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We initiate the investigation of a stochastic system of evolution partial differential equations
modelling the turbulent flows of a second grade fluid filling a bounded domain of R

2. We establish
the global existence of a probabilistic weak solution.

1. Introduction

The study of turbulence either in Newtonian flows or Non-Newtonian flows is one of the
greatest unsolved and still not well-understood problem in contemporary applied sciences.
For indepth coverage of the deep and fascinating investigations undertaken in this field,
the abundant wealth of results obtained, and remarkable advances achieved we refer to
the monographs in [1–4] and references therein. The hypothesis relating the turbulence
to the “randomness of the background field” is one of the motivations of the study of
stochastic version of equations governing the motion of fluids flows. The introduction of
random external forces of noise type reflects (small) irregularities that give birth to a new
randomphenomenon, making the problemmore realistic. Such approach in themathematical
investigation for the understanding of the turbulence phenomenonwas pioneered by
Bensoussan and Temam in [5] where they studied the Stochastic Navier-Stokes Equation
(SNSE) excited by random forces. Since then, stochastic partial differential equations and
stochastic models of fluid dynamics have been the object of intense investigations which have
generated several important results.We refer, for instance, to [6–22]. Similar investigations for
Non-Newtonian fluids have almost not been undertaken except in very few work; we refer,
for instance, to [23–25] for some computational studies of stochastic models of polymeric
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fluids. It is worth to note that in the Non-Newtonian case the study of stochastic models is
relevant not only for the analytical approach to turbulent flows but also for practical needs
related to the physics of the corresponding fluids [2].

In the present work, we initiate the mathematical analysis for the stochastic model of
incompressible second grade fluids. An incompressible fluid of second grade with a velocity
field u is a special example of a differential Rivlin-Ericksen fluid. It was shown in [26] that its
stress tensor T is given by

T = −p̃1 + νA1 + α1A2 + α2A2
1, (1.1)

where p̃ is the scalar pressure field, ν is the kinematic viscosity, and A1 and A2 are the first
two Rivlin-Ericksen tensors defined by

A1 =

(

∂ui

∂xj

)

i,j

+

(

∂uj

∂xi

)

i,j

,

A2 =
DA1

Dt
+A1

(

∂ui

∂xj

)

i,j

+

(

∂uj

∂xi

)

i,j

A1,

(1.2)

where D/Dt denotes the material derivative. The constants α1 and α2 represent the normal
stress moduli. The incompressibility requires that

divu = 0. (1.3)

Taking into account some thermodynamical aspects, Dunn and Fosdick proved in [27] that
the kinematic viscosity ν must be nonnegative. In addition, they found that the free energy
must be a quadratic function of A1. This implies in particular that the Clausius-Duhem
inequality is satisfied and the Helmholtz free energy is minimum at equilibrium if and only
if

α1 + α2 = 0, α1 ≥ 0. (1.4)

In what follows we assume that α1 = α > 0 and ν > 0. We also refer to [28, 29] for more recent
works concerning those conditions.

Those thermodynamical conditions imply that the stress tensor T can be written in the
following form:

T = −p̃1 + νA1 + α

(

∂

∂t
A1 +

1
2
A1

(

L − LT
)

− 1
2

(

L − LT
)

A1

)

, (1.5)

where

L =

(

∂ui

∂xj

)

i,j

. (1.6)
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We can check that

divT = −∇p̃ + νΔu + α
∂Δu

∂t
+ α

(

curl(Δu) × u +∇
(

u ·Δu +
1
4
|A1|2

))

. (1.7)

For a given external force f the dynamical equation for a second grade fluid is

∂u

∂t
+ curl(u) × u +∇

(

1
2
|u|2

)

= divT + f. (1.8)

Making use of the latter equation and (1.7), we obtain the system of partial differential
equations

∂

∂t
(u − αΔu) − νΔu + curl(u − αΔu) × u +∇P = f,

divu = 0,
(1.9)

where

P = p̃ − α

(

u ·Δu +
1
4
|A1|

)

+
1
2
|u|2 (1.10)

is the modified pressure. For a given connected and bounded domainD of R
2 and finite time

horizon [0, T]we complete the above system with the initial value

u(0) = u0 in D, (1.11)

and the Dirichlet boundary value condition

u = 0 on ∂D × (0, T]. (1.12)

The interest in the investigation of problem (1.9) arises from the fact that it is an admissible
model of slow flow fluids. Furthermore, once the above thermodynamical compatibility
conditions are satisfied “the second grade fluid has general and pleasant properties such
as boundedness, stability, and exponential decay” (see again [27]). It also can be taken as a
generalization of the Navier-Stokes Equation (NSE). Indeed they reduce to NSE when α = 0;
moreover recent work [30] shows that it is a good approximation of the NSE. See also [31–36]
for interesting discussions to their relationship with other fluid models.

Due to the above nice properties, the mathematical analysis of the second grade
fluid has attracted many prominent researchers in the deterministic case. The first relevant
analysis was done by Ouazar in his 1981 thesis; together with Cioranescu, they published
the related result in [37, 38]. Their method was based on the Galerkin approximation
scheme involving a priori estimates for the approximating solutions using a special basis
consisting of eigenfunctions corresponding to the scalar product associated with the operator
curl(u−αΔu). They proved global existence and uniqueness without restriction on the initial
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data for the two-dimensional case. Cioranescu and Girault [39], as well as Bernard [40]
extended this method to the three dimensional case; global existence was obtained with some
reasonable restrictions on the initial data. For another approach to global existence using
Schauder’s fixed point technics, we refer to [41] and some relevant references therein.

As already mentioned, in this work we propose a stochastic version of the problem
(1.9), (1.11)-(1.12). More precisely, we assume that a connected and bounded open set D of
R

2 with boundary ∂D of class C3, a finite time horizon [0, T], and a nonrandom initial value
u0 are given. We consider the problem

d(u − αΔu) + (−νΔu + curl(u − αΔu) × u +∇P)dt = F(u, t)dt +G(u, t)dW

in D × (0, T),

divu = 0 in D × (0, T),

u = 0 in ∂D × (0, T),

u(0) = u0 in D,

(1.13)

where u = (u1, u2) and P represent the random velocity and pressure, respectively. The
system is to be understood in the Ito sense. It is the equation of motion of an incompressible
second grade fluid driven by random external forces F(u, t) and G(u, t)dW , where W is a
R

m-valued standard Wiener process.
As far as we know, this paper is the first dealing with the stochastic version of the

equation governing the motion of a second grade fluid filling a connected and bounded
domain D of R

2. Consequently, we could by no means exhaust the mathematical analysis
of the problem; many questions are still open but we hope that this pioneering work will
find its applications elsewhere. We limited ourselves to the discussion of a global existence
result of a probabilistic weak solution in the two-dimensional case. In forthcoming papers we
will address other questions such as the existence probabilistic strong solutions under more
stringent conditions, the uniqueness of those solutions, and their behaviour when α → 0. It
should be noted that solving this problem is not easy even in the deterministic case, the nature
of the nonlinearities being one of the main difficulties in addition to the complex structure of
the equations. Besides the obstacles encountered in the deterministic case, the introduction of
the noise termG(u, t)dW in the stochastic version induces the appearance of expressions that
are very hard to control when proving some crucial estimates. Overcoming these problems
will require a-tour-de force in the work.

The rest of the paper is organized as follows. In Section 2, we give some notations,
necessary background of probabilistic or analytical nature. Section 3 is devoted to the
formulation of the hypotheses and the main result. We introduce a Galerkin approximation of
the problem and derive crucial a priori estimates for its solution in Section 4; a compactness
result is also derived. We prove the main result in Section 5.

2. Notations and Preliminaries

Let us start with some informationsabout some functional spaces needed in this work. Let D
be an open subset of R

2, let 1 ≤ p ≤ ∞, and let k be a nonnegative integer. We consider the
well-known Lebesgue and Sobolev spaces Lp(D) and Wk,p(D), respectively. When p = 2, we
write Wk,2(D) = Hk(D). We denote by W

k,p

0 (D) the closure in Wk,p(D) of C∞
c (D) the space
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of infinitely differentiable function with compact support in D. If p = 2, we denote W
k,p

0 (D)
byHk

0 (D). We assume that the Hilbert space H1
0(D) is endowed with the scalar product

((u, v)) =
∫

D

∇u · ∇v dx =
2
∑

i=1

∫

D

∂u

∂xi

∂v

∂xi
dx, (2.1)

where∇ is the gradient operator. The norm ‖ ·‖ generated by this scalar product is equivalent
to the usual norm of W1,2(D) in H1

0(D). If the domain D is smooth enough and bounded,
then for any m and p such that mp > 2 the embedding

Wj+m,p ⊂ Wj,q (2.2)

is compact for any 1 ≤ q ≤ ∞. More Sobolev embedding theorems can be found in [42] and
references therein.

Next we define some probabilistic evolution spaces necessary throughout the paper.
Let (Ω,F, (Ft)0≤t≤T ,P) be a given stochastic basis; that is, (Ω,F,P) is complete probability
space and (Ft)0≤t≤T is an increasing sub-σ-algebras of F such that F0 contains every P -null
subset of Ω. For any reflexive separable real Banach space X endowed with the norm ‖ · ‖X ,
for any p ≥ 1, Lp(0, T ;X) is the space of X-valued measurable functions u defined on [0, T]
such that

‖u‖Lp(0,T ;X) =

(

∫T

0
‖u‖pXdt

)1/p

< ∞. (2.3)

For any r, p ≥ 1 we denote by Lp(Ω,P;Lr(0, T ;X)) the space of processes u = u(ω, t) with
values in X defined on Ω × [0, T] such that

(1) u is measurable with respect to (ω, t) and, for each t, u is F
t measurable,

(2) u(t, ω) ∈ X for almost all (ω, t) and

‖u‖Lp(Ω,P;Lr(0,T ;X)) =

⎛

⎝E

(

∫T

0
‖u‖rXdt

)p/r
⎞

⎠

1/p

< ∞, (2.4)

where E denotes the mathematical expectation with respect to the probability
measure P.

