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This paper is concerned with the following third-order boundary value problem with integral
boundary conditions u′′′(t) + f(t, u(t), u′(t)) = 0, t ∈ [0, 1];u(0) = u′(0) = 0, u′(1) =

∫1
0 g(t)u

′(t)dt,
where f ∈ C([0, 1] × [0,+∞) × [0,+∞), [0,+∞)) and g ∈ C([0, 1], [0,+∞)). By using the Guo-
Krasnoselskii fixed-point theorem, some sufficient conditions are obtained for the existence and
nonexistence of monotone positive solution to the above problem.

1. Introduction

Third-order differential equations arise in a variety of different areas of applied mathematics
and physics, for example, in the deflection of a curved beam having a constant or varying
cross section, a three-layer beam, electromagnetic waves or gravity driven flows and so on
[1].

Recently, third-order two-point or multipoint boundary value problems (BVPs for
short) have attracted a lot of attention [2–17]. It is known that BVPs with integral boundary
conditions cover multipoint BVPs as special cases. Although there are many excellent works
on third-order two-point or multipoint BVPs, a little work has been done for third-order BVPs
with integral boundary conditions. It is worth mentioning that, in 2007, Anderson and Tisdell
[18] developed an interval of λ values whereby a positive solution exists for the following
third-order BVP with integral boundary conditions

(
pu′′)′(t) = λf(t, u(t)), t ∈ [t1, t3],

αu(t1) − βu′(t1) =
∫ ξ2

ξ1

g(t)u(t)dt,
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u′(t2) = 0,

(
pu′′)(t3) =

∫η2

η1

h(t)
(
pu′′)(t)dt

(1.1)

by using the Guo-Krasnoselskii fixed-point theorem. In 2008, Graef and Yang [19] studied the
third-order BVP with integral boundary conditions

u′′′(t) = g(t)f(u(t)), t ∈ [0, 1],

u(0) = u′(p
)
=
∫1

q

w(t)u′′(t)dt = 0.
(1.2)

For second-order or fourth-order BVPs with integral boundary conditions, one can refer to
[20–24].

In this paper, we are concerned with the following third-order BVP with integral
boundary conditions

u′′′(t) + f
(
t, u(t), u′(t)

)
= 0, t ∈ [0, 1],

u(0) = u′(0) = 0, u′(1) =
∫1

0
g(t)u′(t)dt.

(1.3)

Throughout this paper, we always assume that f ∈ C([0, 1] × [0,+∞) × [0,+∞), [0,+∞))
and g ∈ C([0, 1], [0,+∞)). Some sufficient conditions are established for the existence and
nonexistence of monotone positive solution to the BVP (1.3). Here, a solution u of the BVP
(1.3) is said to be monotone and positive if u′(t) ≥ 0, u(t) ≥ 0 and u(t)/≡ 0 for t ∈ [0, 1]. Our
main tool is the following Guo-Krasnoselskii fixed-point theorem [25].

Theorem 1.1. Let E be a Banach space and letK be a cone in E. Assume thatΩ1 andΩ2 are bounded
open subsets of E such that θ ∈ Ω1, Ω1 ⊂ Ω2, and let T : K ∩ (Ω2 \ Ω1) → K be a completely
continuous operator such that either

(1) ‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2, or

(2) ‖Tu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω2 \Ω1).

2. Preliminaries

For convenience, we denote μ =
∫1
0 tg(t)dt.
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Lemma 2.1. Let μ/= 1. Then for any h ∈ C[0, 1], the BVP

−u′′′(t) = h(t), t ∈ [0, 1],

u(0) = u′(0) = 0, u′(1) =
∫1

0
g(t)u′(t)dt

(2.1)

has a unique solution

u(t) =
∫1

0

[

G1(t, s) +
t2

2
(
1 − μ

)
∫1

0
G2(τ, s)g(τ)dτ

]

h(s)ds, t ∈ [0, 1], (2.2)

where

G1(t, s) =
1
2

⎧
⎨

⎩

(
2t − t2 − s

)
s, 0 ≤ s ≤ t ≤ 1,

(1 − s)t2, 0 ≤ t ≤ s ≤ 1,

G2(t, s) =

⎧
⎨

⎩

(1 − t)s, 0 ≤ s ≤ t ≤ 1,

(1 − s)t, 0 ≤ t ≤ s ≤ 1.

