞

∫T

0

[
R2(u′

n − u′
m

)2]
dx = 0. (3.23)

Hence we obtain the strong convergence un → u0 inH. This shows that J satisfies the Palais-
Smale condition and the proof of Theorem 3.1 is complete.
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