When r = ∞, we write

‖u‖Lp(Ω,P;L∞(0,T ;X)) =

(

E ess sup
0≤t≤T

‖u‖pXdt
)1/p

< ∞. (2.5)

Next we give some compactness results of probabilistic nature due to Prokhorov and
Skorokhod. Let us consider Ω as a separable and complete metric space and F its Borel σ-
field. A family Pk of probability measures on (Ω,F) is relatively compact if every sequence of
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elements of Pk contains a subsequence Pkj which converges weakly to a probability measure
P; that is, for any φ bounded and continuous function on Ω,

∫

φ(ω)dPkj (dω) −→
∫

φ(ω)dP(dω). (2.6)

The family Pk is said to be tight if, for any ε > 0, there exists a compact set Kε ⊂ Ω such that
P(Kε) ≥ 1 − ε, for every P ∈ Pk.

We frequently use the following two theorems. We refer to [43] for their proofs.

Theorem 2.1 (see Prokhorov). The family Pk is relatively compact if and only if it is tight.

Theorem 2.2 (see Skorokhod). For any sequence of probability measures Pk onΩ which converges
to a probability measure P, there exist a probability space (Ω′,F′,P′) and random variablesXk,X with
values in Ω such that the probability law of Xk(resp., X) is Pk(resp., P) and limk→∞Xk = XP

′-a.s.

We proceed nowwith the definitions of additional spaces frequently used in this work.
In what follows we denote by X the space of R

2-valued functions such that each component
belongs toX. A simply-connected bounded domainDwith boundary of class C3 is given. We
introduce the spaces

V =
{

u ∈ [C∞
c ]

2 such that divu = 0
}

,

V = closure of V in H
1(D),

H = closure of V in L
2(D).

(2.7)

We denote by (·, ·) and | · | the inner product and the norm induced by the inner product and
the norm in L

2(D) on H, respectively. The inner product and the norm induced by that of
H

1
0(D) on V are denoted respectively by ((·, ·)) and ‖ · ‖. In the space V, the latter norm is

equivalent to the norm generated by the following scalar product (see, e.g., [37] )

(u, v)
V
= (u, v) + α((u, v)), for any u, v ∈ V. (2.8)

We also introduce the following space:

W =
{

u ∈ V such that curl(u − αΔu) ∈ L2(D)
}

. (2.9)

The following lemma tells us that the norm generated by the scalar product

(u, v)
W

= (u, v)
V
+ (curl(u − αΔu), curl(v − αΔv)), (2.10)

is equivalent to the usual H
3(D)-norm on W. Its proof can be found, for example, in [37, 39].
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Lemma 2.3. The following (algebraic and topological) identity holds:

W = ˜W, (2.11)

where

˜W =
{

v ∈ H
3(D) such that divv = 0 and v|∂D = 0

}

. (2.12)

Moreover, there is a positive constant C such that

|v|2
H3(D) ≤ C

(

|v|2
V
+ |curl(v − αΔv)|2

)

, (2.13)

for any v ∈ ˜W.

By this lemma we can endow the space W with norm | · |W which is generated by the
scalar product (2.10).

From now on, we identify the space V with its dual space V
	 via the Riesz

representation, and we have the Gelfand chain

W ⊂ V ⊂ W
	, (2.14)

where each space is dense in the next one and the inclusions are continuous.
The following inequalities will be used frequently.

Lemma 2.4. For any u ∈ W, v ∈ W, and w ∈ W one has

|(curl(u − αΔu) × v,w)| ≤ C|u|
H3 |v|V|w|

W
. (2.15)

One also has

|(curl(u − αΔu) × u,w)| ≤ C|u|2
V
|w|

W
, (2.16)

for any u ∈ W and w ∈ W.

Proof. We introduce the well-known trilinear form b used in the study of the Navier-Stokes
equation by setting

b(u, v,w) =
2
∑

i,j=1

∫

D

ui

∂vj

∂xi
wjdx. (2.17)

We give the following identity whose proof can be found in [37, 40]. This equation is valid
for any smooth (solenoidal) functions Φ, v, and w as

((curlΦ) × v,w) = b(v,Φ, w) − b(w,Φ, v). (2.18)
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We derive from this that for any u ∈ W, v ∈ W, and w ∈ W

|(curl(u − αΔu) × v,w)| ≤ C|v|
L2(D)|∇(u − αΔu)|

L2(D)|w|
L∞(D), (2.19)

where Hölder’s inequality was used. The Sobolev embedding (2.2) and the equivalence of
the norms | · |

W
and | · |3

H
(D) imply (2.15).

By (2.18) we deduce

(curl(u − αΔu) × u,w) = b(u, u,w) − αb(u,Δu,w) + αb(w,Δu, u). (2.20)

With the help of integration by parts and using the fact that u and w are elements of W we
derive that

b(u,Δu,w) =
2
∑

j=1

b

(

∂u

∂xj
,w,

∂u

∂xj

)

+
2
∑

i=1

b

(

u,
∂w

∂xj
,
∂u

∂xj

)

, (2.21)

b(w,Δu, u) =
2
∑

j=1

b

(

∂w

∂xj
, u,

∂u

∂xj

)

. (2.22)

We use these results to derive the following estimate. For any elements u ∈ V andw ∈ L
4(D),

we obtain by Hölder’s inequality

|b(u, u,w)| ≤ C|u|
L4(D)‖u‖|w|

L4(D). (2.23)

And since the space V and W are, respectively, continuously embedded in L
4(D) and V, then

|b(u, u,w)| ≤ C|u|2
V
|w|

W
. (2.24)

We also have

|b(u,Δu,w)| ≤ |∇w|
L∞(D)

2
∑

j=1

∣

∣

∣

∣

∣

∂u

∂xj

∣

∣

∣

∣

∣

2

L2(D)

+ |u|
L4(D)

⎛

⎝

2
∑

j=1

∣

∣

∣

∣

∣

∂w

∂xj

∣

∣

∣

∣

∣

2

L4(D)

⎞

⎠

1/2⎛

⎝

2
∑

j=1

∣

∣

∣

∣

∣

∂u

∂xj

∣

∣

∣

∣

∣

2

L2(D)

⎞

⎠

1/2

.

(2.25)

We derive from this and the Sobolev embedding (2.2) that

|b(u,Δu,w)| ≤ C|u|2
V
|w|

W
. (2.26)

By an analogous argument we have

|b(w,Δu, u)| ≤ C|w|
W
|u|2

V
. (2.27)
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The estimates (2.20), (2.24)–(2.27) yield

|(curl(u − αΔu) × u,w)| ≤ C|u|2
V
|w|

W
, (2.28)

for any u ∈ W and w ∈ W. This completes the proof of the lemma.

Next we give some results on which most of the proofs in forthcoming sections rely.
We start by stating a theorem on solvability of the “generalized Stokes equations”

v − αΔv +∇q = f in D,

divv = 0 in D,

v = 0 on ∂D.

(2.29)

By a solution of this system we mean a function v ∈ V which satisfies

(v, h) + α((v, h)) =
(

f, h
)

, (2.30)

for any h ∈ V.
The proof of the following result can be derived from an adaptation of the results

obtained by Solonnikov in [44, 45].

Theorem 2.5. Let D be a connected, bounded open set of R
n (n ≥ 2) with boundary ∂D of class Cl

and let f be a function in H
l, l ≥ 1. Then (2.29) has a unique solution v. Moreover if f is an element

of V, v ∈ H
l+2 ∩ V, and the following hold:

(v, h)
V
= (v, h),

|v|
W

≤ C
∣

∣f
∣

∣

V
,

(2.31)

for any h ∈ V.

Next we formulate Aubin-Lions’s compactness theorem; its proof can be found in [46].

Theorem 2.6. Let X,B, Y be three Banach spaces such that the following embedding is continuous:

X ⊂ B ⊂ Y. (2.32)

Moreover, assume that the embedding X ⊂ B is compact, then the set F consisting of functions v ∈
Lq(0, T ;B), 1 ≤ q ≤ ∞, such that

sup
0≤h≤1

∫ t2

t1

|v(t + h) − v(t)|pYdt −→ 0, as h −→ 0, (2.33)

for any 0 < t1 < t2 < T , is compact in Lp(0, T ;B) for any p.



10 Boundary Value Problems

Last but not least we present the famous Kolmogorov-Čentsov continuity criterion for
stochastic processes. We refer to [47, 48] for its proof and some of its extension.

Theorem 2.7 (see Kolmogorv-Čentsov). Suppose that a real-valued process X = {Xt, 0 ≤ t ≤ T}
on a probability space (Ω,P) satisfies the condition

E|Xt+h −Xt|γ ≤ Ch1+β, 0 ≤ t, h ≤ T, (2.34)

for some positive constants γ, β, and C. Then there exists a continuous modification ˜X = { ˜Xt, 0 ≤ t ≤
T} of X, which is locally Hölder continuous with exponent κ ∈ (0, β/γ).

3. Hypotheses and the Main Result

We state on our problem the following.