(2.3)

Proof. Let u be a solution of the BVP (2.1). Then, we may suppose that

u(t) =
∫1

0
G1(t, s)h(s)ds +At2 + Bt + C, t ∈ [0, 1]. (2.4)

By the boundary conditions in (2.1), we have

A =
1

2
(
1 − μ

)
∫1

0
h(s)

∫1

0
G2(τ, s)g(τ)dτds and B = C = 0. (2.5)

Therefore, the BVP (2.1) has a unique solution

u(t) =
∫1

0

[

G1(t, s) +
t2

2
(
1 − μ

)
∫1

0
G2(τ, s)g(τ)dτ

]

h(s)ds, t ∈ [0, 1]. (2.6)

Lemma 2.2 (see [12]). For any (t, s) ∈ [0, 1] × [0, 1],

t2

2
(1 − s)s ≤ G1(t, s) ≤ 1

2
(1 − s)s. (2.7)
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Lemma 2.3 (see [26]). For any (t, s) ∈ [0, 1] × [0, 1],

0 ≤ G2(t, s) ≤ (1 − s)s. (2.8)

In the remainder of this paper, we always assume that μ < 1, α ∈ (0, 1) and β = α2/2.

Lemma 2.4. If h ∈ C[0, 1] and h(t) ≥ 0 for t ∈ [0, 1], then the unique solution u of the BVP (2.1)
satisfies

(1) u(t) ≥ 0, t ∈ [0, 1],

(2) u′(t) ≥ 0, t ∈ [0, 1] and mint∈[α,1]u(t) ≥ β‖u‖, where ‖u‖ = max{‖u‖∞, ‖u′‖∞}.

Proof. Since (1) is obvious, we only need to prove (2). By (2.2), we get

u′(t) =
∫1

0

[

G2(t, s) +
t

1 − μ

∫1

0
G2(τ, s)g(τ)dτ

]

h(s)ds, t ∈ [0, 1], (2.9)

which indicates that u′(t) ≥ 0 for t ∈ [0, 1].
On the one hand, by (2.9) and Lemma 2.3, we have

∥∥u′∥∥
∞ ≤

∫1

0

[

(1 − s)s +
1

1 − μ

∫1

0
G2(τ, s)g(τ)dτ

]

h(s)ds. (2.10)

On the other hand, in view of (2.2) and Lemma 2.2, we have

‖u‖∞ ≤
∫1

0

[

(1 − s)s +
1

1 − μ

∫1

0
G2(τ, s)g(τ)dτ

]

h(s)ds. (2.11)

It follows from (2.10) and (2.11) that

‖u‖ ≤
∫1

0

[

(1 − s)s +
1

1 − μ

∫1

0
G2(τ, s)g(τ)dτ

]

h(s)ds, (2.12)
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which together with Lemma 2.2 implies that

min
t∈[α,1]

u(t) = min
t∈[α,1]

∫1

0

[

G1(t, s) +
t2

2
(
1 − μ

)
∫1

0
G2(τ, s)g(τ)dτ

]

h(s)ds

≥ min
t∈[α,1]

t2

2

∫1

0

[

(1 − s)s +
1

1 − μ

∫1

0
G2(τ, s)g(τ)dτ

]

h(s)ds

=
α2

2

∫1

0

[

(1 − s)s +
1

1 − μ

∫1

0
G2(τ, s)g(τ)dτ

]

h(s)ds

≥ β‖u‖.

(2.13)

Let E = C1[0, 1] be equipped with the norm ‖u‖ = max{‖u‖∞, ‖u′‖∞}. Then E is a
Banach space. If we denote

K =
{
u ∈ E : u(t) ≥ 0, u′(t) ≥ 0, t ∈ [0, 1], min

t∈[α,1]
u(t) ≥ β‖u‖

}
, (2.14)

then it is easy to see that K is a cone in E. Now, we define an operator T on K by

(Tu)(t) =
∫1

0

[

G1(t, s) +
t2

2
(
1 − μ

)
∫1

0
G2(τ, s)g(τ)dτ

]

f
(
s, u(s), u′(s)

)
ds, t ∈ [0, 1]. (2.15)

Obviously, if u is a fixed point of T , then u is a monotone nonnegative solution of the BVP
(1.3).