3.1. Hypotheses

(1) We assume that

F : V × [0, T] −→ V (3.1)

is continuous in both variables. We also assume that, for any t ∈ [0, T] and any v ∈ V

|F(v, t)|
V
≤ C(1 + |v|

V
). (3.2)

(2)We also define a nonlinear operator G as follows:

G : V × [0, T] −→ V
⊗m

(3.3)

is continuous in both variables. We require that, for any t ∈ [0, T], G(v, t) satisfy

|G(v, t)|
V⊗m ≤ C(1 + |v|

V
). (3.4)

3.2. Statement of the Main Theorem

We introduce the concept of solution of the problem (1.13) that is of interest to us.

Definition 3.1. By a solution of the problem (1.13), we mean a system

(

Ω,F,P,Ft,W, u
)

, (3.5)
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where

(1) (Ω,F,P) is a complete probability space; F
t is a filtration on (Ω,F,P),

(2) W(t) is an m-dimensional F
t standard Wiener process,

(3) for a.e. t, u(t) ∈ Lp(Ω,P;L∞(0, T ;W)) ∩ Lp(Ω,P;L∞(0, T ;V)), 2 ≤ p < ∞,

(4) for almost all t, u(t) is F
t measurable,

(5) P-a.s the following integral equation of Itô type holds:

(u(t) − u(0), v)
V
+
∫ t

0
[ν((u, v)) + (curl(u(s) − αΔu(s)) × u, v)]ds

=
∫ t

0
(F(u(s), s), v)ds +

∫ t

0
(G(u(s), s), v)dW(s)

(3.6)

for any t ∈ [0, T] and v ∈ W.

Remark 3.2. In the above definition the quantity
∫ t

0(G(u(s), s), v)dW(s) should be understood
as:

∫ t

0
(G(u(s), s), v)dW(s) =

m
∑

k=1

∫ t

0
(Gk(u(s), s), v)dWk(s), (3.7)

where Gk and Wk denote the kth component of G and W , respectively.

Now we state our main result.

Theorem 3.3. Assume that u0 ∈ W; assume also that all the assumptions, namely, (3.2) and (3.4),
on the operators F,G are satisfied; then the problem (1.13) has a solution in the sense of the above
definition. Moreover, almost surely the paths of the process u are W-valued weakly continuous.

4. Auxiliary Results

In this section we derive crucial a priori estimates from the Galerkin approximation. They
will serve as a toolkit for the proof of Theorem 3.3.

4.1. The Approximate Solution

The following statement is a consequence of the spectral theorem for self-adjoint compact
operator stated in [49]. The injection of W into V is compact. Let I be the isomorphism of W

	 onto
W, then the restriction of I to V is a continuous compact operator into itself. Thus, there exists a
sequence (ei) of elements of W which forms an orthonormal basis in W, and an orthogonal basis in V.
This sequence verifies:

for any v ∈ W (v, ei)W
= λi(v, ei)V

, (4.1)

where λi+1 > λi > 0, i = 1, 2, . . . .
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We have the following important result due to [39] about the regularity of the ei-s.

Lemma 4.1. Let D be a bounded, simply-connected open set of R
2 with a boundary of class C3, then

the eigenfunctions of (4.1) belong to H
4(D).

We consider the subset WN = Span(e1, . . . , eN) ⊂ W and we look for a finite-
dimensional approximation of a solution of our problem as a vector uN ∈ WN that can be
written as the Fourier series:

uN(t) =
N
∑

i=1

ciN(t)ei(x). (4.2)

Let us consider a complete probabilistic system (Ω,F,P,F t
,W) such that the filtration {Ft}

satisfies the usual condition and W is an m-dimensional standard Wiener process taking
values in R

m. We require uN to satisfy the following system:

d
(

uN, ei
)

V

+ ν
((

uN, ei
))

dt + b
(

uN, uN, ei
)

dt − αb
(

uN,ΔuN, ei
)

dt + αb
(

ei,ΔuN, uN
)

dt

=
(

F
(

t, uN
)

, ei
)

dt +
(

G
(

t, uN
)

, ei
)

dW,

(4.3)

where uN
0 as the orthogonal projection of u(0) in the space WN is given as

uN
0

(

or uN(0)
)

−→ u(0) strongly in V (4.4)

as N → ∞. The Fourier coefficients ciN in (4.2) are solutions of a system of stochastic
ordinary differential equations which satisfy the conditions of the existence theorem of
Skorokhod [50] (see also [47]). Therefore the sequence of functions uN exists at least on a
short interval (0, TN). Global existence will follow from a priori estimates for uN .

4.2. A Priori Estimates

From now on C is a constant depending only on the data, and may change from one line to
the next one. We start by proving the following lemma.

Lemma 4.2. For any N ≥ 1 one has

E sup
0≤t≤T

∣

∣

∣uN(t)
∣

∣

∣

2

V

< +∞. (4.5)

One also has

E sup
0≤t≤T

∣

∣

∣uN(t)
∣

∣

∣

2

W

< +∞. (4.6)
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Proof. From now on we denote by |v|∗ the quantity | curl(v − αΔv)| for any v ∈ W. For any
integer M ≥ 1 we introduce the stopping time

τM =

⎧

⎨

⎩

inf
{

0 ≤ t;
∣

∣uN(t)
∣

∣

V
+
∣

∣uN(t)
∣

∣

∗ ≥ M
}

+∞ if
{

0 ≤ t;
∣

∣uN(t)
∣

∣

V
+
∣

∣uN(t)
∣

∣

∗ ≥ M
}

= ∅.
(4.7)

We will use a modification of the argument used in [7].
For any 0 ≤ s ≤ t ∧ τM, t ∈ (0, TN), we may apply Itô’s formula (see, e.g., [7, 12]) for

φ((uN(s), ei)V
) = (uN(s), ei)

2
V
to (4.3) and obtain

(

uN(s), ei
)2

V

+ 2
∫ s

0

(

uN(r), ei
)

V

[

ν
((

uN(r), ei
))

+ b
(

uN(r), uN(r) − αΔuN(r), ei
)]

dr

= 2
∫s

0

(

uN(r), ei
)

V

[

−αb
(

ei,ΔuN(r), uN(r)
)

+
(

F
(

r, uN
)

, ei
)]

dr

+
∫ s

0

(

G
(

r, uN
)

, ei
)

dW +
∫ s

0

(

uN(r), ei
)

V

(

G
(

r, uN
)

, ei
)2
dr.

(4.8)

We note that |uN |2
V

=
∑N

i=1 λi(u
N, ei)

2
V
. Then, multiplying by λi the above equation and

summing over i from 1 to N give us

∣

∣

∣uN(s)
∣

∣

∣

2

V

+ 2ν
∫ s

0

∥

∥

∥uN
∥

∥

∥

2
dr =

∣

∣

∣uN
0

∣

∣

∣

2

V

+ 2
∫s

0

(

F
(

r, uN
)

, uN
)

dr +
N
∑

i=1

λi

∫s

0

(

G(r, uN), ei
)2
dr

+ 2
∫ s

0

(

G
(

r, uN
)

, uN
)

dW,

(4.9)

where we have used the fact that b(uN, uN, uN) = 0.
We obtain from (4.9) that

∣

∣

∣uN(s)
∣

∣

∣

2

V

+ 2ν
∫ s

0

((

uN(r), uN(r)
))

dr ≤
∣

∣

∣uN
0

∣

∣

∣

2

V

+
N
∑

i=1

λi

∫s

0

(

G
(

uN(r), r
)

, ei
)2
dr

+ 2
∫s

0

∣

∣

∣

(

F
(

uN(r), r
)

, uN(r)
)∣

∣

∣dr

+
∣

∣

∣

∣

2
∫s

0

(

G
(

uN(r), r
)

, uN(r)
)

dW

∣

∣

∣

∣

,

(4.10)

for any 0 ≤ s ≤ t ∧ τM, t ∈ [0, TN]. For any u ∈ V we have

|u| ≤ P‖u‖, (4.11)
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where P is the so called Poincaré’s constant. The last inequality implies that

∣

∣

∣

(

F
(

uN(s), s
)

, uN
)∣

∣

∣ ≤ P2
∥

∥

∥uN
∥

∥

∥

∥

∥

∥F
(

uN(s), s
)∥

∥

∥. (4.12)

We also mention that

(

P2 + α
)−1

|v|2
V
≤ ‖v‖2 ≤ (α)−1|v|2

V
, for any v ∈ V. (4.13)

From the former equation and this one we find

∣

∣

∣

(

F
(

uN(s), s
)

, uN(s)
)∣

∣

∣ ≤ 2C
P2

α

(

1 +
∣

∣

∣uN(s)
∣

∣

∣

2

V

)

. (4.14)

To find a uniform estimate for the corrector term
∑N

i=1 λi(G(uN(s), ei))
2 is not straightforward;

this is the difficulty already mentioned in the introduction. Since the corrector term is
explicitly written as function depending on the scalar product (in L

2(D)) (·, ·) and the ei-s
form an orthonormal basis (resp., orthogonal basis) of W (resp, V), then the usual Bessel’s
inequality (see, e.g., [6]) does not apply anymore. To circumvent this difficulty we consider
the following generalized Stokes equation:

˜G − αΔ ˜G +∇q = G
(

uN(s), s
)

in D,

div ˜G = 0 in D,

˜G = 0 on ∂D,

(4.15)

for any s ∈ [0, T]. By Theorem 2.5, (4.15) has a solution ˜G in W
⊗m when ∂D is of class C3 and

G(uN(s), s) ∈ V
⊗m. Moreover, there exists a positive constant C0 such that

∣

∣

∣

˜G
∣

∣

∣

H3(D)⊗m
≤ C0

∣

∣

∣G
(

uN(s), s
)∣

∣

∣

V⊗m
, (4.16)

and ( ˜G, ei)V
= (G(uN(s), s), ei) for any i ≥ 1.

Since the norms | · |H3(D) and | · |W are equivalent on W, then there exists another positive
constant C∗ such that

∣

∣

∣

˜G
∣

∣

∣

W⊗m
≤ C∗C0

∣

∣

∣G
(

uN(s), s
)∣

∣

∣

V⊗m
. (4.17)
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Equation (4.17) implies that ˜G depends continuously on the data G(uN(s), s). Therefore, we
note the above ˜G as ˜G(uN(s), s). We find from (4.17) that

N
∑

i=1

λi
(

G
(

uN(s), s
)

, ei
)2

=
N
∑

i=1

λi
(

˜G
(

uN(s), s
)

, ei
)2

V

=
N
∑

i=1

1
λi

(

˜G
(

uN(s), s
)

, ei
)2

W

.

(4.18)

We deduce from this that

N
∑

i=1

1
λi

(

˜G
(

uN(s), s
)

, ei
)2

W

≤ 1
λ1

∣

∣

∣

˜G(uN(s), s)
∣

∣

∣

2

W⊗m
. (4.19)

By (4.17) and the assumption on G, we have

N
∑

i=1

λi
(

G
(

uN(s), s
)

, ei
)2 ≤ C

(

1 +
∣

∣

∣uN(s)
∣

∣

∣

2

V

)

. (4.20)

Collecting this information, we obtain from (4.10) that

∣

∣

∣uN(s)
∣

∣

∣

2

V

+ 2ν
∫ s

0

∥

∥

∥uN(r)
∥

∥

∥

2
dr

≤ C + C

∫s

0

∣

∣

∣uN(r)
∣

∣

∣

2

V

dr + 2
∣

∣

∣

∣

∫s

0

(

G
(

uN(r), r
)

, uN(r)
)

dW

∣

∣

∣

∣

.

(4.21)

Taking the sup over s ≤ t ∧ τM in both sides of this inequality and passing to the
mathematical expectation in the resulting relation and finally applying Burkhölder-Davis-
Gundy’s inequality (see, e.g., [48]) to the stochastic term, we get

E sup
s≤t∧τM

∣

∣

∣uN(s)
∣

∣

∣

2

V

+ 2νE

∫ t∧τM

0

∥

∥

∥uN(s)
∥

∥

∥

2
ds

≤ C + CE

∫ t∧τM

0

∣

∣

∣uN(s)
∣

∣

∣

2

V

ds + 2C1E

(

∫ t∧τM

0

(

G(uN(s), s), uN(s)
)2
ds

)1/2

.

(4.22)

Now, we estimate

γ = E

(

∫ t∧τM

0

(

G
(

uN(s), s
)

, uN(s)
)2
ds

)1/2

. (4.23)
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With the same argument that we have used for the term |(F(uN(s), s), uN(s))|, we have

γ ≤ CE

⎡

⎣ sup
s≤t∧τM

∣

∣

∣uN(s)
∣

∣

∣

V

(

∫ t∧τM

0

∣

∣

∣G
(

uN(s), s
)∣

∣

∣

2

V×m
ds

)1/2
⎤

⎦. (4.24)

By ε-Young’s inequality

γ ≤ CεE sup
s≤t∧τM

∣

∣

∣uN(s)
∣

∣

∣

2

V

+ CεE

∫ t∧τM

0

∣

∣

∣G(uN(s), s)
∣

∣

∣

2

V×m
ds (4.25)

Using the assumption on G one has

γ ≤ CεE sup
s≤t∧τM

∣

∣

∣uN(s)
∣

∣

∣

2

V

+ CεE

∫ t∧τM

0

(

1 +
∣

∣

∣uN(s)
∣

∣

∣

2

V

)

. (4.26)

With convenient choice of ε (1 − 2C1Cε = 1/2), the estimates (4.22) and (4.26) allow us to
write

E sup
s≤t∧τM

∣

∣

∣uN(s)
∣

∣

∣

2

V

+ 4νE

∫ t∧τM

0

∥

∥

∥uN(s)
∥

∥

∥

2
ds ≤ C + CE

∫ t∧τM

0

∣

∣

∣uN(s)
∣

∣

∣

2

V

ds. (4.27)

We derive from this and Gronwall’s inequality that

E sup
0≤s≤t∧τM

∣

∣

∣uN(s)
∣

∣

∣

2

V

≤ C. (4.28)

We recall the following relationship which is very important in the sequel:

λi
(

G
(

uN(s), s
)

, ei
)

=
(

˜G
(

uN(s), s
)

, ei
)

W

, i ≥ 1, (4.29)

where ˜G(uN(s), s) is the solution in W of (GS).
To alleviate notation, we only write uN when we mean uN(·). Let us set

φ
(

uN
)

= −νΔuN + curl
(

uN − αΔuN
)

× uN − F
(

uN, t
)

. (4.30)

By Lemma 4.1, φ(uN) ∈ H
1(D). We have

d
(

uN, ei
)

V

+
(

φ
(

uN
)

, ei
)

dt =
(

G
(

uN, t
)

, ei
)

dW. (4.31)
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By Theorem 2.5 a solution vN ∈ W of the following system exists:

vN − αΔvN +∇q = φ
(

uN
)

in D,

divvN = 0 in D,

vN = 0 on ∂D.

(4.32)

Moreover,

(

vN, ei
)

V

=
(

φ
(

uN
)

, ei
)

, (4.33)

for any i. Thus,

d
(

uN, ei
)

V

+
(

φ
(

uN
)

, ei
)

dt = d
(

uN, ei
)

V

+
(

vN, ei
)

V

dt

=
(

G
(

uN, t
)

, ei
)

dW.

(4.34)

The following follows by multiplying the latter equation by λi and using the relationship
(4.1):

d
(

uN, ei
)

W

+
(

vN, ei
)

W

dt = λi
(

G
(

uN, t
)

, ei
)

dW. (4.35)

Recalling (4.29), we obtain

d
(

uN, ei
)

W

+
(

vN, ei
)

W

dt =
(

˜G
(

uN, t
)

, ei
)

W

dW. (4.36)

Now applying the Itô’s formula (see, e.g., [7]) to ϕ((uN, ei)W
) = (uN, ei)

2
W
, we have

d
(

uN, ei
)2

W

+ 2
(

uN, ei
)

W

(

vN, ei
)

W

dt =
(

˜G
(

uN, t
)

, ei
)2

W

dt + 2
(

uN, ei
)

W

(

˜G
(

uN, t
)

, ei
)

W

dW.

(4.37)

Summing both sides of the last equation from 1 toN yields

d
∣

∣

∣uN
∣

∣

∣

2

W

+ 2
(

uN, vN
)

W

dt =
N
∑

i=1

(

˜G
(

uN, t
)

, ei
)2

W

dt + 2
(

˜G
(

uN, t
)

, uN
)

W

dW. (4.38)
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Using the definition of | · |W and the scalar product (·, ·)
W
, we can rewrite the above equation

in the form

d

[

∣

∣

∣uN
∣

∣

∣

2

V

+
∣

∣

∣uN
∣

∣

∣

2

∗

]

+ 2
[(

vN, uN
)

V

+
(

curl
(

vN − αΔvN
)

curl
(

uN − αΔuN
))]

dt

= 2
(

curl
(

˜G
(

uN, t
)

− αΔ ˜G
(

uN, t
))

, curl
(

uN − αΔuN
))

dW

+
N
∑

i=1

λ2i

(

˜G
(

uN, t
)

, ei
)2

V

dt + 2
(

˜G
(

uN, t
)

, uN
)

V

dW.

(4.39)

In view of Remark 3.2, we have to make the convention that in the sequel

(

curl
(

G
(

uN, t
))

, curl
(

uN − αΔuN
))dW

dt

=
m
∑

k=1

(

curl
(

Gk

(

uN, t
))

, curl
(

uN − αΔuN
))dWk

dt
.

(4.40)

Using the definition of vN and ˜G, we obtain

d

[

∣

∣

∣uN
∣

∣

∣

2

V

+
∣

∣

∣uN
∣

∣

∣

2

∗

]

+ 2
[(

φ
(

uN
)

, uN
)

+
(

curl
(

φ
(

uN
))

, curl
(

uN − αΔuN
))]

dt

=
N
∑

i=1

λ2i

(

G(uN, t), ei
)2
dt + 2

(

G
(

uN, t
)

, uN
)

dW

+ 2
(

curl
(

G
(

uN, t
))

, curl
(

uN − αΔuN
))

dW.

(4.41)

With the help of (4.9), (4.41) can be rewritten in the following way:

d
∣

∣

∣uN
∣

∣

∣

2

∗
+ 2
(

curlφ
(

uN
)

, curl
(

uN − αΔuN
))

dt

= 2
(

curl
(

G
(

uN, t
))

, curl
(

uN − αΔuN
))

dW +
N
∑

i=1

(

λi + λ2i

)(

G
(

uN, t
)

, ei
)2
dt.

(4.42)

We infer from the definition of φ(uN) that

curlφ
(

uN
)

= −ν curl
(

ΔuN + F
(

uN, t
))

+ curl
(

curl
(

uN − αΔuN
)

× uN
)

. (4.43)

In taking advantage of the dimension we get

curl
(

curl
(

uN − αΔuN
)

× uN
)

=
(

uN · ∇
)(

curl
(

uN − αΔuN
))

. (4.44)
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This yields

((

uN · ∇
)(

curl
(

uN − αΔuN
))

− ν curl
(

ΔuN + F
(

uN, t
))

, curl
(

uN − αΔuN
))

=
(

curlφ
(

uN
)

, curl
(

uN − αΔuN
))

.