Lemma 2.5. T : K → K is completely continuous.

Proof. First, by Lemma 2.4, we know that T(K) ⊂ K.
Next, we assume that D ⊂ K is a bounded set. Then there exists a constant M1 > 0

such that ‖u‖ ≤ M1 for any u ∈ D. Now, we will prove that T(D) is relatively compact in K.
Suppose that {yk}∞k=1 ⊂ T(D). Then there exist {xk}∞k=1 ⊂ D such that Txk = yk. Let

M2 = sup
{
f
(
t, x, y

)
:
(
t, x, y

) ∈ [0, 1] × [0,M1] × [0,M1]
}
,

M3 =
1

1 − μ

∫1

0
G2(τ, s)g(τ)dτds.

(2.16)
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Then for any k, by Lemma 2.2, we have
∣
∣yk(t)

∣
∣ = |(Txk)(t)|

=

∣
∣
∣
∣
∣

∫1

0

[

G1(t, s) +
t2

2
(
1 − μ

)
∫1

0
G2(τ, s)g(τ)dτ

]

f
(
s, xk(s), x′

k(s)
)
ds

∣
∣
∣
∣
∣

≤ M2

2

∫1

0

[

(1 − s)s +
1

1 − μ

∫1

0
G2(τ, s)g(τ)dτ

]

ds

=
M2

2

(
1
6
+M3

)
, t ∈ [0, 1],

(2.17)

which implies that {yk}∞k=1 is uniformly bounded. At the same time, for any k, in view of
Lemma 2.3, we have

∣∣y′
k(t)
∣∣ =
∣∣(Txk)′(t)

∣∣

=

∣∣∣∣∣

∫1

0

[

G2(t, s) +
t

1 − μ

∫1

0
G2(τ, s)g(τ)dτ

]

f
(
s, xk(s), x′

k(s)
)
ds

∣∣∣∣∣

≤ M2

(∫1

0

[

(1 − s)s +
1

1 − μ

∫1

0
G2(τ, s)g(τ)dτ

]

ds

)

= M2

(
1
6
+M3

)
, t ∈ [0, 1],

(2.18)

which shows that {y′
k
}∞
k=1 is also uniformly bounded. This indicates that {yk}∞k=1 is

equicontinuous. It follows from Arzela-Ascoli theorem that {yk}∞k=1 has a convergent
subsequence in C[0, 1]. Without loss of generality, we may assume that {yk}∞k=1 converges
in C[0, 1]. On the other hand, by the uniform continuity of G2(t, s), we know that for any
ε > 0, there exists δ1 > 0 such that for any t1, t2 ∈ [0, 1] with |t1 − t2| < δ1, we have

|G2(t1, s) −G2(t2, s)| < ε

2(M2 + 1)
, s ∈ [0, 1]. (2.19)

Let δ = min{δ1, ε/2(M2M3 + 1)}. Then for any k, t1, t2 ∈ [0, 1] with |t1 − t2| < δ, we have

∣∣y′
k(t1) − y′

k(t2)
∣∣ =
∣∣(Txk)′(t1) − (Txk)′(t2)

∣∣

≤
∫1

0

[

|G2(t1, s) −G2(t2, s)| + |t1 − t2|
1 − μ

∫1

0
G2(τ, s)g(τ)dτ

]

f
(
s, xk(s), x′

k(s)
)
ds

≤ M2

∫1

0
|G2(t1, s) −G2(t2, s)|ds +M2M3|t1 − t2|

≤ M2ε

2(M2 + 1)
+M2M3|t1 − t2|

< ε,

(2.20)
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which implies that {y′
k}

∞
k=1 is equicontinuous. Again, by Arzela-Ascoli theorem, we know

that {y′
k
}∞
k=1 has a convergent subsequence in C[0, 1]. Therefore, {yk}∞k=1 has a convergent

subsequence in C1[0, 1]. Thus, we have shown that T is a compact operator.
Finally, we prove that T is continuous. Suppose that um, u ∈ K and ‖um−u‖ → 0 (m →