(4.45)

Owing to Lemma 4.1 we readily check that

((

uN · ∇
)

β, β
)

= 0, (4.46)

where β = curl(uN − αΔuN). Consequently,

(

ν curl
(

ΔuN
)

, curl
(

uN − αΔuN
))

+
(

curl
(

F
(

uN, t
))

, curl
(

uN − αΔuN
))

= −
(

curlφ
(

uN
)

, curl
(

uN − αΔuN
))

.

(4.47)

Or equivalently

ν

α

∣

∣

∣uN
∣

∣

∣

∗
− ν

α

(

curluN +
α

ν
curl

(

F
(

uN, t
))

, curl
(

uN − αΔuN
)

)

=
(

curlφ
(

uN
)

, curl
(

uN − αΔuN
))

.

(4.48)

We derive from (4.42) and the last equation that

d

dt

∣

∣

∣uN
∣

∣

∣

2

∗
+
2ν
α

∣

∣

∣uN
∣

∣

∣

2

∗
− 2ν

α

(

curluN +
α

ν
curl

(

F
(

uN, t
))

, curl
(

uN − αΔuN
)

)

=
N
∑

i=1

(

λi + λ2i

)(

G
(

uN, t
)

, ei
)2

+ 2
(

curl
(

G
(

uN, t
))

, curl
(

uN − αΔuN
))dW

dt
.

(4.49)

We argue as before in considering the stopping time τM. We derive from (4.49) that

∣

∣

∣uN(s)
∣

∣

∣

2

∗
+
∫s

0

(

2ν
α

∣

∣

∣uN(r)
∣

∣

∣

2

∗
−

N
∑

i=1

(

λi + λ2i

)(

G
(

uN(r), r
)

, ei
)2
)

dr

=
∫ s

0

2ν
α

[(

curl
(

uN(r)
)

− α

ν
curl

(

F
(

uN(r), r
))

, curl
(

uN(r) − αΔuN(r)
)

)]

dr

+ 2
∫ s

0

(

curl
(

G
(

uN(r), r
))

, curl
(

uN(r) − αΔuN(r)
))

W.

(4.50)
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Hence,

∣

∣

∣uN(s)
∣

∣

∣

2

∗
+
∫ s

0

2ν
α

∣

∣

∣uN(r)
∣

∣

∣

2

∗
dr −

N
∑

i=1

(

λi + λ2i

)

∫s

0

(

G
(

uN(r), r
)

, ei
)2
dr

≤
∣

∣

∣uN
0

∣

∣

∣

2

∗
+
∫s

0

2ν
α

∣

∣

∣curl
(

uN(r)
)∣

∣

∣

∣

∣

∣uN(r)
∣

∣

∣

∗
+
∫s

0
2
∣

∣

∣curl
(

F
(

uN(r), r
))∣

∣

∣

∣

∣

∣uN(r)
∣

∣

∣

∗
dr

+ 2
∣

∣

∣

∣

∫ s

0

(

curl
(

G
(

uN(r), r
))

, curl
(

uN(r) − αΔuN(r)
))

dW

∣

∣

∣

∣

.

(4.51)

Taking the supremum over s ≤ t ∧ τM in the last estimate, and taking the mathematical
expectation in the resulting relation yields

E sup
s≤t∧τM

∣

∣

∣uN(s)
∣

∣

∣

2

∗
+ E

∫ t∧τM

0

2ν
α

∣

∣

∣uN(s)
∣

∣

∣

2

∗
ds −

N
∑

i=1

(

λi + λ2i

)

E

∫ t∧τM

0

(

G
(

uN(s), s
)

, ei
)2
ds

≤
∣

∣

∣uN
0

∣

∣

∣

2

∗
+ E

∫ t∧τM

0

2ν
α

∣

∣

∣curl
(

uN(s)
)∣

∣

∣

∣

∣
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For any ε1 ≥ 0 and ε2 ≥ 0, we have
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(4.53)

We choose ε1 = 1/4 and ε2 = ν/4α and we deduce from the last inequality the following
estimate,
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Thanks to (4.20), (4.29) and (4.17) we see that
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Let us estimate
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By Fubini’s theorem and the Burkhölder-Davis-Gundy’s inequality we obtain
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Making use of an ε-Young’s inequality, the following holds:
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Choosing ε = 1/12, we write
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Combining (4.54), (4.55), and (4.59), we obtain
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(4.60)

By a straightforward calculation we have
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Owing to (4.61) and the assumptions on F and G, we derive from (4.60) that
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This and the estimate (4.28) imply
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It is easy to check that, as M → ∞, t ∧ τM → t almost surely for any t ∈ (0, TN]. Since the
constant C is independent of N, the estimates (4.28), (4.63) and the Dominated Lebesgue’s
Convergence Theorem complete the proof of the lemma.

Lemma 4.3. For any 4 ≤ p < ∞ one has
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(4.64)

Proof. We recall that
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For a fixed p ≥ 4 the application of Itô’s formula to the function φ(|uN(t)|2
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Hence
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for any t ∈ (0, T]. In squaring the last equation and in making use of some elementary
inequalities we obtain
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We deduce from (4.14), (4.20), and (4.68) that
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We find from this that
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It is clear that
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Hence,
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Now let us denote by γ1 the stochastic term in (4.70). As before, we use the Burkhölder-Davis-
Gundy’s inequality and get
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The following follows from the same arguments as used before and by the assumption on G:
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This, the estimate (4.70), and Gronwall’s inequality imply

E sup
s≤t

∣

∣

∣uN(s)
∣

∣

∣

p

V

< ∞, (4.75)

which completes the proof of the first estimate of the lemma.
Let us now proceed to the proof of the second estimate of Lemma 4.3.We rewrite (4.49)
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Applying Itô formula to the function ϕ(|uN(s)|2∗) = |uN(s)|2(p/4)∗ we have
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Hence,
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for any t ∈ (0, T]. The following follows in squaring both sides of the last inequality:
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For almost all s ∈ (0, T], we note that
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We also check readily that
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∣
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∣
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∣
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∣

V

)2
. (4.82)

Thanks to the continuous injection of W into V, all the above estimates still hold with |uN(·)|V
replaced by |uN(·)|W. It follows from this argument and (4.79) that
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∣
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∣

∣
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0
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∣
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∣

∣
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∣
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G
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)2

.

(4.83)
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Taking the supremum over s ≤ t followed by the mathematical expectation yields

E sup
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∣
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∣
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(4.84)

Applying the Martingale inequality and Hölder’s inequality in the last estimate we obtain
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∣
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(4.85)

We can use the same idea we have used to find (4.81) to get an upper bound of the form
C(1+|uN(s)|W)4 for |(curl(G(uN(s), s)), curl(uN(s)−αΔuN(s)))2|· Then, we derive from (4.85)
that

E sup
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∣

∣
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∣uN(s)
∣

∣

∣
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ds. (4.86)

We obviously have
∣
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∣uN(s)
∣

∣

∣
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∣uN(s)
∣

∣

∣

p

V

+
∣

∣

∣uN(s)
∣

∣

∣

p

∗

)

. (4.87)

Finally, using a previous result concerning E sups≤t|uN(s)|p
V
, (4.86) and Gronwall’s inequality

we obtain

E sup
s≤t

∣

∣

∣uN(s)
∣

∣

∣

p

∗
< ∞. (4.88)

This completes the proof of the lemma.

Remark 4.4. Lemmas 4.2 and 4.3 imply in particular that

E sup
t≤T

∣

∣

∣uN(t)
∣

∣

∣

p

V

< ∞,

E sup
t≤T

∣

∣

∣uN(t)
∣

∣

∣

p

W

< ∞,
(4.89)

for any 1 ≤ p < ∞.



28 Boundary Value Problems

The following result is central in the proof of the forthcoming crucial estimate of the
finite difference of our approximating solution.

Lemma 4.5. Let t, s ∈ [0, T] such that s ≤ t. For a fixed t ∈ [0, T], let

vN(t) =
N
∑

i=1

λi
(

vN(t), ei
)

V

ei (4.90)

be an element of WN which satisfies Lemmas 4.2 and 4.3. The following holds:
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∣
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∣
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b
(

uN(r),ΔuN(r), vN(s)
)
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(4.91)

Proof. For vN , for any s, t such that 0 ≤ s ≤ t ≤ T , we have

d

dt

(

uN(t) − vN(s), ei
)

V

+ ν
((

uN(t), ei
))
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+
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G
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) d
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W, 1 ≤ i ≤ N.

(4.92)

This relation can be rewritten as the following Itô equation:

d
(
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)

V
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=
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F
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)
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)
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(

G
(

uN(t), t
)

, ei
)

dW.

(4.93)
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Applying Itô’s formula to the function (uN(t), vN(s), ei)
2
V
, multiplying the result by λi, and

then summing over i from 1 to N yield

d|w|2
V
+ 2ν
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(
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+ 2
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dW,

(4.94)

wherew = uN(t)−vN(s). Using the trilinearity of b and thewell-known identity b(u, u, u) = 0,
u ∈ V, we find that

b
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uN(t), uN(t), w
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− αb
(

uN(t),ΔuN(t), w
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)

.

(4.95)

The lemma follows in combining this relation with (4.94), and integrating the resulting
equation between s and t.

The following result can be proved by a similar argument used in [15], but we prefer
to give our own proof which is interesting in itself.

Lemma 4.6. There exists a positive constant C > 0 such that for all 0 ≤ δ < 1 and N ∈ N, the
following inequality holds:
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∣
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∣

∣

∣

2
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≤ Cδ1/2. (4.96)

Proof. Since uN(s) ∈ WN , s ∈ (0, T) and it satisfies Lemmas 4.2 and 4.3 then we can take
vN(s) = uN(s) and t = s + θ, 0 ≤ θ ≤ δ ≤ 1 and apply Lemma 4.5. We obtain
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We derive that
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where
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(4.99)

The proof of the lemma will consist of the following five steps.

Step 1 (estimate of I3). Owing to the equivalence of the two norms ‖ · ‖ and | · |V we see that
I3 is dominated by

2CE
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0
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∣
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∣
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∣
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V
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)

ds. (4.100)

We find from this and by a successive application of Cauchy-Schwarz’s inequality that
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dr
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. (4.101)

Since s+θ ∈ [0, T] for any s ∈ [0, T −δ] and any 0 ≤ θ ≤ δ, we get using the triangle inequality
and Lemma 4.2 that

I3 ≤ Cδ. (4.102)
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Step 2 (estimates for I4, I5 and I6). The estimate (2.16) and a successive application of Cauchy-
Schwarz’s inequality yield

I4 ≤ Cδ1/2

(
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By Cauchy’s inequality, we have

I4 ≤ Cδ1/2
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Thanks to Lemmas 4.2 and 4.3, we derive from the latter estimate that

I4 ≤ Cδ1/2. (4.105)

Similar estimates hold for I5 and I6.

Step 3 (estimate for I7). Thanks to the idea used in the proof of the estimate (4.102), we have
that the quantity
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(4.106)

dominates I7. By the assumption on F and the argument used in deriving (4.102) we have

I7 ≤ Cδ. (4.107)

Step 4 (estimate for I2). We use the same argument as used in the proof of Lemma 4.2 to get
an estimate of the form

N
∑
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2

V

)

. (4.108)

We derive from the definition of I2, the latter estimate and Lemma 4.2 that

I2 ≤ Cδ. (4.109)

Step 5 (estimate for I1). Thanks to Fubini’s Theorem and the Burkhölder-Davis-Gundy
inequality we have
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0
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By a sequence of Cauchy-Schwarz’s inequality we find that I1 is bounded from above by

C
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. (4.111)

By the assumption on G and by Lemma 4.2 we get from the latter equation that

I1 ≤ Cδ1/2. (4.112)

Combining all the estimates in Steps 1–5 we get,
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Since V is continuously embedded in W
∗,
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(4.114)

The lemma follows readily from this last inequality and noting that a similar argument can
be carried out to find a similar estimate for negative values of θ.

4.3. Tightness Property and Application of
Prokhorov’s and Skorokhod’s Theorems

We denote by Z the following subset of L2(0, T ;V):

Z =

{

z ∈ L∞(0, T ;W) ∩ L∞(0, T ;V); sup
|θ|≤μM

∫T−μM

0
|z(t + θ) − z(t)|2

W∗ ≤ CνM

}

, (4.115)

for any sequences νM, μM such that νM, μM → 0 asM → ∞. The following result is a version
of Theorem 2.6 due to Bensoussan [51].

Lemma 4.7. The set Z is compact in L2(0, T ;V).

Next we consider the space S = C(0, T ;Rm) × L2(0, T ;V) endowed with its Borel σ-
algebra B(S) and the family of probability measures PN on S, which is the probability
measure induced by the following mapping:

φ : w �−→
(

W(w, ·), uN(w, ·)
)

, (4.116)

that is, for any A ∈ B(S), PN(A) = P(φ−1(A)).
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We have the following lemma.

Lemma 4.8. The family (PN)N≥1 is tight.

Proof. For any ε > 0 andM ≥ 1, we claim that there exists a compact subset Kε of S such that
PN(Kε) ≥ 1 − ε. To prove our claim we define the sets

Wε =

⎧
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⎪

⎨

⎪

⎪
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}

,

(4.117)

where the sequences νM and μM are chosen so that they are independent of ε, νM, μM → 0 as
M → ∞ and

∑

M
√
μM/νM < ∞. It is clear by Ascoli-Arzela’s Theorem that Wε is a compact

subset of C(0, T ;Rm), and by Lemma 4.7, Zε is a compact subset of L2(0, T ;V). We have to
show that Aε = PN((W,uN)/∈Wε × Zε) < ε. Indeed, we have
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where {Ij : 1 ≤ j ≤ 2M} is a family of intervals of length T/2M which forms a partition of the
interval [0, T]. It is well-known that for any Wiener process B

E|B(t) − B(s)|2m = Cm|t − s|m for any m ≥ 1, (4.119)

where Cm is a constant depending only on m. From this and Markov’s Inequality

P(ω : ζ(w) ≥ α) ≤ 1
αk

E

(

|ζ(ω)|k
)

, (4.120)

where ζ(ω) is a random variable on (Ω,F,P) and positive numbers k and α, we obtain
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|θ|≤μM

∫T−μM

0

∣

∣

∣uN(t + θ) − uN(t)
∣

∣

∣

2

W∗
.

(4.121)
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Owing to Lemmas 4.2, 4.6 and by choosing m = 2, we have

Aε ≤ C2T
2

L4
ε

∞
∑

M=1

2−(1/2)M + C

(

1
Kε

+
1
Lε

+
1
Rε

∑

M

√
μM

νM

)

≤ C2T
2

J4ε

(

2 +
√
2
)

+ C

(

1
Kε

+
1
Lε

+
1
Rε

∑

M

√
μM

νM

)

.

(4.122)

A convenient choice of Jε, Kε, Lε, Rε completes the proof of the claim, and hence the proof of
the lemma.

It follows by Prokhorov’s Theorem (Theorem 2.1) that the family (PN)N≥1 is relatively
compact in the set of probability measures (equipped with the weak convergence topology)
onS. Then, we can extract a subsequencePNμ that weakly converges to a probabilitymeasure
P. By Skorokhod’s Theorem (Theorem 2.2), there exists a probability space (Ω,F,P) and
random variables (WNμ, uNμ) and (W,u) on (Ω,F,P)with values in S such that

WNμ −→ W in C(0, T ;Rm)P-a.s, (4.123)

uNμ −→ u in L2(0, T ;V)P-a.s. (4.124)

Moreover,

the probability law of
(

WNμ, uNμ

)

is PNμ and that of (W,u) is P. (4.125)

For the filtration F
t, it is enough to choose F

t = σ(W(s), u(s) : 0 ≤ s ≤ t), t ∈ (0, T].
It remains to prove that the limit process W is a Wiener process. To fix this, it is

sufficient to show that for any 0 < t1 < t2 < · · · < tm = T , the increments process
(W(tj) − W(tj−1)) are independent with respect to F

tj−1 , distributed normally with mean 0
and variance tj − tj−1. That is, to show that for any λj ∈ R

m and i2 = −1

E exp

⎛

⎝i
m
∑

j=1

λj
(

W
(

tj
) −W

(

tj−1
))

⎞

⎠ =
m
∏

j=1

exp
(

−1
2
λ2j
(

tj − tj−1
)

)

. (4.126)

Equation (4.126)will follow if we have

E

[

exp
(iλ(W(t + θ) −W(t)))

Ft

]

= exp

(

−λθ
2

2

)

. (4.127)

We rely on the fact that for any random variables X and Y on any probability space (Ω,F,P)
such that X is F-measurable and E|Y | < ∞, E|XY | < ∞, we have

E

(

XY

F
)

= XE

(

Y

F
)

, EE

(

Y

F
)

= E(Y ), (4.128)
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that is,

E(XY ) = E

(

XE

(

Y

F
))

. (4.129)

Now, let us consider an arbitrary bounded continuous functional ϑt(W,v) on S depending
only on the values ofW and v on (0, T). Owing to the independence ofW(t) to ϑt(W,v) and
the fact that W is a Wiener process, we have

E

[

exp
(

iλ
(

W(t + θ) −W(t)
))

ϑt

(

W,v
)]

= E

[

exp
(

iλ
(

W(t + θ) −W(t)
))]

E

[

ϑt

(

W,v
)]

= exp

(

−λθ
2

2

)

E

[

ϑt

(

W,v
)]

.

(4.130)

In view of (4.125), this implies that

E

[

exp
(

iλ
(

WNμ(t + θ) −WNμ(t)
))

ϑt

(

WNμ, v
)]

= E

[

exp
(

iλ
(

WNμ(t + θ) −WNμ(t)
))]

E

[

ϑt

(

WNμ, v
)]

= exp

(

−λθ
2

2

)

E

[

ϑt

(

WNμ, v
)]

.

(4.131)

Now, the convergences (4.123) and (4.124) and the continuity of ϑ allow us to pass to the
limit in this latter equation and obtain

E
[

exp(iλ(W(t + θ) −W(t)))ϑt(W,v)
]

= exp

(

−λθ
2

2

)

E[ϑt(W,v)], (4.132)

which, in view of (4.129), implies (4.127). The choice of the above filtration implies then that
W is a F

t-standard m-dimensional Wiener process.

Theorem 4.9. The pair uNμ,WNμ satisfies the equation

(

uNμ(s), ei
)

V

+ ν

∫ t

0

((

uNμ(s), ei
))

ds +
∫ t

0

(

curl
(

uNμ(s) − αΔuNμ(s)
)

× uNμ(s), ei
)

ds

=
(

u
Nμ

0 , ei
)

V

+
∫ t

0

(

F
(

uNμ(s), s
)

, ei
)

ds +
∫ t

0

(

G
(

uNμ(s), s
)

, ei
)

dWNμ,

(4.133)

for any i ≥ 1.
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Proof. Let i ≥ 1 be an arbitrary fixed integer. We set

XN =
∫T

0

∣

∣

∣

∣

∣

(

uN(s), ei
)

V

−
(

uN
0 , ei

)

V

+ ν

∫ t

0

((

uN(s), ei
))

ds −
∫ t

0

(

F
(

uN(s), s
)

, ei
)

ds

+
∫ t

0

(

curl
(

uN(s) − αΔuN(s)
)

× uN(s), ei
)

ds −
∫ t

0

(

G
(

uN(s), s
)

, ei
)

dW

∣

∣

∣

∣

∣

2

dt.