∞). Then there exists M4 > 0 such that for any m, ‖um‖ ≤ M4. Let

M5 = sup
{
f
(
t, x, y

)
:
(
t, x, y

) ∈ [0, 1] × [0,M4] × [0,M4]
}
. (2.21)

Then for any m and t ∈ [0, 1], in view of Lemmas 2.2 and 2.3, we have

[

G1(t, s) +
t2

2
(
1 − μ

)
∫1

0
G2(τ, s)g(τ)dτ

]

f
(
s, um(s), u′

m(s)
)

≤ M5

2

[

1 +
1

1 − μ

∫1

0
g(τ)dτ

]

(1 − s)s, s ∈ [0, 1],

[

G2(t, s) +
t

1 − μ

∫1

0
G2(τ, s)g(τ)dτ

]

f
(
s, um(s), u′

m(s)
)

≤ M5

[

1 +
1

1 − μ

∫1

0
g(τ)dτ

]

(1 − s)s, s ∈ [0, 1].

(2.22)

By applying Lebesgue Dominated Convergence theorem, we get

lim
m→∞

(Tum)(t) = lim
m→∞

∫1

0

[

G1(t, s) +
t2

2
(
1 − μ

)
∫1

0
G2(τ, s)g(τ)dτ

]

f
(
s, um(s), u′

m(s)
)
ds

=
∫1

0

[

G1(t, s) +
t2

2
(
1 − μ

)
∫1

0
G2(τ, s)g(τ)dτ

]

f
(
s, u(s), u′(s)

)
ds

= (Tu)(t), t ∈ [0, 1],

lim
m→∞

(Tum)′(t) = lim
m→∞

∫1

0

[

G2(t, s) +
t

1 − μ

∫1

0
G2(τ, s)g(τ)dτ

]

f
(
s, um(s), u′

m(s)
)
ds

=
∫1

0

[

G2(t, s) +
t

1 − μ

∫1

0
G2(τ, s)g(τ)dτ

]

f
(
s, u(s), u′(s)

)
ds

= (Tu)′(t), t ∈ [0, 1],

(2.23)

which indicates that T is continuous. Therefore, T : K → K is completely continuous.
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3. Main Results

For convenience, we define

f0 = lim sup
x+y→ 0+

max
t∈[0,1]

f
(
t, x, y

)

x + y
, f0 = lim inf

x+y→ 0+
min
t∈[α,1]

f
(
t, x, y

)

x + y
,

f∞ = lim sup
x+y→+∞

max
t∈[0,1]

f
(
t, x, y

)

x + y
, f∞ = lim inf

x+y→+∞
min
t∈[α,1]

f
(
t, x, y

)

x + y
,

H1 = 2
∫1

0

[

(1 − s)s +
1

1 − μ

∫1

0
G2(τ, s)g(τ)dτ

]

ds,

H2 =
β

2

∫1

α

[

(1 − s)s +
1

1 − μ

∫1

0
G2(τ, s)g(τ)dτ

]

ds.

(3.1)

Theorem 3.1. IfH1f
0 < 1 < H2f∞, then the BVP (1.3) has at least one monotone positive solution.

Proof. In view of H1f
0 < 1, there exists ε1 > 0 such that

H1

(
f0 + ε1

)
≤ 1. (3.2)

By the definition of f0, we may choose ρ1 > 0 so that

f
(
t, x, y

) ≤
(
f0 + ε1

)(
x + y

)
, for t ∈ [0, 1],

(
x + y

) ∈ [0, ρ1
]
. (3.3)

Let Ω1 = {u ∈ E : ‖u‖ < ρ1/2}. Then for any u ∈ K ∩ ∂Ω1, in view of (3.2) and (3.3), we have

(Tu)′(t) =
∫1

0

[

G2(t, s) +
t

1 − μ

∫1

0
G2(τ, s)g(τ)dτ

]

f
(
s, u(s), u′(s)

)
ds

≤
∫1

0

[

(1 − s)s +
1

1 − μ

∫1

0
G2(τ, s)g(τ)dτ

](
f0 + ε1

)(
u(s) + u′(s)

)
ds

≤ H1

(
f0 + ε1

)
‖u‖

≤ ‖u‖, t ∈ [0, 1].