(4.134)

Obviously

XN = 0 P-a.s, (4.135)

which implies in particular that

E
XN

1 + XN
= 0. (4.136)

Now we let

YNμ =
∫T

0

∣

∣

∣

∣

∣

(

uNμ(s), ei
)

V

+ ν

∫ t

0

((

uNμ(s), ei
))

ds −
∫ t

0

(

F
(

uNμ(s), s
)

, ei
)

ds

−
(

u
Nμ

0 , ei
)

V

+
∫ t

0

(

curl
(

uNμ(s) − αΔuNμ(s)
)

× uN(s), ei
)

ds

+
∫ t

0

(

G
(

uNμ(s), s
)

, ei
)

dWNμ

∣

∣

∣

∣

∣

2

dt.

(4.137)

We will prove that

E
YNμ

1 + YNμ
= 0. (4.138)

The difficulty we encounter is that XN is not a deterministic functional of uN andW because
of the stochastic term. To overcome this obstacle we introduce

Gε(u(t), t) =
1
ε

∫T

0
φ

(

− t − s

ε

)

G(u(s), s)ds, (4.139)

where φ is a mollifier. It is clear that

E

∫T

0
|Gε(u(t), t)|2dt ≤ E

∫T

0
|G(u(t), t)|2dt. (4.140)
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Moreover,

Gε(u(·), ·) −→ G(u(·), ·) in L2
(

Ω,P;L2(0, T ;V)
)

, (4.141)

which implies in particular that

(Gε(u(·), ·), ei) −→ (G(u(·), ·), ei) in L2
(

Ω,P;L2(0,T)
)

for any i ≥ 1. (4.142)

Let us denote by XN,ε and YNμ,ε the analog of XN and YNμ with G replaced by Gε.
Introduce the mapping

ϕN,ε : C(0, T ;Rm) × L2(0, T ;V) −→
(

Ω,F,P
)

,

ϕN,ε

(

W,vN
)

=
XN,ε

1 + XN,ε
.

(4.143)

Now, it is seen that ϕN,ε is a bounded continuous functional on S. Next, let us define

ϕNμ,ε

(

W,uNμ

)

=
XNμ,ε

1 + XNμ,ε
. (4.144)

We have

E
YNμ,ε

1 + YNμ,ε
= EϕNμ,ε

(

WNμ, uNμ

)

. (4.145)

Since ϕNμ,ε(W
Nμ, uNμ) is a bounded functional on S and since the law of WNμ, uNμ is PNμ

(see (4.125)), then

E
YNμ,ε

1 + YNμ,ε
=
∫

S

ϕ(w,v)dPNμ. (4.146)

We note that law (W,uNμ) = PNμ , so

∫

S

ϕ(w,v)dPNμ = Eϕ
(

W,uNμ

)

= E
XNμ,ε

1 + XNμ,ε
.

(4.147)

That is,

E
YNμ,ε

1 + YNμ,ε
= E

XNμ,ε

1 + XNμ,ε
. (4.148)
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Note that

E
YNμ

1 + YNμ
− E

XNμ

1 + XNμ
= E

(

YNμ

1 + YNμ
− YNμ,ε

1 + YNμ,ε

)

+ E
YNμ,ε

1 + YNμ,ε
− E

XNμ,ε

1 + XNμ,ε

+ E

(

XNμ,ε

1 + XNμ,ε
− XNμ

1 + XNμ

)

.

(4.149)

We can check that

E

∣

∣

∣

∣

∣

YNμ

1 + YNμ
− YNμ,ε

1 + YNμ,ε

∣

∣

∣

∣

∣

= E

∣

∣

∣

∣

∣

YNμ − YNμ,ε

(

1 + YNμ
)(

1 + YNμ,ε
)

∣

∣

∣

∣

∣

, (4.150)

and it implies that

E

∣

∣

∣

∣

∣

YNμ

1 + YNμ
− YNμ,ε

1 + YNμ,ε

∣

∣

∣

∣

∣

≤ C

(

E

∫T

0

∣

∣

∣

(

Gε
(

uNμ(t), t
)

−G
(

uNμ(t), t
)

, ei
)∣

∣

∣

2
dt

)1/2

. (4.151)

We also have

E

∣

∣

∣

∣

∣

XNμ

1 + XNμ
− XNμ,ε

1 + XNμ,ε

∣

∣

∣

∣

∣

≤ C

(

E

∫T

0

∣

∣

∣

(

Gε
(

uNμ(t), t
)

−G
(

uNμ(t), t
)

, ei
)∣

∣

∣

2
dt

)1/2

. (4.152)

The above estimates and (4.145) yield

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

E
YNμ

1 + YNμ

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

E
XNμ

1 + XNμ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ C

(

E

∫T

0

∣

∣

∣

(

Gε
(

uNμ(t), t
)

−G
(

uNμ(t), t
)

, ei
)∣

∣

∣

2
dt

)1/2

. (4.153)

Passing to limit to the above relation implies (4.138) and, hence, (4.133).

5. Proof of the Main Result

5.1. Passage to the Limits

From the tightness property we have

uNμ −→ u in L2(0, T ;V) P-a.s. (5.1)

Since uNμ satisfies the two equivalent equations (4.133), then it verifies the same estimates as
uN .
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Let us consider the positive nondecreasing function ϕ(x) = xp, p ≥ 4 defined on R+.
We have

lim
x→∞

φ(x)
x

= ∞. (5.2)

Thanks to the estimate E supt∈[0,T]|uNμ |p
V
≤ C, we have

P

(

φ

(

∣

∣

∣uNμ

∣

∣

∣

L2(0,T ;V)

))

< ∞. (5.3)

Thanks to the uniform integrability criteria in [52] we see that |uNμ |L2(0,T ;V) is uniform
integrable with respect to the probability measure.

We can deduce from Vitali’s Theorem that

uNμ −→ u in L2
(

Ω,P, L2(0, T ;V)
)

. (5.4)

This implies in particular that

uNμ −→ u in L2
(

Ω,P, L2
(

0, T ;L2(D)
))

, (5.5)

∂uNμ

∂xi
−→ ∂u

∂xi
in L2

(

Ω,P, L2
(

0, T ;L2(D)
))

, i = 1, 2. (5.6)

Thanks to (5.4), we can still extract a new subsequence from uNμ denoted again by uNμ so
that

uNμ −→ u in Vdt × dP-almost everywhere. (5.7)

It is readily seen that

((

uNμ, ei
))

−→ ((u, ei)) strongly in L2
(

Ω,P;L2(0, T)
)

. (5.8)

Let χ be an element of L∞(Ω × [0, T], dP ⊗ dt).
Since ei ∈ H

3(D) ⊂ L
∞(D), then χei ∈ L∞(Ω× (0, T]×D,dP⊗dt⊗dx). Thanks to (5.5),

(5.6) we have that

u
Nμ

j

∂u
Nμ

k

∂xj

(

χei
)

k −→ uj
∂uk

∂xj

(

χei
)

k in L1(Ω × (0, T] ×D), (5.9)

which implies that

E

∫T

0
b
(

uNμ, uNμ, χei
)

dt −→ E

∫T

0
b
(

u, u, χei
)

dt for any i. (5.10)
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Since in view of Lemma 4.1 ei ∈ H
4(D), then

∂

∂xk

(

χ
∂ei
∂xj

)

l

∈ L∞
(

Ω,P, L∞
(

0, T ;H2(D)
))

. (5.11)

Since H
2(D) ⊂ L

∞(D), then

∂

∂xk

(

χ
∂ei
∂xj

)

l

∈ L∞(Ω,P, L∞(0, T ;L∞(D))). (5.12)

With the help of (5.5)we obtain

(

uNμ

)

k

∂

∂xk

(

χ
∂ei
∂xj

)

l

−→ uk
∂

∂xk

(

χ
∂ei
∂xj

)

l

in L2
(

Ω,P;L2
(

0, T ;L2(D)
))

. (5.13)

We derive from this and (5.6) that

E

∫T

0

∫

D

(

uNμ

)

k

∂

∂xk

(

χ
∂ei
∂xj

)

l

(

∂uNμ

∂xj

)

l

dx dt −→ E

∫T

0

∫

D

uk
∂

∂xk

(

χ
∂ei
∂xj

)

l

(

∂u

∂xj

)

l

dx dt,

(5.14)

for any i, j, k, l. In the above equations (f)k denotes the kth component of the vector function
f .

We can use the same argument to show that

E

∫T

0

∫

D

(

∂uNμ

∂xj

)

k

χ
∂(ei)l
∂xj

(

∂uNμ

∂xj

)

l

dx dt −→ E

∫T

0

∫

D

(

∂u

∂xj

)

k

χ
∂(ei)l
∂xj

(

∂u

∂xj

)

l

dx dt,

(5.15)

for any i, j, k, l.
With the help of (2.21), and (5.14), (5.15), we have

E

∫T

0
b
(

uNμ,ΔuNμ, ei
)

χdt −→ E

∫T

0
b(u,Δ, ei)χdt, ∀i. (5.16)

Thanks to density of L∞(Ω × [0, T], dP ⊗ dt) in L2(Ω × [0, T], dP ⊗ dt) and by taking χ ∈
L∞(Ω × [0, T], dP ⊗ dt) as a test function, we deduce from (5.16) that

b
(

uNμ,ΔuNμ, ei
)

⇀ b(u,Δu, ei) weakly in L2
(

Ω,P;L2(0, T)
)

, (5.17)

for any i.
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Using (2.22), we can imitate the argument used above to show that

b
(

ei,ΔuNμ, uNμ

)

⇀ b(ei,Δu, u) weakly in L2
(

Ω,P;L2(0, T)
)

, (5.18)

for any i.
We conclude with (2.18), (5.10), (5.17) and (5.18) that

(

curl
(

uNμ − αΔuNμ

)

× uNμ, ei
)

⇀ (curl(u − αΔu) × u, ei), (5.19)

weakly in L2(Ω,P;L2(0, T)) for any i.
It follows from (5.7), the Lemma 4.3, the assumption on F, and Vitali’s theorem that

F
(

uNμ(·), ·
)

−→ F(u(·), ·) strongly in L2
(

Ω,P;L2(0, T ;V)
)

. (5.20)

This implies in particular that

(

F
(

uNμ(·), ·
)

, ei
)

−→ (F(u(·), ·), ei) strongly in L2
(

Ω,P;L2(0, T)
)

, (5.21)

for any i.
It remains to prove that

∫ t

0

(

G
(

uNμ, s
)

, ei
)

dWNμ ⇀

∫ t

0
(G(u, s), ei)dW weakly- 	 in L2(Ω,P;L∞(0, T)), (5.22)

for any t ∈ (0, T) and i as μ → ∞. Using a similar argument as in [53], we will just show that

∫T

0

(

G
(

uNμ, s
)

, ei
)

dWNμ ⇀

∫T

0
(G(u, s), ei)dW weakly in L2(Ω,P), (5.23)

from (5.22) follows. From now on we fix i ≥ 1. First, Lemma 4.3, the convergence (5.7), the
assumption on G, and Vitali’s theorem imply that

(

G
(

uNμ, ·
)

, ei
)

−→ (G(u, ·), ei) in L2
(

Ω,P;L2(0, T)
)

(5.24)

as μ → ∞. We consider the already introduced regularized function Gε(u(·), ·) in (4.139). We
readily check that

(Gε(u(·), ·), ei) −→ (G(u(·), ·), ei) in L2
(

Ω,P;L2(0, T)
)

, (5.25)

as ε → 0. We also have

E

∫T

0

∣

∣

∣

(

Gε
(

uNμ, t
)

−Gε(u, t), ei
)∣

∣

∣

2
dt ≤ E

∫T

0

∣

∣

∣

(

G
(

uNμ, t
)

−G(u, t), ei
)∣

∣

∣

2
dt. (5.26)
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The crucial point is to show that

∫T

0

(

Gε
(

uNμ, t
)

, ei
)

dWNμ ⇀

∫T

0
(Gε(u, t), ei)dW weakly in L2(Ω,P). (5.27)

Since

E

∣

∣

∣

∣

∣

∫T

0

(

Gε
(

uNμ, t
)

, ei
)

dWNμ

∣

∣

∣

∣

∣

2

= E

∫T

0

(

Gε
(

uNμ, t
)

, ei
)2
dt < ∞, (5.28)

then
∫T

0 (G
ε(uNμ, t), ei)dWNμ weakly converges to a certain β in L2(Ω,P). An integration-by-

parts yields

∫T

0

(

Gε
(

uNμ, t
)

, ei
)

dWNμ =
(

Gε
(

uNμ(T), T
)

, ei
)

−
∫T

0
WNμ(t)

d

dt

(

Gε
(

uNμ(t), t
)

, ei
)

dt,

(5.29)

where

d

dt

(

Gε
(

uNμ(t), t
)

, ei
)

=
1
ε

∫T

0

d

dt
φ

(

− t − s

ε

)

(

G
(

vNμ(s), s
)

, ei
)

ds. (5.30)

By virtue of the convergence

(

uNμ,WNμ

)

−→ (u,W) in C(0, T ;Rm) × L2(0, T ;V) (5.31)

P-almost surely, we have

∫T

0

(

Gε
(

uNμ, t
)

, ei
)

dWNμ −→ (Gε(u(T), T), ei) −
∫T

0
W(t)

d

dt
(Gε(u(t), t), ei)dt (5.32)

for almost all ω ∈ Ω. The term in the left-hand side of (5.32) is equal to

∫T

0
(Gε(u(t), t), ei)dW. (5.33)

Now let us pick an element ζ ∈ L∞(Ω,P). We have

E

∫T

0

(

Gε
(

uNμ(t), t
)

, ζei
)

dWNμ −→ E

∫T

0
(Gε(u(t), t), ζei)dW, (5.34)
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that is

β =
∫T

0
(Gε(u(t), t), ei)dW. (5.35)

Indeed, thanks to the estimate (4.140), Lemma 4.2 the sequence of random variables
∫T

0 (G
ε(uNμ(t), t), ζei)dWNμ is uniformly integrable. Owing to the convergence (5.32) and the

applicability of the Vitali’s Theorem, we get (5.34). We also have (5.27) since L∞(Ω,F,P) is
dense in L2(Ω,P).

Let ζ ∈ L∞(Ω,P); we write

∣

∣

∣

∣

∣

E

∫T

0

(

G
(

uNμ(t), t
)

, ζei
)

dWNμ − E

∫T

0
(G(u(t), t), ζei)dW

∣

∣

∣

∣

∣

≤ J1 + J2 + J3, (5.36)

where
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∣

∣

∣

∣

∣
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∣

,
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∣

∣

∣
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∣

E
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0

(

Gε
(

uNμ(t), t
)

, ζei
)

dWNμ − E
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0
(Gε(u(t), t), ζei)dW

∣

∣

∣

∣

∣

,

J3 =

∣

∣

∣

∣

∣

E

∫T

0
(Gε(u(t), t), ζei)dW − E

∫T

0
(G(u(t), t), ζei)dW

∣

∣

∣

∣

∣

.

(5.37)

By Cauchy-Schwarz’s inequality and owing to (5.25), the term J3 of the RHS of (5.36)
converges to zero as ε → 0.

By (5.34), the term J2 in the RHS of (5.36) converges to zero as μ → ∞.
By Cauchy-Schwarz’s inequality again, some simple calculations, and making use of

the estimate (5.26) and the convergence (5.24) and (5.25) we see that J1 converges to zero as
ε → 0 and μ → ∞.

In view of these convergences passing to the limit as ε → 0 and μ → ∞ in (5.36) we
get (5.22).

Combining all those results and passing to the limit in (4.133), we see that u satisfies
(3.6). This proves the first part of Theorem 3.3. The next subsection addresses the continuity
in time of our solution.

5.2. Proof of Continuity of the Paths of u

We have already shown that for any i ≥ 1 the equation

(u(t), ei)V
= (u0, ei)V

+
∫ t

0
((F(u(s), s) − curl(u − αΔu) × u, ei) − ν((u(s), ei)))ds

+
∫ t

0
(G(u(s), s), ei)dW

(5.38)

holds almost surely for any t ∈ [0, T].
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For any i ≥ 1 let ϕ be the mapping

[0, T] −→ R,

t �−→ ϕ(t) = (u(t), ei)V
.

(5.39)

Let θ > 0. We have
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∣ϕ(t) − ϕ(t + θ)
∣

∣ ≤
∣

∣
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∣

∣

∫ t+θ

t
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∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ t+θ

t

(G(u(s), s), ei)dW

∣

∣

∣

∣

∣

.

(5.40)

Let p > 4, we obtain by raising both sides of the last inequality to the power p/2

∣

∣ϕ(t) − ϕ(t + θ)
∣

∣

p/2 ≤ C

∣

∣

∣
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∣

∫ t+θ
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∣

∣

∣

∣

∣

p/2

+ C

(

∫ t+θ

t

|(F(u(s), s), ei)|ds
)p/2

+ C

(

∫ t+θ

t

|(curl(u − αΔu) × u, ei)|ds
)p/2

+ C

(

ν

∫ t+θ

t

|((u(s), ei))|ds
)p/2

.

(5.41)

We infer from this that

E
∣

∣ϕ(t) − ϕ(t + θ)
∣

∣

p/2 ≤ E

(

∫ t+δ

t
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∣
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t

(G(u(s), s), ei)dW
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∣

∣
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∣
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+ CE
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∫ t+δ

t

|(F(u(s), s), ei)|ds
)p/2

+ CE

(

∫ t+δ

t

ν|((u(s), ei))|ds
)p/2

,

(5.42)
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which implies by the help of martingale inequality that

E
∣

∣ϕ(t) − ϕ(t + θ)
∣

∣

p/2 ≤ Cθ(p−2)/2
∫ t+δ

t

|(curl(u − αΔu) × u, ei)|p/2ds

+ Cθ(p−2)/2
∫ t+δ

t

|(F(u(s), s), ei)|p/2ds

+ Cθ(p−2)/2ν
∫ t+δ

t

|((u(s), ei))|p/2ds

+ CE

(

∫ t+θ

t

|(G(u(s), s), ei)|2
)p/2

.

(5.43)

Using previous estimates and some elementary inequalities, the following holds:

E
∣

∣ϕ(t) − ϕ(t + θ)
∣

∣

p/2 ≤ C
(

θ1+(p−2)/2 + θ1+(p−4)/4
)

, (5.44)

for any θ > 0. We conclude from Kolmogorov-C̆entsov Theorem that the stochastic process
ϕ(·) = (u(·), ei)V

has almost surely a continuous modification with respect to the time variable
t. Identifying u with this modification, we see that u has almost surely continuous paths
taking values in V-weak. Since u is also in the class Lp/2(Ω,P;L∞(0, T ;W)), then u(·) also
has almost surely continuous paths with respect to t taking values in W-weak (see [54] for
justification). It follows that the initial condition u(x, 0) = u0 ∈ W in (1.13) makes sense.
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