(3.4)

By integrating the above inequality on [0, t], we get

(Tu)(t) ≤ ‖u‖, t ∈ [0, 1], (3.5)
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which together with (3.4) implies that

‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1. (3.6)

On the other hand, since 1 < H2f∞, there exists ε2 > 0 such that

H2
(
f∞ − ε2

) ≥ 1. (3.7)

By the definition of f∞, we may choose ρ2 > ρ1, so that

f
(
t, x, y

) ≥ (f∞ − ε2
)(
x + y

)
, for t ∈ [α, 1],

(
x + y

) ∈ [ρ2,+∞
)
. (3.8)

Let Ω2 = {u ∈ E : ‖u‖ < ρ2/β}. Then for any u ∈ K ∩ ∂Ω2, in view of (3.7) and (3.8), we have

(Tu)(1) =
∫1

0

[

G1(1, s) +
1

2
(
1 − μ

)
∫1

0
G2(τ, s)g(τ)dτ

]

f
(
s, u(s), u′(s)

)
ds

≥ 1
2

∫1

α

[

(1 − s)s +
1

1 − μ

∫1

0
G2(τ, s)g(τ)dτ

]
(
f∞ − ε2

)(
u(s) + u′(s)

)
ds

≥ H2
(
f∞ − ε2

)‖u‖
≥ ‖u‖,

(3.9)

which implies that

‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2. (3.10)

Therefore, it follows from (3.6), (3.10), and Theorem 1.1 that the operator T has one fixed
point u ∈ K ∩ (Ω2 \Ω1), which is a monotone positive solution of the BVP (1.3).

Theorem 3.2. IfH1f
∞ < 1 < H2f0, then the BVP (1.3) has at least one monotone positive solution.

Proof. The proof is similar to that of Theorem 3.1 and is therefore omitted.

Theorem 3.3. IfH1f(t, x, y) < (x +y) for t ∈ [0, 1] and (x +y) ∈ [0,+∞), then the BVP (1.3) has
no monotone positive solution.
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Proof. Suppose on the contrary that u is a monotone positive solution of the BVP (1.3). Then
u(t) ≥ 0 and u′(t) ≥ 0 for t ∈ [0, 1], and

u′(t) =
∫1

0

[

G2(t, s) +
t

1 − μ

∫1

0
G2(τ, s)g(τ)dτ

]

f
(
s, u(s), u′(s)

)
ds

≤
∫1

0

[

(1 − s)s +
1

1 − μ

∫1

0
G2(τ, s)g(τ)dτ

]

f
(
s, u(s), u′(s)

)
ds

<
1
H1

∫1

0

[

(1 − s)s +
1

1 − μ

∫1

0
G2(τ, s)g(τ)dτ

]
(
u(s) + u′(s)

)
ds

≤ ‖u‖, t ∈ [0, 1].

(3.11)

By integrating the above inequality on [0, t], we get

u(t) < ‖u‖, t ∈ [0, 1], (3.12)

which together with (3.11) implies that

‖u‖ < ‖u‖. (3.13)

This is a contradiction. Therefore, the BVP (1.3) has no monotone positive solution.

Similarly, we can prove the following theorem.

Theorem 3.4. IfH2f(t, x, y) > (x+y) for t ∈ [α, 1] and (x+y) ∈ [0,+∞), then the BVP (1.3) has
no monotone positive solution.

Example 3.5. Consider the following BVP:

u′′′(t) +
1

1 + t

[
u(t) + u′(t)
eu(t)+u′(t)

+
1000(u(t) + u′(t))2

1 + u(t) + u′(t)

]

= 0, t ∈ [0, 1],

u(0) = u′(0) = 0, u′(1) =
∫1

0
tu′(t)dt.

(3.14)

Since f(t, x, y) = 1/(1 + t)[((x + y)/ex+y) + (1000(x + y)2/(1 + x + y))] and g(t) = t, if
we choose α = 1/2, then it is easy to compute that

f0 = 1, f∞ = 500, H1 =
11
24

, H2 =
91

12288
, (3.15)

which shows that

H1f
0 < 1 < H2f∞. (3.16)

So, it follows from Theorem 3.1 that the BVP (3.14) has at least one monotone positive
solution.
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